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Abstract: We show that competitive engagements within the agents of a network can result
in resilience in consensus dynamics with respect to the presence of an adversary. We first
show that interconnections with an adversary, with linear dynamics, can make the consensus
dynamics diverge, or drive its evolution to a state different from the average. We then introduce
a second network, interconnected with the original network via an engagement topology. This
network has no information about the adversary and each agent in it has only access to
partial information about the state of the other network. We introduce a dynamics on the
coupled network which corresponds to a saddle-point dynamics of a certain zero-sum game
and is distributed over each network, as well as the engagement topology. We show that, by
appropriately choosing a design parameter corresponding to the competition between these
two networks, the coupled dynamics can be made resilient with respect to the presence of the
adversary. Our technical approach combines notions of graph theory and stable perturbations of
nonsymmetric matrices. We demonstrate our results on an example of kinematic-based flocking
in presence of an adversary.

Keywords: consensus dynamics, competitive networks, distributed control, interconnected
systems, saddle-point dynamics, perturbation theory

1. INTRODUCTION

In the past decade, we have witnessed the emergence of
networked systems in a variety of interdisciplinary disci-
plines. These systems enjoy robustness properties, due to
the fact that the objective is typically distributed across
the individual agents, and they are capable of executing
tasks which are global in nature. From an engineering
design perspective, considering cooperative interactions
within the subsystems appears to be an intuitive ap-
proach; and has been a central element of much recent
work; see [Bullo et al., 2009a] and references therein. In
many systems in nature, however, the interactions are
noncooperative or strategic. This phenomenon not only
occurs because of the presence of possible adversaries, but
often within the subsystems themselves, e.g., [Johnson,
2009]. It is natural then to ask, within a design perspec-
tive, whether noncooperative interactions between sub-
systems following the same basic objective is beneficial.
This is the subject of our study in this paper. After estab-
lishing a mathematical framework, we demonstrate how
competitive interactions can result in achieving resilience
in dynamic networks.
Literature review. This paper is related to the litera-
ture on consensus dynamics [Olfati-Saber et al., 2007,
Ren and Beard, 2008, Bullo et al., 2009b, Mesbahi and
Egerstedt, 2010]. The problem of reaching consensus in
the presence of an adversary has been recently studied in
different contexts including consensus in the presence of
misbehaving nodes and failure [Pasqualetti et al., 2012,

! This work was supported in part by the NSA through the
Information Trust Institute of the University of Illinois.

Dolev et al., 1986, Zhang and Sundaram, 2012, LeBlanc
and Koutsoukos, 2011, Gupta et al., 2006], and robust
consensus in delayed-communication [Münz et al., 2010,
2011], in the presence of disturbance and unmodeled dy-
namics [Hu, 2012], and with dynamically changing in-
teraction topologies and time delays [Chen and Lewis,
2011]. This paper is also related to the literature on
interconnected distributed systems [Langbort et al., 2004]
and competitive/cooperative interconnections of dynami-
cal systems [Hirsch, 1985]. Finally, parts of our results are
inspired by [Gharesifard and Cortés, 2012].
Statement of contributions. We focus on the consensus
dynamics on undirected graphs and consider a scenario
in which an adversary, with linear dynamics, can corrupt
the state estimates of agents by interconnecting with their
network. We show that by appropriately choosing its dy-
namics, the adversary can make the consensus dynamics
diverge, or drive its evolution to a state different from the
average. Next, we construct a second network, with the
same number of vertices, interconnected with the original
consensus network via an engagement topology, which
itself is a connected graph. The interactions between these
two networks is competitive, in the sense that the net-
works’ coupled dynamics correspond to the saddle-point
dynamics of a zero-sum game between them. The second
network has no information about the adversary, or inter-
actions with it, and has only access to partial information
about the state of the consensus network. We show, how-
ever, that by appropriately choosing a design parameter
corresponding to the competition between these networks,
the coupled dynamics can be made resilient with respect
to interconnections with the adversary, in the sense that
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the projections of its evolution onto the first component
still asymptotically converge to an approximation of the
average values. We prove this result by carefully studying
the dependence of the set of equilibria to the design
parameter and by showing that the problem corresponds
to stable perturbations of nonsymmetric matrices. As an
auxiliary result, we describe how disconnecting the en-
gagement topology can be used as an intrusion detection
mechanism.We demonstrate our results for the kinematic-
based flocking in the presence of an adversary.

