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Abstract—Traditional intrusion detection systems (IDSs) work
in isolation and can be easily compromised by unknown threats.
An intrusion detection network (IDN) is a collaborative IDS
network intended to overcome this weakness by allowing IDS
peers to share detection knowledge and experience, and hence
improve the overall accuracy of intrusion assessment. In this
work, we design an IDN system, called GUIDEX, using game-
theoretic modeling and trust management for peers to collaborate
truthfully and actively. We first describe the system architecture
and its individual components, and then establish a game-
theoretic framework for the resource management component
of GUIDEX. We establish the existence and uniqueness of a
Nash equilibrium under which peers can communicate in a
reciprocal incentive compatible manner. Based on the duality
of the problem, we develop an iterative algorithm that converges
geometrically to the equilibrium. Our numerical experiments and
discrete event simulation demonstrate the convergence to the
Nash equilibrium and the security features of GUIDEX against
free riders, dishonest insiders and DoS attacks.

Index Terms—Intrusion detection systems, collaborative net-
works, game theory, network optimization, incentive compatibil-
ity, network security and economics.

I. INTRODUCTION

IN RECENT years, Internet intrusions have become more
sophisticated and harder to detect. Attackers not only

invade and harvest private data from victim nodes, but also
compromise a large number of nodes to form a botnet [1],
and use those compromised nodes to launch distributed attacks
such as Distributed Denial of Service (DDoS) attacks [2]. To
protect computer users from malicious intrusions, Intrusion
Detection Systems (IDSs) have been designed to identify in-
trusions by comparing observable behaviors against suspicious
patterns. In a broad sense, IDSs can be agents with intrusion
detection capabilities, such as antivirus software, NIDS, HIDS,
firewalls, and honeynets.
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Traditional IDSs work in isolation and may be easily com-
promised by unknown or new threats. An Intrusion Detection
Network (IDN) is a collaborative IDS network intended to
overcome this weakness by having each peer IDS benefit from
the collective knowledge and experience shared by other peers.
This enhances the overall accuracy of intrusion assessment as
well as the ability of detecting new intrusion types.

As shown in Fig. 1, an IDN is composed of a group of
independent IDSs in a peer-to-peer manner. Each IDS main-
tains a list of other IDSs which it currently collaborates with.
IDSs can have different ways to detect intrusions. For example,
antivirus software and Host-based IDSs (HIDSs) scan suspi-
cious files or logs and look for pattern matching with known
malware or attacks. Network-based IDSs (NIDSs) inspect
network data flows and packets for suspicious activities. IDSs
can freely choose their collaborators for maximizing individual
benefits. For example, an antivirus software can choose to
work with another one from a different security vendor, and
an NIDS can choose to collaborate with a honeynet to obtain a
fresh attacker list. In this paper, we consider distributed self-
interested IDSs in the Internet that can cross administration
domains.

Malicious insiders in an IDN can compromise the system
by providing false information or overloading the system
with spam. Also, “free riders” [3] can exploit the system by
benefiting from others without contributing themselves. This
can discourage IDN participants and eventually degrade the
overall performance of the collaboration system. Therefore,
trust management and a resource allocation mechanism are
critical for designing an incentive-compatible and attack-proof
IDN system.

A. Main Contributions

In this work, we propose an IDN system, called GUIDEX,1

based on reciprocal incentive-based resource allocation and
trust management, where the amount of resources that each
IDS allocates to assist its neighbors is proportional to the
trustworthiness and the amount of resources allocated by its
neighbors to help this IDS. The motivation for reciprocal
incentive design is to encourage participants to contribute
more in collaboration so as to keep their IDS knowledge up-to-
date. This exchange of knowledge is particularly important for
IDSs to protect the system from new or zero-day attacks. We
formulate an N−person (or peer) non-cooperative continuous-
kernel game model to investigate incentive compatibility of the

1“GUIDEX” stands for “Game-theoretic Utility-based Intrusion Detection
nEtwork SystemS.”
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Malware identification

Fig. 1. An example of an IDN network. An IDS can collaborate with other
IDSs by sending suspicious files or IP addresses for diagnosis. For example,
a NIDS can send the IP of a suspicious attacking source to honeynets
and firewalls to see whether it has been blacklisted anywhere. An antivirus
software sends a suspicious file to another one for scanning.

