Differential privacy, entropy and security in distributed control of cyber-physical systems
General Question

For distributed control systems, how expensive is it to preserve privacy? How to optimize?

Navigation
- Routing delays vs location privacy

Smart Grid
- Peak demand vs schedule privacy
Section I: On Differential Privacy of Distributed Control System
Distributed control

Consider a network of vehicles evolving in a shared environment (road congestion)

State of each agent (vehicle) x_i
- Evolve with coupled dynamics (delays)

Agents want to share state to estimate delays

Private preferences p_i,
- Initial states + sequence of waypoint

Report value $z_i = x_i + noise$

Dynamics of agent:

\[
\begin{align*}
 z_i &= x_i + w_i \\
 u_i &= g(x_i, p_i, z) \\
 x_i^+ &= f(x_i, x, u_i)
\end{align*}
\]
Some notations

\[z_i = x_i + w_i \]
\[u_i = g(x_i, p_i, z) \]
\[x_i^+ = f(x_i, x, u_i) \]

- Sensitive data set: \(D = \{p_i\}_{i \in [N]} \) collects agent preference
 - Two data set \(D, D' \) are adjacent if they differ in one agent’s data
- Observation sequence: \(O = \{z(t)\}_{t \in [T]} \in \mathbb{R}^{nNT} \)
- Trajectory: \(\xi = \{x(t)\}_{t \in [T]} \),
 - Fully defined by a data set \(D \) and observation \(O, \xi_{D,O} \)
\(\varepsilon \)-differential privacy

Definition: The randomized communication is \(\varepsilon \)-differentially private with \(\varepsilon > 0 \), if for all adjacent datasets \(D \) and \(D' \) for all subset of observations \(S \),

\[
\Pr[O_D \in S] \leq e^{\varepsilon} \Pr[O_{D',} \in S]
\]

- Difference in one agent’s data doesn’t change the output distribution much
- Small \(\varepsilon \), high privacy; \(\varepsilon \rightarrow 0 \), no communication; \(\varepsilon \rightarrow \infty \), no privacy

- How to design the noise to achieve \(\varepsilon \)-differential privacy?

[Dwork2006], [Ny2014], [Huang2012]
Laplace mechanism for one-shot queries [Dwork06]

No dynamics involve, just exchanging initial states

- $p_i \in \mathbb{R}$ is the initial state of agent i

Laplace mechanism: $z_i = p_i + \text{Lap}\left(\frac{1}{\epsilon}\right)$ gives ϵ-differential privacy for any ϵ

- $\text{Lap}\left(\frac{1}{\epsilon}\right)$ has p.d.f. $f(x) = \frac{\epsilon}{z} e^{\epsilon|x|}$
- $\forall x, x': \frac{f(x)}{f(x')} \leq e^{\epsilon |x-x'|}$
- The average reported value is $\sum z_i$ which gives DP with accuracy bounds
When dynamics come into the picture

Definition: the sensitivity of the system is supremum 1-norm between agent trajectories

\[S(t) = \sup_{\text{adj}(D,D')} \| \xi_{D,O,i}(t) - \xi_{D',O,i}(t) \|_1 \]

- Sensitivity is a property of dynamics of the network
- It can be computed [HiCoNS2014], [CAV2014]
Laplace Mechanism for dynamical systems

Theorem: The following distributed control system is ϵ-differentially private:

- at each time t, each agent adds an vector of independent Laplace noise $\text{Lap}\left(\frac{S(t)T}{\epsilon}\right)$ to its actual state:

 $$z(t) = x_i(t) + \text{Lap}\left(\frac{S(t)T}{\epsilon}\right)$$

- Larger time horizon, higher privacy level, larger sensitivity \Rightarrow more noise \Rightarrow worse accuracy
Cost of Privacy

Average Cost: $Cost_p = \frac{1}{N} \sum_{t=0}^{T} \sum x_i(t) - p_i(t) |^2$

Baseline cost \overline{Cost}_p: the cost when $z_i(t) = x_i(t)$
• No noise

The Cost of Privacy of a DP mechanism M is:
$$CoP = \sup_p \mathbb{E}[Cost_p - \overline{Cost}_p]$$
CoP for linear dynamical system