2. MATHEMATICAL PRELIMINARIES

We start with some notational conventions. Let R, R≥0,
Z, Z≥1, C<0 and C≤0 denote the set of real, non-
negative real, integer, and positive integer numbers,
and complex numbers with negative, and nonpositive
real parts, respectively. We denote by | · | the Eu-
clidean norm on Rn, n ∈ Z≥1, and also use the short-
hand notation 1n = (1, . . . , 1)T ∈ Rn and 0n =
(0, . . . , 0)T ∈ Rn. We denote the operator norm of a
matrix A under the 2-norm by ‖A‖2, that is ‖A‖2 :=

max{
√
λ | λ is an eigenvalue of ATA}. We let In and

0n×n denote, respectively, the identity and zero matrices
in Rn×n . ForA ∈ Rn1×n2 andB ∈ Rd1×d2 , n1, n2, d1, d2 ∈
Z≥1, we let A ⊗ B denote their Kronecker product. The
function f : X1 × X2 → R, with X1 ⊂ Rn1 , X2 ⊂ Rn2

closed and convex, is concave-convex if it is concave in its
first argument and convex in the second one [Rockafellar,
1997]. A point (x∗

1, x
∗
2) ∈ X1 ×X2 is a saddle point of f

if f(x∗
1, x2) ≤ f(x∗

1, x
∗
2) ≤ f(x1, x

∗
2) for all x1 ∈ X1 and

x2 ∈ X2. Finally, a set-valued map f : Rn ⇒ Rd takes
elements of Rn to subsets of Rd, n, d ∈ Z≥1.

2.1 Graph theory

A directed graph, or simply digraph, is a pair G = (V,E),
where V is a finite set called the vertex set and E ⊆ V ×
V is the edge set. When E is unordered, we call G an
undirected graph or simply a graph. In this paper, we focus
on undirected graphs. If (u, v) ∈ E is an edge of a graph,
we say that u and v are neighbors. A bipartite graph is
a graph whose vertices can be divided into two disjoint
sets V1 and V2 such that every edge can be written as
(v1, v2) or (v2, v1), where v1 ∈ V1 and v2 ∈ V2. A graph
is called connected if there exists a path between any
two vertices. A weighted graph is a triplet G = (V,E,A),
where (V,E) is a graph and A ∈ R

n×n
≥0

is the adjacency
matrix of G. The adjacency matrix has the property that
aij > 0 if (vi, vj) ∈ E and aij = 0, otherwise. Throughout
this paper, we assume that aij = 1 if (vi, vj) ∈ E. The
degree of vi, i ∈ {1, . . . , n} is d(vi) =

∑n
j=1 aij . The degree

matrix D is the diagonal matrix defined by (D)ii = d(vi),
for all i ∈ {1, . . . , n}. The Laplacian is L = D − A. For
an undirected graph, L1n = 1

T
nL = 0, L = LT , and L is

positive semidefinite [Biggs, 1994]. When G is connected,
the zero eigenvalue is simple.

2.2 Stable perturbations of linear systems

Let us consider the dynamical system Σ with

ẋ = Ax(t), (1)

where A ∈ Rn×n, x(t) ∈ Rn, for all t ∈ R>0. A point
x∗ ∈ X is called an equilibrium point of (1) if the constant
curve x(t) = x∗, for all t ∈ R≥0, is an evolution of (1).

We call a set S ⊂ Rn stable, with respect to Σ, if, for any
neighborhood U of S, there exists a neighborhood W of
S such that all evolution of Σ with initial condition in W
remains in U for all subsequent times. S is called unstable
if it is not stable, and is called asymptotically stable if it
is stable and also there exists a neighborhood U of S such
that all evolution with initial condition in U approaches
the set S. We call a matrix A Hurwitz if spec(A) ⊂ C<0

and spectrally stable if spec(A) ⊂ C≤0. We call a matrix
nondefective if it has a complete basis of eigenvectors. We
next recall from [Kato, 1980, Overton and Womersley,
1988, Burke and Overton, 1992] some stability properties
of linear systems under perturbations. Let A : R → Rn×n

be given by
A(ε) = A0 + εA1, (2)