IDS collaboration system. In our framework, each IDS finds
an optimal resource allocation to maximize the aggregated
satisfaction levels of its neighbors. We show that under certain
controllable system conditions, there exists a unique Nash
equilibrium. Our experimental results demonstrate that an it-
erative algorithm which we introduce converges geometrically
fast to the Nash equilibrium, and the amount of helping
resource an IDS receives is proportional to its helpfulness
to others. We also demonstrate security features of GUIDEX
against free riders, dishonest insiders, and DoS attacks.

Main contributions of this paper are: 1) Architecture design
of the GUIDEX collaborative intrusion detection network and
its essential components; 2) A mechanism for optimal resource
allocation for each peer to maximize its social welfare with a
convex utility function; 3) An N-person non-cooperative game
model and an iterative primal/dual algorithm to reach the Nash
equilibrium; and 4) Incentive compatibility and robustness that
is derived from the resource allocation scheme to tackle the
“free riders”, dishonest insiders, and DoS attacks.

B. Related Work

Many IDS collaboration systems have been proposed in
literature, such as [4], [5], and [6]. They all assume IDSs
cooperate honestly and unselfishly. The lack of trust infras-
tructure leaves the systems vulnerable to malicious peers.

A few trust-based collaboration systems (e.g. [7] and [8])
and distributed trust management models (e.g. [8], [9], and
[10]) have been proposed for effective IDS collaboration.
However, none of these proposed models have led to a
study of incentives for IDS collaboration. Our previous work
proposed a trust management system where IDSs exchange
test messages to build trust among themselves. The feedback
from the collaboration peers is evaluated and a numerical
trust value is accessed to predict the level of truthfulness of
collaborators. [8] uses a simple weighted average model to
predict the trust value while [10] uses a Bayesian statistics
model to estimate the trust value as well as the confidence
level of the trust estimation.

A variety of game-theoretic approaches have been applied to
network resource allocation in traditional routing networks and
peer-to-peer (P2P) networks. In traditional routing networks,
non-cooperative game models such as in [11] and [12] have
been used in a dynamic resource allocation context; authors
of these references have considered a network with a general
topology where each source has a window-based end-to-end
flow control. The available information for a user is the
number of packets within the network not yet acknowledged.
Each user aims to maximize his own throughput, with bounded
delay, and hence faces a constrained optimization problem.
The equilibrium obtained is decentralized since each user has
only local information on his own unacknowledged packets.
Their focus has been on the maximal network performance
with given resource instead of incentive mechanisms. In peer-
to-peer networks, Ma et al. [13] have used a game-theoretical
approach to achieve differentiated services allocation based
on the peer’s contribution to the community. Yan et al. [14]
have proposed an optimal resource allocation scheme for file
providers. A max-min optimization problem has been con-
structed to find the optimal solution which achieves fairness
in the resource allocation. Both works rely on an independent
central reputation system. Reciprocity has not been incorpo-
rated. Also the resilience and robustness of the system has
not been their focus. Grothoff [15] has proposed a resource
allocation economic model to deal with malicious nodes in
peer-to-peer networks. It depends solely on the trust values of
the peer nodes, and the resource allocation is priority-based on
the trust value of the request sender. Grothoff’s model can ef-
fectively prevent malicious nodes from overusing the network
resource since their requests will be dropped due to their low
trust. It is also reciprocal altruistic. However, this model may
result in unfairness since nodes with the highest trust may take
the entire resource. Our model differs from the above ones in
that we have made use of the pair-wise nature of the network
for designing scalable network algorithms, ensuring secure and
resilient properties of the solution, and provide fairness and
reciprocal incentive compatibility in resource allocation.

Recently, game-theoretical methods have been used for
intrusion detection where in a two-player context, the attacker
(intruder) is one player and the intrusion detection system
(IDS) is the other player. In [16], and [17], non-cooperative
game frameworks have been used to address different aspects
of intrusion detection. In [18], Liu et al. use a Bayesian
game approach for intrusion detection in ad-hoc networks;
a two-person non-zero-sum incomplete information game is
formulated to provide a framework for an IDS to minimize its
loss based on its own belief. Our previous work [19] provides
a game-theoretical model for IDSs to allocate collaboration
resource to achieve the goal of fairness and incentive compat-
ibility. This paper extends our previous work by integrating a
complete IDN framework and a robustness evaluation.

C. Paper organization

The rest of the paper is organized as follows: Section II
discusses desirable features of IDN and presents the system
architecture of GUIDEX and its building blocks. In section III,
we describe our incentive-based resource allocation scheme
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Fig. 2. Architecture of an IDS Collaboration System

for resource management in GUIDEX. In Section IV, we
devise a primal/dual algorithm to compute the Nash equi-
librium, and in Section V we evaluate the convergence and
incentives of the resource allocation design. Finally, Section
VI concludes the paper.

