BigData Express

Wenji Wu
Workshop on Science of Security through Software-Defined Networking
16 June 2016
Content

• DOE Data Transfer Challenges
 – High-performance challenges
 – Time-constraint challenges

• Problems with existing data transfer tools and services

• The BigData Express Project
 – Architecture and Design
 – How does BigData Express work?
 – The use of SDN and SDS in BigData Express

• Conclusion
DOE Data Transfer Challenges

- High-Performance Challenge
 - Throughput: 1 Tbps

- Time Constraints on Data Transfer Challenge
 - Real-time data transfer (200-500ms)
 - Deadline-bound data transfer (application specific)
 - Background data transfer (no explicit deadline)

6/28/2016 Wenji Wu | BigData Express
Data Transfer – State of the Art

• Advanced data transfer tools and services developed
 – GridFTP, BBCP
 – PhEDEx, LIGO Data Replicator, Globus Online

• Numerous enhancements
 – Parallelism at all levels
 • Multi-stream parallelism
 • Multicore parallelism
 • Multipath parallelism
 – Science DMZ architecture
 – Terabit networks
Can Today’s data transfer tools and services support extreme-scale science applications well?

No!
Problems with existing data transfer tools and services – Problem 1

- Disjoint end-to-end data transfer loop

Network Congestion

DTN Performance Mismatch
Problems with existing data transfer tools and services – Problem 2

- Cross-interference between data transfers
Problems with existing data transfer tools and services – Problem 3

• Oblivious to user requirements (e.g., deadlines and Qos requirements)

Data transfer with and without deadline awareness
Problems with existing data transfer tools and services – Problem 4

- Inefficiencies arise when existing data transfer tools are run on DTNs (data transfer nodes)

The parallelism vs. I/O locality problem on NUMA systems
Our Solution

• The BigData Express Project
 – Collaborative effort by Fermilab and Oakridge National Laboratory
 – Funded by DOE’s Office of Advanced Scientific Computing Research (ASCR)
 – Capitalize on the MDTM project
 • http://mdtm.fnal.gov

• BigData Express seeks to provide a **schedulable**, **predictable**, and **high-performance** data transfer service for DOE’s large-scale science computing facilities (e.g., LCF, US-LHC computing facilities)
BigData Express Design Principles

- Parallelism
- Seamless Integration
- Effective coordination
BigData Express - Key Features (1)

• A data-transfer-centric architecture to seamlessly integrate and efficiently coordinate the various resources in an end-to-end loop
 – Directly schedule various local resources within a site
 – A distributed rate-based resources brokering mechanism to coordinate resources across sites
 – A distributed DTN matching mechanism to coordinate and match heterogeneous DTNs at different sites to avoid DTN performance mismatch

• A time-constraint-based scheduler to schedule data transfer tasks
BigData Express - Key Features (2)

- An admission control mechanism to provide guaranteed resources for admitted data transfer tasks

- An end-host-based rate control mechanism to improve data transfer schedulability and reduce cross-interference between data transfers

- Extensive use of SDN to improve network I/O performance

- The leveraging of SDS to improve storage I/O performance
A large data center typically features:

- A dedicated cluster of high-performance DTNs
- An SDN-based BigData Express LAN
- A large-scale storage system
BigData Express - Major Entities (1)

- **BigData Express scheduler**
 - Coordinate all activities at each BigData Express site
 - Manage and schedule local resources (DTNs, storage, and BigData Express LAN through agents (DTN agents, storage agents, and network agents))
 - BigData Express scheduler at different sites will collaborate to execute data transfer tasks.

- **The service interface**
 - Authenticate, authorize, and audit users and user applications
 - Allow user to access BigData Express services
BigData Express - Major Entities (2)

- DTN agents
 - Collect and report the DTN configuration and status
 - Assign DTNs to data transfer tasks as requested by the BigData Express scheduler

- Network agents
 - Keep track of the BigData Express LAN topology and traffic status with the aid of SDN controllers
 - Reliably updating SDN-enabled switch rules as requested by the BigData Express scheduler to assign local paths for data transfer
SDN Controller
- Open-source network operating system (e.g., ONOS)
- The network agents access the SDN controllers through northbound APIs

Storage agents
- Keep track of the usage of local storage systems
- Provide information regarding storage resources availability to the scheduler
- Execute storage assignment

Resource broker
- Implement a distributed rate-based resource brokering mechanism to coordinate resource allocation across sites
How does BigData Express work? (1)

• The BigData Express scheduler implements a time-constraint-based scheduler to schedule resource for data transfer tasks

• Each resource will be estimated, calculated, and converted into a rate that can be apportioned to data transfer tasks

• On an event-driven or periodic basis, the scheduler will perform the following tasks:
 – Resource estimation and calculation
 – Resource pre-allocation
 – Resource brokering
 – Resource assignment
How does BigData Express work? (2)

1 Event
N
2 a new req?
Y
3 admission control
N
reject
Y
3.1' Req analysis
admission control results
3' admission control
N
4 resource estimation
Y
5 resource Pre-allocation
6 resource brokering
7 resource assignment
8 rate control
9 start the data transfer task
SDN-based site-to-site path service
6’ resource brokering
Distributed resource brokering
Distributed DTN matching
Start data transfer
src/dst site scheduler

2.1 forward data transfer request to remote site

4’ resource estimation
5’ resource Pre-allocation
6’ resource brokering
7’ resource assignment
8’ rate control
9’ start the data transfer task
dst/src site scheduler
The use of SDN in BigData Express (1)

- To transform networks into schedulable resources to enable a data-transfer centric architecture

- To improve network I/O performance
 - Reduce/eliminate network congestion

- To improve DTN performance
 - Eliminate remote network I/Os in DTN
The use of SDN in BigData Express (2)

- Deploy ONOS controller to control and manage networks

- Use REST APIs to manage SDN-enabled networks
 - Obtain network information
 - Topology, Devices, Links, Hosts
 - Install/delete open flow rules in switches to setup/tear down network paths
The use of SDN in BigData Express (3)

• Obtain SDN network links with REST APIs
 – curl —user karaf:karaf -d @post-intent.json -H “Content-Type: application/json” -X POST http://localhost:8181/onos/v1/intents

• Install OpenFlow Rules with REST APIs
 – curl —user karaf:karaf -X DELETE http://localhost:8181/onos/v1/intents/org.onosproject.gui/0x1a

• Delete OpenFlow Rules with REST APIs
The use of SDS in BigData Express

• Aim to provide guaranteed, high-performance storage I/O

• The idea is to manage block I/Os via lightweight Linux-container-based virtualization

• Two vehicles for allocating block I/Os in a Linux container
 – Throttling functionality
 • Set an upper limit to a process group’s block I/O
 – Weight function
 • Assign shares of block I/O to a group of processes
BigData Express Security

• BigData Express web service security
 – BDE AAA service
 • Single sign-on

• Local site security
 – Each site has its own security policy.
 • We need to access a site’s resources (e.g. DTNs, Storage, LAN, and WAN)
 – CILogon service to obtain certificates for each site
 • Short-lived certificate (max. 1,000,000 seconds)
 • X509
Conclusion

BigData Express is a middleware data transfer service that provides a schedulable, predictable, and high-performance data transfer service for DOE’s large-scale science computing facilities (e.g., LCF, US-LHC computing facilities)
Questions?