where A0, A1 ∈ Rn×n and ε ∈ R≥0. Given that A0 has all
its eigenvalues on the imaginary axis and is nondefective,
we are interested in finding conditions on A1 such that
A(ε) is spectrally stable and nondefective, when ε is small.
Unlike symmetric matrices (see Weyl’s theorem [Horn and
Johnson, 1985, Theorem 4.3.7]), nonsymmetric matrices
can in fact be sensitive to such perturbations. Let us
now denote the eigenvalues of A0 ∈ Rn×n by λ1, . . . , λk,
k ∈ Z≥1 and k ≤ n, with algebraic multiplicities of

m1, . . . ,mk ∈ Z≥1, and
∑k

i=1 mi = n, respectively, where
for i ∈ {1, . . . , k}, Re(λi) = 0. Let the diagonalized form
of A0 be given by J = V A0V

−1, where V ∈ Cn×n, and
J ∈ C

n×n is a diagonal matrix. The result of [Burke and
Overton, 1992, Theorem 7] applies to our situation, as
presented next. Note that this result is more general than
what we need, since A0 is allowed to have eigenvalues not
only on the imaginary axis but also in the open left-hand
plane.

Theorem 1. Let A(ε) be given as in (2), where A0 is spec-
trally stable and nondefective, with eigenvalues λi, i ∈
{1, . . . , k} and A0 = V −1JV as above. Let B = V −1A1V ,
and let Bi be the diagonal block of B corresponding to λi,
i ∈ {1, . . . , k}. If all eigenvalues of A(ε) have nonpositive
real parts for ε ∈ (0, ε0), ε0 ∈ R>0, then the maximum
real parts of the eigenvalues of Bi, i ∈ {1, . . . , k}, are less
than or equal to zero. Conversely, if the maximum real
parts of eigenvalues of Bi, i ∈ {1, . . . , k}, are less than or
equal to zero, then there exists an interval (0, ε0) in which
A(ε) is spectrally stable and nondefective. !

3. PROBLEM STATEMENT

Consider a group of n ∈ Z≥1 agents in a connected
undirected graphΣ 1, with the dynamics

ẋ(t) = −Lx(t), (3)

where x(t) = (x1(t), . . . , xn(t))
T , xi(t) ∈ R is the estimate

of agent i ∈ {1, . . . , n} at time t ∈ R≥0, and L is the
Laplacian ofΣ 1. This dynamics is called the consensus
dynamics. It is well-known that whenΣ 1 is connected, (3)
is asymptotically convergent to the average of the initial
values [Olfati-Saber et al., 2007].
Consider next an adversaryΣ adv with linear dynamics
that can perturb the estimates of agents inΣ 1 by inter-
connecting with this network as

ẋ = −L(x− δy),

ẏ = P1x− P2y, (4)

where x,y ∈ R
n, P1, P2 ∈ R

n×n, and −P2 is assumed
to be Hurwitz (the adversary has stable dynamics before
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interconnecting withΣ 1). Here δ ∈ R measures how much
the networkΣ 1 is affected by the signals of the adversary.
It is clear that, by appropriately choosing P1 and P2, the
adversary can make the dynamics of (4) unstable, or drive
its evolution to a state different from the average.
Our objective is to overcome this sensitivity to intercon-
nections with the adversary by interconnectingΣ 1 to a
networkΣ 2 such that
(i) the evolution of the dynamics of the interconnected

system Σint = ( Σ1,Σadv,Σ2) from any initial condi-
tion are (asymptotically) stable;

(ii) the projection onto the first component of the evo-
lutions of the dynamics of Σint from an initial con-
dition ‘approximates’ the evolutions of (3) from the
corresponding initial condition.

In this sense, one could potentially think ofΣ 2 as a
(robust) controller [Başar and Bernhard, 1995]. There are,
however, some important features which will distinguish
our treatment of this problem from a feedback control
design: (1)Σ 2 has no (global) information about the
structural properties of the dynamics ofΣ 1 and has
only access to partial information about the state ofΣ 1,
obtained by its agents; (2)Σ 2 has also no access to any
information about the adversary and does not even have
any knowledge about its presence. In this sense, the main
focus of our study will be on identifying certain types
of interconnections that naturally inherit robustness. We
will elaborate on this further in the next sections.