II. COLLABORATION FRAMEWORK

The purpose of an IDN is to connect IDSs to achieve a
higher detection capability network-wide. In this context, we
identify the following requirements for an efficient IDN:

1) An effective trust management model to reduce the
negative impact of dishonest IDSs and discover com-
promised ones;

2) An efficient feedback aggregation method to minimize
the cost of false intrusion detection;

3) Robustness design against malicious insiders;
4) Scalability in terms of IDN size, trust evaluation, and

intrusion assessment.
To achieve the preceding goals, we propose an IDN ar-

chitecture design as shown in Fig. 2. It is composed of
several components, namely, intrusion detection system, com-
munication overlay, trust management, resource management,
feedback aggregation, and IDS mediator.

A. Consultation and Feedback

When an IDS detects suspicious traffic or activities but does
not have enough experience to make a decision whether it
should raise an alarm or not, it may send the suspicious trace
or file to its collaborating IDSs for diagnosis. We call this
a consultation message. Feedbacks from the collaborators are
aggregated and a final alarm decision is made based on the
aggregated results. A consultation message can be the binary
of a suspicious file, the data packets of a suspicious data flow,
or intrusion alerts. The feedback from the collaborators can
be one value from the set {‘positive’, ‘negative’, ‘unknown’}.
The ‘unknown’ feedback is given when the requested IDS
does not have enough information to make a judgment. Test
consultations are “bogus” consultation requests, sent out in
a way that makes them difficult to be distinguished from
real consultation requests. The testing node needs to know
beforehand the true diagnosis result of the test consultations

and uses the received feedback to derive a trust value for the
collaborators.

B. Mediator and Communication Overlay

The mediator is the component which helps different IDSs
to communicate with each other. It translates consultation
requests and consultation feedbacks into a common proto-
col and data format understood by different IDSs. Com-
munication overlay is the component which handles all the
communications between the host node and other peers in
the collaboration network. The messages passing through the
communication overlay include: test messages from host node
to its acquaintances; intrusion consultations from host node to
its acquaintances; feedback from acquaintances; consultation
requests from acquaintances; feedback to acquaintances.

C. Trust Management

The trust management component allows IDSs in the IDN to
evaluate the trustworthiness of others based on their personal
experiences with them. The host node can use test consulta-
tions to gain experience quickly. Indeed, the verified consul-
tation results can also be used as experience. In GUIDEX,
we have adopted a Bayesian learning-based trust management
model [20] to evaluate the trustworthiness of IDSs.

D. Feedback Aggregation

Feedback aggregation is an important component and it has
a direct impact on the accuracy of the collaborative intrusion
detection. After the host IDS sends out a consultation request
to its acquaintances, the collected feedbacks are used to decide
whether the host IDS should raise an alarm to the administrator
or not. If an alarm is raised, the suspicious intrusion flow
will be suspended and the system administrator investigates
the intrusion immediately. On one hand, false alarms create
disruptions and waste human resources. On the other hand,
undetected intrusions may cause damages.

E. Resource Management

To help the nodes in the IDN use their resource effectively
in collaboration, a resource management system is required to
decide whether the host should allocate resources to respond
to consultation requests. An incentive-compatible resource
management can assist IDSs to allocate resources to their
acquaintances so that other IDSs are fairly treated based on
their past assistance to the host IDS. Therefore, an IDS which
abusively uses the collaboration framework will be penalized
by receiving fewer responses from others. In our IDN, we
use an incentive-compatible resource allocation scheme as
described in section III for IDSs in the IDN.

III. RESOURCE MANAGEMENT AND INCENTIVE DESIGN

In this section, we first mathematically model resource
allocation in an IDN environment as individual optimization
problems for its member peers. A game problem (GP) can
then be introduced for each peer. We employ a Lagrangian
approach to find the Nash equilibrium of the constrained game.
Finally, we show that there exists a unique Nash equilibrium
in the game and characterize the equilibrium solution in closed
form.
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A. Modeling of Resource Allocation