For stable dynamics: \(\text{CoP} \sim O\left(\frac{T^3}{N^2\epsilon^2}\right) \), otherwise exponential in \(T \)
Summary

Extend the notion of differential privacy to dynamical systems

Generalize Laplace mechanism to dynamical observation using sensitivity of trajectories

For stable dynamics $\text{CoP} \sim O\left(\frac{T^3}{N^2\varepsilon^2}\right)$, otherwise, exponential in T
Section II: Entropy-minimization of Differential Privacy
Feedback control system

\[z = x + w \]
\[x^+ = f(x, z) \]

- Feedback control of agent:
 - Sensitive data: \(x_0 \) initial state of agent
 - Protecting the initial state is equivalent to protecting the whole trajectory
 - Observation sequence: \(O = \{z(t)\}_{t \in [T]} \)

- Question: how much information is lost by adding noise? How to minimize the information loss?
Estimation & Entropy

Definition. An *estimate* of the agent’s initial state is the expectation of the initial state given the history of the agents’ report

\[\tilde{x}_t = \mathbb{E}[x_0 | z_0, z_1, ..., z_t] \]

Definition. The *entropy* of a random variable \(x \) with probability distribution function \(f(x) \) is defined as

\[H(x) = -\int f(x) \ln x \, dx \]
Entrophy-minimization problem

For minimizing the amount of information loss for achieving differential privacy, we design the noise w to be added:

\[\text{Minimize } H(\tilde{x}_t)\]
\[\text{Subject to: } \forall a, b: \ P[\tilde{x}_t = a] \leq e^{\epsilon|a-b|}P[\tilde{x}_t = b]\]
Result for one-shot case

\[z = x + w \]

The estimate \(\tilde{x} \in \mathbb{R}^n \) is computed by the first observation \(z \in \mathbb{R}^n \), no dynamics is involved.

Theorem: The lower-bound of estimate entropy is

\[n - n \ln \frac{\epsilon}{2} \]

which is achieved by adding Laplace noise \(w \sim \text{Lap}(1/\epsilon) \).
Sketch of proof [CDC14]

• Let $p(x, z)$ be the joint distribution of initial state x and report z, we find a symmetric property

• Claim 1: for any x, $p(x, z - x)$ is even
 • Since the noise to add is $n = z - x$, the noise is mean-zero

• Claim 2: for any c, $p(x, z) = p(2c - x, 2c - z)$
 • The noise added is independent of the state

• We can define $f(w) = f(z - x) = p(x, z)$

• Claim 3: $f(w)$ is non-decreasing
Extension with dynamics

\[
\begin{align*}
z &= x + w \\
x^+ &= f(x, z)
\end{align*}
\]

The estimate \(\hat{x}_t = \mathbb{E}[x_0|z_0, z_1, ..., z_t] \) is computed by the first \(t \) observation \(\{Z_s\}_{s \in [T]} \)

• **Theorem**: The lower-bound of estimate entropy is still \(n - n \ln \frac{\epsilon}{2} \), which is achieved by a Laplace mechanism.
Optimal Laplace mechanism

\[z = x + n \]
\[x^+ = f(x, z) \]

- The first noise to add is the same as the one-shot case:
 \[w_0 \sim \text{Lap}(1/\epsilon) \]
- In the following round \(t > 0 \), the noise to be added is by evolving the initial noise with the dynamics:
 \[w_t = \xi(w_0, t) \]
Summary

• Formulate a general estimation problem for which we want to minimize the entropy of estimate

• Prove a lower bound of estimation entropy $n - n \ln \frac{\epsilon}{2}$

• The lower bound is achieved by Laplace mechanism
Section III: Differential Privacy of Distributed Optimization
Architecture

- Local objective functions
- Global constraints
- Communication via the cloud

How to keep objective functions differentially private in communication?
Algorithm

\[x_i \leftarrow \Pi_{X_i} \left[x_i - \gamma_t \left(\frac{\partial f_i}{\partial x_i} + \mu^T \frac{\partial g}{\partial x_i} + \alpha_t x_i \right) \right] \]

\[\mu \leftarrow \Pi_M [\mu + \gamma_t (g(x) - \alpha_t \mu)] \]

\[\mu \leftarrow \mu + v(t) \]

\[\gamma_t = \gamma_1 t^{-c_1} \]

\[\alpha_t = \alpha_1 t^{-c_2} \]

\[c_1 > c_2, c_1 + c_2 < 1 \]