4. COMPETITIVE INTERCONNECTIONS IN
CONSENSUS DYNAMICS

Consider a connected networkΣ 2 with the same number
of agents asΣ 1. In this sense, for each agent inΣ 1 there
is a corresponding agent inΣ 2, but the topology of these
two networks may not be the same. We denote by L̃

the Laplacian matrix associated withΣ 2. Agents inΣ 1

andΣ 2 can also obtain information about the estimates
of the other network. This is modeled by means of a
bipartite connected graphΣ eng, called the engagement
graph, with disjoint vertex sets {v1, . . . , vn} inΣ 1 and
{w1, . . . , wn} inΣ 2. Note that the adjacency matrix Aeng

associated withΣ eng is of the form A =
(

0n×n Aeng

Aeng 0n×n

)

,

where Aeng ∈ Rn×n. We then let Leng ∈ Rn×n be
the Laplacian associated with Aeng, where Aeng can be
thought of as the adjacency matrix associated with a
graph with n vertices, where each vi is identified with the
corresponding wi, i ∈ {1, . . . , n}. In summary, each agent
in networkΣ 1 obtains information from (i) its neighbors
inΣ 1, (ii) its corresponding agent inΣ 2 and all its other
neighbors inΣ 2 according toΣ eng, and vice versa; see
Figure 1.

Σ2

w v

Σ1

Σeng

(a)

Σ2

w v

Σ1

Σeng

(b)

Fig. 1. Two corresponding agents v and w, respectively, in networks
Σ1 andΣ 2 are shown. (a) and (b) show, respectively, the
neighbors of v inΣ 2 and the neighbors of w inΣ 1.

Next, consider the dynamics

ẋ = −Lx− βLengz,

ż = βLengx− L̃z, (5)

on the interconnected system (Σ1,Σ2), where β ∈ R≥0.
We make some important observations about the proper-
ties of (5). Consider a mapping U : Rn × Rn → R given
by

U(x, z) =
1

2
xT

Lx−
1

2
zT

L̃z + βxT
Lengz.

Since the graph is undirected, the function U is convex-
concave. The next result characterizes the set of saddle
points of this function.

Lemma 2. (Saddle points of the mapping U): The
set of saddle points of U , for β large enough, is given by
S = span{(1n, 0n), (0n,1n)}.

Clearly, if (x, z) ∈ S, it is a saddle point. The fact
that for large values of β, S characterizes the set of all
saddle points, will be proved, as a part of the proof of
Proposition 4 later in this section.
Next, consider a static zero-sum game G = ( Σ1,Σ2, U)
betweenΣ 1 andΣ 2, where Σ1 wishes to minimize U by
choosing x ∈ R

n andΣ 2 wishes to maximize this function
by choosing z ∈ Rn. The following lemma is an immediate
corollary of Lemma 2.

Lemma 3. ((Σ1,Σ2) is competitive): The dynamics (5)
corresponds to a gradient flow dynamics for seeking a
saddle point of the zero-sum game G. !

It is important to note that the saddle-point dynamics
of a convex-concave function, although stable, does not
necessarily need to asymptotically converge to the set of
saddle points [Arrow et al., 1958, Feijer and Paganini,
2010]. We, however, establish that an appropriate choice
of β makes (5) to asymptotically converge to the set of
saddle points of U .

Proposition 4. (Asymptotic stability of (5) for β
large): The dynamics of (5), for β ∈ R large enough,
are asymptotically stable.

Proof. It suffices to show that the dynamics ẋ = A(ε)x,
with

A(ε) = A0 + εA1, (6)

where

A0 =

(

0n×n −Leng
Leng 0n×n

)

, and A1 =

(

−L 0n×n

0n×n −L̃

)

are asymptotically stable for small values of ε = 1

β
∈ R>0.

We thus need to study the eigenvalues of A(ε) for small
values of ε. First, note that A0 has two zero eigenvalues
which are not perturbed by A1. Using the properties of
Kronecker products, one can write A0 = F ⊗ Leng, where
F =

(

0 −1
1 0

)

; thus

A0 = (VF ⊗ VLeng
)−1(DF ⊗DLeng

)(VF ⊗ VLeng
),

where L = V −1

Leng
DLeng

VLeng
, and F = V −1

F DFVF , where

DLeng
∈ Rn×n and DF ∈ Rn×n are diagonal matri-

ces corresponding to the diagonalization of Leng and F ,
respectively, and VLeng

∈ Rn×n and VF ∈ Cn×n are

invertible. We compute VF = 1√
2

(

−i i
1 1

)

; thus (VF ⊗

VLeng
) = 1√

2

(

−iVLeng
iVLeng

VLeng
VLeng

)

. The inverse of this matrix

can be computed as
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(VF ⊗ VLeng
)−1 =

√
2

(

1

2
iV −1

Leng

1

2
V −1

Leng

− 1

2
iV −1

Leng

1

2
V −1
Leng

)

.