We consider a collaborative intrusion detection network
(CIDN) with N peers or nodes where all the nodes adopt the
GUIDEX scheme. Each IDS user can distribute information to
other IDS users in form of messages (in bytes). We denote the
set of nodes by N = {1,2, · · · ,N}. The set of neighbor nodes
of peer u is denoted by Nu. The communications between
IDSs become constrained when the network size is large and
the number of collaborators |Nu| grows. Note that information
in the network is symmetric. If u is a neighbor of v, then v is
also a neighbor of u. We can represent the topology of an IDN
by a graph G := (N ,E ), where E is the set of (u,v) pairs in
the network. We use rvu to denote the units of resource that
node u should allocate in order to serve v with full satisfaction.
The minimum acceptable resource from u to v is mvu. Note that
rvu,mvu are chosen by node v and informed to node u during
negotiation. Let puv ∈R+ be the resource that u allocates to v,
for every u,v ∈ N . The parameter puv is a decision variable
of peer u and is private information between peer u and peer
v. To satisfy neighbor v, node u should allocate resource to v
over the interval [mvu,rvu].

In this model, we assume that each node has its own
mechanism to evaluate the trust of its neighbors, and the
trust values have already been determined. This assumption is
practical if a distributed trust management exists in the system
and this is one of the building blocks in our GUIDEX system
designed in Section II. Let T u

v ∈ [0,1] be the trust value of
peer v assessed by peer u, representing how much peer u trusts
peer v. The allocated resource puv from peer u to v is closely
related to the trust value T u

v perceived by u. Interested reader
can refer to the trust models employed in [21] and [20] and
they are applicable to the GUIDEX system.

Each peer maximizes its effort to help its neighbor nodes
under its capacity constraint Cu, which is dependent on its
own resource capacity such as bandwidth, CPU, memory, etc.
Then, resource allocation should satisfy the following capacity
constraint: ∑

v∈Nu

puv �Cu, for all u ∈ N . (1)

Our system introduces a utility function for each peer
to model the satisfaction level of its neighbors. The utility
function Suv is given by

Suv =
ln
(

α puv−mvu
rvu−mvu

+ 1
)

ln(α + 1)
, (2)

where α ∈ (0,∞) is a system parameter which controls the
satisfaction curve and the term ln(α + 1) in the denominator
is the normalization factor. The function Suv is a concave
function on its domain under the condition α > 1. The choice
of logarithmic functions is motivated by the proportional
fairness properties as in [22], [23] and has been used in the
literature on power control, congestion control and rate control
in communication networks [23]–[25].

Let Uu : RL(u)
+ → R+ be the peer u’s aggregated altruistic

utility, where L(u) = card(Nu), the cardinality of the set Nu.
Let the payoff function, Uu, for u be given by:

Uu = ∑
v∈Nu

wuvSuv, wuv = T u
v pvu, (3)

where wuv is the weight on peer v’s satisfaction level Suv,
which is the product of peer v’s trust value and amount of

helping resource allocated to u. A higher weight is applied on
peer v’s satisfaction level Suv if peer v is better trusted and
more generous to provide help to u. In this system, each peer
u ∈N in the IDN intends to maximize Uu within its resource
capacity. A general optimization problem (OP) can then be
formulated as follows:

max{puv,v∈Nu} ∑v∈Nu wuvSuv (4)
s.t. ∑v∈Nu puv �Cu

mvu � puv � rvu,∀v ∈ Nu,

where Suv and wuv are given by (2) and (3), respectively.
The upper and lower bounds on resources are imposed by
the collaborators. The design of the utility function in OP is
built upon the intuition behind how people form collaborations
in social networks. With the freedom to choose and design
collaborative schemes, we assume that all legitimate agents in
the network start with an intent to form collaborations with
each other.

Every peer in the network is faced with an optimiza-
tion problem (OP) to solve. (OP) is a concave problem in
which the objective function is a concave function in puv
and the constraint set is an L(u)-dimensional simplex, where
L(u) = card(Nu), the cardinality of the set Nu. Under the
assumptions that the size of the network is large and peers
can only communicate locally within a distance d, we have N
individual optimization problems in the form of (OP) for each
node. Hence, we can introduce a corresponding game (GP)
by the triplet 〈N ,Au,Uu〉, where N is the set of players
or peers, Au,u ∈ N , is the action set of each peer, and Uu
is the payoff function of peer u, defined in (3). An action
of a peer here is a decision on the resource allocated to a
neighbor peer. The action set of each peer Au is given by
Au = A1

u
⋂

A2
u, where A1

u = {pu ∈ R
L(u)
+ | ∑v∈Nu puv �Cu} and

A2
u = {pu ∈R

L(u)
+ | mvu � puv � rvu,v ∈ Nu}. It is not difficult

to prove that under the condition Cu � ∑v∈Nu mvu, the action
set is nonempty.

