Problem Statement and Goals

Motivation: networks require near-constant configuration changes [1]

- 20% of network operators make changes once per day
- 80% of network operators are concerned changes will introduce problems with existing functionality
- Operators need a way to vet changes at a high level

Goals:

- Mine succinct summaries of configuration changes
- Understand low-level configuration changes: infer high-level intention
- Verify operational updates: confirm compliance with intention and network policy

Path Change Summaries:

A configuration change can encompass many tasks (re-routing traffic, updating ACLs, modifying interface/port settings). Initially, we focus on path changes and summarize each change in the form:

\[
\text{pc: } \text{old_path } \Rightarrow \text{new_path}
\]

- **pc:** a packet class, an equivalence class where every packet is forward the same way [3]
- **old_path, new_path:** regular expressions defining a path in the previous network and the current network, respectively

Generalizing Useful Path Expressions

Key Challenge: deriving a regular expression that describes the path change at the right level of abstraction

- **Precise:** informative enough to capture the impact of the configuration change
 - \text{new_path: } .* - not precise enough to describe impact
- **Concise:** uncover the high-level intention of the configuration change
 - \text{old_path: } .* - concisely matches all previous paths

Mining Strategies:

- **Correctness:** the expression correctly identifies the change and could be used to synthesize a change [2]
- **Minimality:** bias toward expressions with fewer terms (Occam’s razor)
- **Topology restrictions:** if only a single path exists between nodes \(n_1\) and \(n_2\), ignore intermediate hops
- **Non-empty path change:** the difference between \text{old_path} and \text{new_path} is non-empty
- **Indistinguishable nodes:** automatically inferred or user-defined sets of nodes with similar function

Motivating Example

Input: two network configurations: \(N \rightarrow N'\)

Output: summary of each changed path, as a regular expression

\[
\text{pc: } \text{old_path } \Rightarrow \text{new_path}
\]

- The most generic expression does not capture the intention of the configuration change:
 \(.* \Rightarrow .*\)
- An explicit expression is too verbose:
 \((A+B+C) F1 X Z \Rightarrow (A+B+C) F2 Y Z\)
- **Goal:** a concise, useful expression:
 \(.* F1 .* \Rightarrow .* F2 .*\)

Application of Mining Strategies

Indistinguishable nodes: automatically infer and cluster together devices with similar functionality

- \(N = \text{all nodes in the network}\)
- Set of firewalls: \(\text{fw} = \{\text{fw}_1, \text{fw}_2\}\)
- Set of non-firewalls: \(\text{nf} = N - \text{fw}\)

\[
\text{old_path}\text{nf* fw nf* dst}\]

Topology restrictions:

- Summarized path: \(\text{src nf* fw nf* dst}\)

References