A simple calculation then shows that

(VF ⊗ VLeng
)−1(A1)(VF ⊗ VLeng

)

=

(

− 1

2
V −1
Leng

(L+ L̃)VLeng
%

% − 1

2
V −1

Leng
(L+ L̃)VLeng

)

Since L + L̃ is a Laplacian, thus positive semidefinite
with one zero eigenvalue, − 1

2
V −1
Leng

(L+ L̃)VLeng
is negative

semidefinite (with one zero eigenvalue). Since Leng is sym-
metric, one can choose VLeng

to be an orthogonal matrix

such that V −1

Leng
= V T

Leng
, yielding that − 1

2
V −1

Leng
(L+ L̃)VLeng

is symmetric; thus it has non-positive principal minors.
As a result, the conditions of Theorem 1 is satisfied. Fur-
thermore, except for the two zero eigenvalues, there exists
ε0 ∈ R>0 such that for ε ∈ (0, ε0) the rest of eigenvalues all
have negative real parts. The fact that the geometric and
algebraic multiplicities associated with zero eigenvalues
are the same yields that the system is stable [Hirsch and
Smale, 1974] and since the only eigenvalues with real parts
of zero are these two eigenvalues, any trajectory of (5)
asymptotically approaches the set S. !

Remark 1. (Relationship to dissipative Hamiltonian

dynamics): Note that the dynamics of (5) have similar
features with dissipative perturbations of Hamiltonian
systems [Maddocks and Overton, 1995], but it does not
directly correspond to one such dynamics. This is because
A0 has two zero eigenvalues and is thus degenerate.
However, one can show that this dynamics induces a
dynamics on Rn/1n×Rn/1n which indeed is a dissipative
Hamiltonian dynamics. •

5. RESILIENCE IN CONSENSUS DYNAMICS VIA
COMPETITIVE INTERCONNECTIONS

In this section, we consider the interconnection of dynam-
ics (Σ1,Σ2) with the dynamics (5) and study its evolution
in the presence of an adversary; see Figure 2. In particular,

Σadv

Σ1

Σ2

Fig. 2. The interconnected system (Σ1,Σ2,Σadv) is shown.
The interconnections betweenΣ 1 andΣ 2 is dis-
tributed, in the sense that is described in Figure 1.

we consider the interconnected system (Σ1,Σ2,Σadv) with
the dynamicsΨ A(β) : R

3n → R
3n given by

(

ẋ
ẏ
ż

)

=





−L δL −βLeng
P1 −P2 0n×n

βLeng 0n×n −L̃





︸ ︷︷ ︸

A(β)

(

x
y
z

)

. (7)

We want to know whether A(β) is stable when β is chosen
large enough. Intuitively, this means that triggering the

competition between agents ofΣ 1 andΣ 2 prevents insta-
bility imposed by the presence of the adversary. In this
sense, one can additionally think that the value of β can
be adjusted according to the deviation of x from some
limit. In order to study A(β) for β large, equivalently we
can consider

A(ε) = A0 + εA1, (8)

where

A0 =

(

0n×n 0n×n −Leng
0n×n 0n×n 0n×n

Leng 0n×n 0n×n

)

, A1 =





−L δL 0n×n

P1 −P2 0n×n

0n×n 0n×n −L̃



 ,

for small values of ε = 1

β
∈ R>0. We show that A(ε) is

stable for ε small enough. Let us denote by Ker(A(ε)) the
kernel of A(ε). We have the following result. The proof is
omitted for reasons of space and will appear elsewhere.

Lemma 5. (Properties of the kernel of A(ε)):We have

(i)
(

0
0
1n

)

∈ Ker(A(ε)), for all ε ∈ R>0;

(ii) the mapping fKer(A(·)) : R ⇒ R3n, which assigns
Ker(A(ε)) to each ε ∈ R>0, is upper semicontinuous.