We note that the decision variable of each peer is a vector
pu and the action sets of players are not coupled. We thus can
use Lagrangian relaxation to penalize the constraints to solve
for the Nash equilibrium. Let Lu(pu,σu,μu,λu) as follows
denote the Lagrangian of peer u’s optimization problem:

Lu = ∑
v∈Nu

T u
v pvuSuv − ∑

v∈Nu

μuv(puv − rvu)

+ ∑
v∈Nu

σuv(puv −mvu)−λu

(
∑

v∈Nu

puv −Cu

)
, (5)

where μuv,σuv,λu ∈ R+ are the Lagrange multipliers. Using
Lagrangian relaxation, we can transform the game problem
to its relaxed counterpart (RGP), where the abbreviation
“R” is short for “Relaxed”. The triplet of RGP is given by
〈N , Āu,Lu〉, where Āu is the action set described by the base
constraint puv � 0, i.e., Āu = {pu | puv � 0,v ∈ Nu}; and the
payoff function is replaced by the relaxed Lagrangian function
Lu. 2.

2In the definition of the relaxed game (RGP), we have chosen to relax
simultaneously the two sets of constraints, capacity constraint and range
constraints. Instead, we could have relaxed only the capacity constraint. In that
case, the action set Āu in the relaxed game would include a range constraint,
i.e., Āu = {pu | mvu � puv � rvu,v ∈ Nu} .
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By formulating the collaborative problem as a game, we
use a non-cooperative approach to model altruistic behavior
among peers. The non-cooperativeness is appropriate here
because there is no centralized control agent in the network,
and communications between peers are local and symmetric.
The aggregated utility comes from peers’ general intention to
help other peers. We assume that peers intend to be altruistic
when they are introduced into the network. Free-riding peers
are penalized via the weighting of the aggregation function.
When one peer appears to refuse to help other peers, the other
peers will correspondingly decline to assist in return, and as
a result free-riding is avoided.

The framework described in this subsection can be po-
tentially applied to a wide range of collaborative networks
where reciprocal altruism is desirable. However, many distinct
features of IDS networks have been incorporated into the
design. Firstly, an attacker can compromise nodes in the
network and then start to spread malware to degrade the
level of protection provided by the collaborative network. The
special structure of the utility function together with the trust
values have been used in the model to mitigate malicious and
dishonest behaviors of compromised nodes. Secondly, insider
threats in IDS networks have been considered by imposing
upper and lower bounds on puv, which can be used to prevent
denial-of-service attacks from the insiders.

Remark 3.1: The choice of using the word collaborative
networks is to distinguish this approach from its cooperative
counterpart. Cooperative networks often refer to a network
of nodes that are able to act as a team and then split the
team utility among the members. This will require global
communications, coordination and bargaining. This appears
to be unrealistic for CIDN systems. In collaborative networks,
nodes behave strategically not because they are selfish agents
but because they are unable to coordinate or act as a team. Our
work is essentially different from non-cooperative network
formation problems, where all agents act selfishly to achieve
their individual goals, which can be misaligned with each
other. In GUIDEX, the players have their goals aligned in a
certain way to achieve efficient exchange of knowledge with
each other. This is similar to classical strategic games such
as Battle of the Sexes and Bach and Stravinsky game [26].
However, the goals become less aligned when agents have low
trust values. This flexibility in the model essentially attributes
to the reciprocal altruism.

B. Characterization of Nash Equilibrium

In this subsection, we solve the GP for its Nash equilibrium.
Each peer u has a concave optimization problem as in (4).
Applying the first-order KKT condition as in [27] and [28] to
each peer’s concave problem in OP, ∂Lu

∂ puv
= 0,∀v∈Nu,u∈N ,

we find

δuvT u
v pvu

1+α ′
uvpuv −α ′

uvmvu
= ξuv,∀v ∈ Nu,u ∈ N , (6)

where δuv =
α ′

uv
ln(1+α) ; ξuv =−σuv+μuv+λu, and α ′

uv =
α

rvu−mvu
.