For \(v(t) = 0 \), the algorithm converges to optima.
Assumptions

- Linear objective functions $f_i(x_i) = a_i x_i$
- Lipschitz Constraints $\left\| \frac{\partial g_j}{\partial x_k} \right\| \leq l_{j,k}$
- Completely correlated noise $\nu(t)$

\[\text{Constraints } g_1(x), \ldots, g_m(x) \]

\[\mu + \nu(t) \quad x_1 \quad \mu + \nu(t) \]

Agent 1 $f_1(x_1)$

\[\ldots \]

Agent n $f_n(x_n)$
Privacy

Two sensitive data $D = \{a_1, \ldots, a_n\}$ and $D' = \{a_1', \ldots, a_n'\}$ are adjacent if they differ only in the ith element. The distance between them is $||D - D'|| = ||a_i - a_i'||$.

The algorithm is ε-differentially private if given initial state $x(0), \mu(0)$, the sequence of public multiplier generated by two adjacent sensitive data satisfies

$$Pr \left[\mu_D^{x(0),\mu(0)} \in O \right] \leq e^\varepsilon ||D - D'|| Pr \left[\mu_{D'}^{x(0),\mu(0)} \in O \right]$$
Accuracy

\[x_i \leftarrow \Pi_{X_i} \left[x_i - \gamma_t \left(\frac{\partial f_i}{\partial x_i} + \mu^T \frac{\partial g}{\partial x_i} + \alpha_t x_i \right) \right] \]

\[\mu \leftarrow \Pi_{\mathcal{M}} \left[\mu + \gamma_t (g(x) - \alpha_t \mu) \right] \]

\[\mu \leftarrow \mu + \nu(t) \]

The loss of accuracy is defined by

\[\Lambda_D(T) = \max_{x(0) \in X, \mu(0) \in \mathcal{M}} \text{Var} \left[\mu_{D, \nu(T)}^{x(0), \mu(0)}(T) - \mu_{D, 0}^{x(0), \mu(0)}(T) \right] \]
Sensitivity

Sensitivity: influence of perturbing the sensitive data on observation

For temporary perturbation on $a(s)$, the noise should be

$$\Delta_s(t) = \begin{cases}
0, & 1 \leq t \leq s \\
\gamma_s \gamma_{s+1} l, & t = s + 1 \\
\gamma_s \gamma_t \Pi_{k=s}^{t-1}(1 - \alpha_k \gamma_k) l, & t \geq s + 2
\end{cases}$$
Noise-adding Mechanism

Mechanism: Add noise

\[v(t) = \begin{cases}
0, & t = 1 \\
\gamma_1 \gamma_2 l w, & t = 2 \\
\gamma_t \left(\gamma_{t-1} + \sum_{s=1}^{t-1} \gamma_s \prod_{k=s+1}^{t-1} (1 - \alpha_k \gamma_k) \right) l w, & t \geq 3
\end{cases} \]

\[w \sim \text{Lap} \left(\frac{1}{\xi} \right) \]

Asymptotics

\[v(t) \preceq \frac{\gamma_1 l w t^{-(c_1 - c_2)}}{\alpha_1}, \]
Trade-off

The loss of accuracy is bounded asymptotically by

\[\Lambda_D(T) \leq \frac{2T^{2c_2}l}{\alpha_1^2 \varepsilon^2} \]

higher privacy level ↔ smaller \(\varepsilon \) ↔ larger \(\Lambda_D \) ↔ larger error
Simulations

The dual trajectory $\mu_{D,\nu}^{x(0),\mu(0)}(T)$ and $\mu_{D,0}^{x(0),\mu(0)}(T)$

$\frac{|\mu_{D,\nu}^{x(0),\mu(0)}(T) - \mu_{D,0}^{x(0),\mu(0)}(T)|}{\Lambda_D(T)}$
Summary

- Privacy in distributed optimization
- Trade-off between privacy and accuracy