Moreover,

(

1n

P−1

2
P11n

0

)

∈ lim supε→0 Ker(A(ε)) and

for all ε ∈ R>0, we have

|A(ε)

(

1n

P
−1

2
P11n

0

)

| ≤
εδ
√
n||L||2||P1||2
||P2||2

.

(iii) lim supε→0 card(Ker(A(ε))) = 2.

Next, we present our main result.

Theorem 6. (Resilience in consensus against linear

adversaries via zero-sum competitive intercon-

nections): Consider the interconnected system Σint =
(Σ1,Σadv,Σ2) with the dynamics (7). Then for any
P1, P2 ∈ Rn×n, where P2 is symmetric positive definite,
there exists β∗ ∈ R such that for all β > β∗ the trajec-
tories of (7) from any initial condition are asymptotically
stable. Furthermore, for the initial condition (x0,y0, z0),
if

ξ <
δ
√
n||L||2||P1||2
β∗||P2||2

, (9)

then |x∗ − x̃∗| ≤ ξ and |z∗ − z̃∗| ≤ ξ, ξ ∈ R>0,
where (x̃∗, z̃∗) ∈ Rn × Rn is an equilibrium of (5) with
1
T x̃∗ = 1

Tx0 and 1
T
n z̃

∗ = 1
T
nz0.

Proof. We first show that for any such P1 and P2,
there exists β such that (7) is asymptotically stable.
Equivalently, it suffices to show that the matrix A(ε) given
by (8) is stable on an interval (0, ε0), ε0 ∈ R>0. First, note
that A0 is nondefective. Let us show that the conditions
of Theorem 1 are satisfied.
First, note that, using basic properties of Kronecker
products, one can write A0 = F ⊗ Leng, where F =
(

0 0 −1
0 0 0
1 0 0

)

; thus

A0 = (VF ⊗ VLeng
)−1(DF ⊗DLeng

)(VF ⊗ VLeng
),

where L = V −1
Leng

DLeng
VLeng

, and F = V −1
F DFVF , where

DLeng
and DF are diagonal matrices, correspond to the

diagonalization of Leng and F , respectively. We compute

VF =
(

−i i 0
0 0 1
1 1 0

)

; thus

(VF ⊗ VLeng
) =





−iVLeng
iVLeng

0n×n

0n×n 0n×n VLeng

VLeng
VLeng

0n×n



 . (10)
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The inverse of this matrix can be computed as

(VF ⊗ VLeng
)−1 =







1

2
iV −1

Leng
0n×n

1

2
V −1
Leng

− 1

2
iV −1

Leng
0n×n

1

2
V −1

Leng

0n×n V −1
Leng

0n×n






. (11)

Next, using (10) and (11), we conclude

(VF ⊗ VLeng
)−1(A1)(VF ⊗ VLeng

) =

−







1

2
V −1
Leng

(L+ L̃)VLeng
% %

% 1

2
V −1

Leng
(L+ L̃)VLeng

%

% % V−1
Leng

P2VLeng







Note that, since VLeng
(chosen to be an orthogonal ma-

trix) is invertible and P2 is symmetric positive definite,
−V −1

Leng
P2VLeng

is negative definite and has negative defi-

nite principal minors. Since L+ L̃ is a Laplacian, thus pos-
itive semidefinite with one zero eigenvalue, − 1

2
V −1

Leng
(L +

L̃)VLeng
is negative semidefinite (with one zero eigenvalue).

Since, by Lemma 5, for ε small, the kernel of A(ε) is of
rank two, a reasoning similar to the one in the proof of
Proposition 4 yields the result. The last statement is an
immediate corollary of Lemma 5. !

Our assumption on P2 is conservative and the result
likely holds for −P2 Hurwitz, since −V −1

Leng
P2VLeng

is also

Hurwitz and thus can potentially satisfy the conditions
of Theorem 1. Also, note that agents inΣ 2 can detect
the presence of the adversary by choosing β = 0 and
evaluating the changes in the estimates ofΣ 1 received
from their neighbors in this network.