In addition, from the feasibility condition, it is required that
an optimal solution satisfies the base constraints in Āu and the

complimentary slackness conditions for every u ∈ N :

λu

(
∑

v∈Nu

puv −Cu

)
= 0. (7)

σuv(puv −mvu) = 0,∀v ∈ Nu, (8)

μuv (puv − rvu) = 0,∀v ∈ Nu . (9)

The variable ξuv is composed of three Lagrange multipliers.
If ξuv �= 0, we can further simplify the first-order condition into

puv − T u
v pvu

ξuv ln(1+α)
=

(
1+

1
α

)
mvu − 1

α
rvu. (10)

Definition 3.1: (Başar & Olsder, [29]) A Nash equilibrium
p∗uv,u,v ∈ N for the game (GP) is a point that satisfies
Lu(p∗

u,p∗−u) � Lu(pu,p∗−u), ∀pu ∈ Au,u ∈ N , and puv =
pvu = 0, for v ∈ Nu\Nu and u ∈ N , where the vector
p−u = {pi : i �= u, i ∈ N } is comprised of decision vectors
of other peers.

Proposition 3.1: The game (GP) admits a Nash equilibrium
in pure strategies.

Proof: The action set Au is a closed and bounded simplex
and Uu is continuous in puv for all u∈N ,v ∈Nu and concave
in pu. By Theorem 4.4 in [29], there exists a Nash equilibrium
to (GP).

With the existence of Nash equilibrium at hand, we can
further investigate the solutions to the relaxed game by looking
at a pair of nodes u and v. Node u has its decision vector pu
satisfying (10) and similarly, node v has its decision vector pv
satisfying (10) by interchanging indices u and v. Hence, we
obtain a pair of equations involving puv and pvu and they are
described by[

1 −T u
v

ξuv(ln(1+α))
−T v

u
ξvu(ln(1+α))

1

][
puv
pvu

]
=

[ (
1+ 1

α
)

mvu − rvu
α(

1+ 1
α
)

muv − ruv
α

]
,

or in the matrix form, Muvquv = buv, where quv = [puv, pvu]
T ,

and buv is the right-hand side vector and Muv is the incident
matrix.

Definition 3.2: (M-matrix, [30]) An N by N real matrix A=
[Ai j] is called an M-matrix if it is of the form A = θ I−P,
where P is entrywise nonnegative and θ is larger than the
spectral radius of P, i.e., θ > ρ(P). An M-matrix A has two
key features:
(F1) the sign patterns aii > 0, i = 1, ...,N, and ai j � 0, i �= j,
(F2) the eigenvalues of A have all positive real parts.

Theorem 3.2: (Berman and Plemmons, [30]) If A is an M-
matrix, then A−1 > 0, i.e. all of its entries are positive.

Using Theorem 3.2, we next state a result on uniqueness of
Nash equilibrium for a sufficiently large system parameter α .

Theorem 3.3: Suppose that only capacity constraints are

active and α > max
u,v

{e
T u
v

ξuv , rvu
mvu

}− 1. Then, the game admits

a unique Nash equilibrium. For each pair of peers u and v,
the equilibrium is given by q∗

uv = M−1
uv buv,∀u,v ∈ N .

Proof: Under the condition that the capacity constraints
are active, ξuv = kvλu > 0, since the objective function is an
increasing function. Firstly, we show that provided that α >

e
T u
v

ξuv − 1, we have the inequality 1 >
T u

v
ξuv ln(1+α)

. For each pair
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of nodes u and v, matrix Muv is an M−matrix in (10); hence,
Muv are strictly diagonally dominant and thus non-singular;
and by Theorem 3.2, the entries of the inverse matrix M−1

uv is
strictly positive.

Secondly, provided that α > ruv
mvu

− 1, the vector buv is
positive, i.e.,

(
1+ 1

α
)

mvu >
1
α ruv. Thus, we arrive at a unique

solution q∗
uv, whose entries are all positive, residing in the base

constraint action set Āu for all u. Since (10) holds for any
interactive pair, the game admits a unique Nash equilibrium
under conditions in Theorem 3.3.

Note that Theorem 3.3 provides a condition to choose
system parameter α . Since the system designed in Section
II can determine the value of α , the condition can be met
easily.

Remark 3.2: Under general conditions, to have ξuv > 0
requires multipliers μuv, λu, σuv to satisfy μuv +λukv > σuv.
Since payoff function Uu is increasing in puv, λu > 0 and
only μuv and σuv can be zero. To ensure ξuv > 0, we can
separate into three cases for general discussion: (1) when
σuv = 0, μuv �= 0, we require μuv + λukv > 0; (2) when
σuv = 0, μuv = 0, we require λukv > 0; (3) when σuv �=
0, μuv = 0, we require λukv > σuv. With an assumption as in
Theorem 3.3 that only capacity constraint is active, it simply
leads to ξuv > 0 itself.