6. SIMULATIONS

Consider a networkΣ 1 with five agents {v1, . . . , v5} as
shown in Figure 3. Suppose these agents wish to execute
a kinematic-based flocking algorithm (see [Lee and Spong,
2007]), such that they achieve a formation in which xj −
xi = j − i, for all i, j ∈ {1, . . . , 5} (this flocking position
is consistent, in the sense of [Lee and Spong, 2007]).

v5v4v3v2v1

Σadv

Σ1

Σ2

(a)

v3

v4

v5

v1 v2

(b)

w3

w4

w5

w1 w2

(c)

Fig. 3. The formation of agents in the presence of adversary is
shown in (a). The agents shown in dashed correspond to
Σ2. The topologies of Σ1 andΣ 2 are shown in (b) and (c),
respectively. It is assumed here that the topology ofΣ eng

is similar toΣ 1 in the sense that Leng = L, where L is the
Laplacian associated withΣ 1.

The agents can communicate their positions with each
other according to the topology shown in Figure 3(b).
Since this topology is connected, a consensus dynamics
can be used to achieve formation. Now suppose that there
is an adversary that can influence the estimates of each
agent about the states of its neighbors, according to (4).
We consider two cases:
(i) P2 = 3I5 and

P1 =











1.7730 1.4254 0.0849 1.6351 1.9459
0.0573 1.0009 0.1429 1.4449 1.2980
0.9798 0.9422 1.0433 0.2997 1.6007
0.3359 0.1192 0.1935 1.3192 0.9076
1.9574 1.3639 1.6363 1.0372 0.8648











;

(ii) P2 = I5 and

P1 =











3.5833 2.4895 1.6302 0.0931 4.0734
1.4169 3.4740 2.2821 3.3739 1.6243
4.4810 4.1718 3.5690 2.1925 1.2311
4.1329 3.0481 4.4220 2.1891 1.7136
1.9501 2.8737 3.6043 0.5852 1.8785











.

Figures 4 (a) and (b) show the impact of the signals of the
adversary on the stability of the formation dynamics for
each case, respectively. In the first scenario, the dynamics
of the interconnected system (Σ1,Σ2) is asymptotically
stable, however, its equilibrium does not correspond to
the equidistance formation position without the presence
of the adversary. In the second scenario, however, the
presence of the adversary causes instability.
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(b)

Fig. 4. The position of each agent is shown with respect to time.
The adversary is present in both cases, with the dynamics
described above. The blue and red plots correspond, respec-
tively, to the cases with and without the presence ofΣ 2. In
both cases, all the agents are initially positioned at the origin,
β = 10, z(0) = (1, 1, 1, 1, 1)T , and y(0) = (1, 0, 0, 0, 0)T . In (a)
δ = 0.5, and in (b) δ = 1.

Suppose a second (virtual) networkΣ 2, with topology
shown in Figure 3(c), is interconnected withΣ 1, where the
topology ofΣ eng is such that Leng = L. The interconnected
system (Σ1,Σadv,Σ2) is then asymptotically stable, as
shown in Figure 4. In (a), for β = 10, the final relative
position of the agents are given by

x2 − x1 = 1.0085, x3 − x2 = 0.9926,

x4 − x3 = 1.0095, x5 − x4 = 0.9917,

which is significant improvement over the one in the
presence of adversary and withoutΣ 2:

x2 − x1 = 2.1572, x3 − x2 = 0.3947,

x4 − x3 = 1.8782, x5 − x4 = −0.4383.

In (b), for β = 10, the final relative positions of the agents
are given by

x2 − x1 = 1.0276, x3 − x2 = 0.9555,

x4 − x3 = 1.0023, x5 − x4 = 1.0501,

whereas the dynamics withoutΣ 2 is divergent. One can
easily verify that (9) holds in both cases.

7. CONCLUSIONS AND FUTURE WORK

We have shown that competition between individuals in
a dynamic network can result in resilience with respect
to the signals of an adversary with linear dynamics. We
have focused on the consensus dynamics on a connected
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undirected graph, interconnected with a second network
via an engagement topology, corresponding to a zero-
sum game. The original network is exposed to corrupting
signals of an adversary. The second network has only
access to partial information of the original network
and has no information, or interconnection, with the
adversary.We have shown that, by appropriately choosing
a design parameter corresponding to the competition
between these two networks, the agents can significantly
reduce the impact of the presence of the adversary. Future
work will focus on extending the results to systems
with nonlinear dynamics, networks with unidirectional
topologies, and more general classes of adversaries. We are
currently studying self- or event-triggered strategies for
increasing competition for recovering from the presence of
an adversary, and employing weakening the engagement
topologies for detecting possible attacks on a system.
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