C. Incentive Properties
We call a network design reciprocal incentive compatible

when at the steady state, the helping resource puv from peer
u to v increases as the helping resource pvu from peer v to u
also increases. In addition, it is also desirable to have puv to be
proportional to the trust value of v, i.e., the more peer u trusts
peer v, the more help u is willing to give. We can further study
these properties of the solution obtained in Theorem 3.3.

Proposition 3.4: Under the conditions of Theorem 3.3, the
Nash equilibrium solution of the game (GP) is reciprocal
incentive compatible, i.e.,

1) The helping resource puv from u to v increases with
helping resource pvu from v to u;

2) When the system parameter α increases, the marginal
helping resource from u to v decreases for all u and v;

3) When peer u trusts v more, i.e., T u
v increases, the

marginal helping resource from u to v increases.
Proof: Using (6), we take the derivative with respect to

pvu and let ∂ puv/∂ pvu denote the marginal helping rate from
u to v. Since T u

v > 0, ξuv > 0, under the conditions in Theorem
3.3, we have ∂ puv/∂ pvu > 0, and thus puv is increasing with
pvu at Nash equilibrium. The incentive compatibility results
follow.

In the following, we study the incentives of nodes that
decide on the lower and upper bounds on desired reply rates.
We assume that the lower bound on reply rates are uniformly
determined by the system once they join the network, i.e.,
mvu = m̄ for all v ∈ N ,u ∈ Nv.

Lemma 3.5: Nodes do not have incentives to overstate their
upper bound on the reply rate rvu,v ∈ N ,u ∈ Nv.

Proof: From (6), we can observe that ∂ puv
∂ rvu

=−1/α < 0.
Hence, a higher level of request results in a lower value of
puv.

Lemma 3.5 admits an intuitive interpretation. When a request
level is high, it becomes harder for a node to satisfy it and the
node will allocate resources to satisfy other ones with lower
request levels first. Hence, a higher level of request will result
in a lower reply rates.

In the following, we study the effect of understating the
upper bound. We first introduce the notion of ε-resilience and
then derive a condition for achieving it.

Definition 3.3: The Nash equilibrium p∗uv under truthful
r∗vu is ε-resilient if a deviation rvu from r∗vu results in an
equilibrium puv such that ‖p∗uv − puv‖ � ε‖r∗vu − rvu‖ for all
pairs of (u,v) ∈ E .

Proposition 3.6: Suppose m̄ is sufficiently small and only
capacity constraints are active. The Nash equilibrium, if it
exists, is ε-resilient if α � 1

ε max(u,v)∈E

∣∣∣ T u
v pvu

∑v∈Nu pvuT u
v
− 1
∣∣∣ .

Proof: Let r∗vu be the true upper bound, under which the
reply rates are p̂∗uv = min{max{m̄, p∗uv},r∗vu}� r∗vu, where

p∗uv =

(
1+

1
α

)
m̄− 1

α
r∗vu +

T u
v pvu

ξ ∗
uv ln(1+α)

.

For any other rvu < r∗vu, the allocated resource is p̂uv =
min{max{m̄, puv},rvu}� ruv < r∗vu, where

puv =

(
1+

1
α

)
m̄− 1

α
rvu +

T u
v pvu

ξuv ln(1+α)
.

Suppose that m̄ is sufficiently small. Due to the assumption
that only capacity constraints are active, we only need to study
the case where puv � rvu. Then, from Lemma 3.5, we obtain
puv > p∗uv since rvu < r∗vu, and hence p∗uv < puv � rvu < r∗vu.
Therefore, ‖ p̂uv − p̂∗uv‖= ‖puv − p∗uv‖ and we have

‖puv − p∗uv‖�
∥∥∥∥− 1

α
(rvu − r∗vu)+

T u
v pvu

ln(1+α)

[
1

ξuv
− 1

ξ ∗
uv

]∥∥∥∥ .
Under the relaxed conditions, we can use the closed form ex-
pression of Lagrangian multiplier (16), which is derived later
in Section IV, to obtain 1

ξuv
− 1

ξ ∗
uv
= 1

λu
− 1

λ ∗
u
=

ln(1+α)
αPT

(rvu −
r∗vu). Hence combining with the result above, we arrive at

‖puv − p∗uv‖�
1
α

∥∥∥∥T u
v pvu

PT
− 1
∥∥∥∥‖rvu − r∗vu‖.

Therefore, to ensure ε-resiliency, we need ‖puv−p∗uv‖
‖rvu−r∗vu‖ �

1
α

∥∥∥T u
v pvu
PT

− 1
∥∥∥� ε, which leads to the result.

IV. PRIMAL / DUAL ITERATIVE ALGORITHM

In this section, we introduce a dynamic algorithm to com-
pute the unique Nash equilibrium. Let puv(t) be the resource
from peer u to v at step t. Consider the algorithm:{

puv(t + 1) = suv + tuvpvu(t)
pvu(t + 1) = svu + tvu puv(t)

, (11)

where suv =
(
1+ 1

α
)

mvu − 1
α rvu, tuv =

T u
v

ξuv(ln(1+α))
, and svu, tvu

are defined similarly by interchanging indices u and v, with
initial conditions puv(0) = min

{
Cu
Nu

,ruv.
}
,∀u,v ∈ N .

Proposition 4.1: Suppose that capacity constraints are ac-
tive, and rvu and muv are chosen such that the associated
constraints become inactive constraints, i.e., σuv = 0,μuv = 0 in
(8) and (9). Given a Lagrange multiplier λ ∗

u �= 0 and provided
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that α > e
T u
v

λu −1, algorithm (11) converges to the unique Nash
equilibrium in Theorem 3.3 at dual optimal λ ∗

u .
The algorithm described in (11) depends on the Lagrange

multiplier λu. We can exploit duality to devise an iterative
algorithm for the Lagrange multiplier. Let Du(λu) be the
dual functional given by Du(λu) =maxpu Lu(pu,λu). The dual
function Du(λu) is a convex function and a dual optimal λ ∗

u
solves the dual optimization problem (DOP)3

min
λu>0

Du(λu). (12)

Using the solution from Theorem 3.3, we can obtain Du(λu)
as follows.

Du = λu

(
Cu +

KR

α
+

(
1+

1
α

)
KM

)
+

PT −PT

ln(α + 1)
,

and its first-order derivative as follows:

D′
u =Cu − ∑v∈Nu pvuT u

v

λu ln(1+α)
+

1
α ∑

v∈Nu

rvu − α + 1
α ∑

v∈Nu

mvu,

where PT = ∑v∈Nu pvuT u
v is the sum of the weights; KM =

∑v∈Nu mvu; KR = ∑v∈Nu rvu. KM and KR can be interpreted as
the total request weighted by marginal costs; and

PT = ∑
v∈Nu

pvuT u
v ln

(
α

ln(α + 1)
pvuT u

v

λu(rvu −mvu)

)
. (13)

The gradient of the dual function is dependent on the local
capacity of node u and the information sent by the neighbor
node v of peer u such as the helping resource pvu, and the
maximum (minimum) requested resources rvu (mvu) from v.
All the information is available to peer u to calculate the
gradient locally at each λu.

By taking the second-order derivative of the dual function,
we obtain

D′′
u(λu) =

∑v∈Nu pvuT u
v

λ 2
u ln(1+α)

. (14)

The dual function in (12) is not only a convex function but also
a strong convex function, whose Hessian is bounded uniformly
as in L1 � ∇2Du(λu), for some L1 [28]. In addition, provided
that the sum of weights wuv is bounded from above, i.e.,

∑
v∈Nu

pvuT u
v � M, (15)

for some M ∈ R++, then ∇2Du(λu) � L2, for some constant
L2.

Proposition 4.2: Suppose that the sum of weights is
bounded as in (15). The dual function Du is strongly convex
and its Hessian is bounded from above and below uniformly.

Proof: Firstly, λu is bounded from above by some
constant λ̄u since the dual problem is feasible. Thus, ε1 �
λu � λ̄u,ε1 > 0. In addition, ∑v∈Nu wuv �= 0; otherwise, the
primal problem is trivial because wuv = 0, for all v. Therefore,
ε2 � ∑v∈Nu wuv � M,ε2 > 0. Hence, the statement is true.

Strong duality ensures a unique optimal solution. The
unique dual optimal λ ∗

u can be found explicitly by applying

3Peer u’s dual function is expressed in terms of λu and p−u, and the decision
variable for peer u changes from a multi-dimensional vector pu to a scalar
variable λu . Using the dual function, we can reduce the dimension of the
game and turn a constrained game into an unconstrained one.

the unconstrained optimality condition, i.e., D′
u(λu) = 0. As a

result, we obtain

λ ∗
u =

PT(
Cu −KM + 1

α (KR −KM)
)

ln(1+α)
. (16)

To find the dual optimal, we can also devise a dynamic
algorithm that can be used in conjunction with Algorithm (11).
An iterative algorithm based on gradient methods to find λu
is given by

λu(t + 1) = λu(t)−βuD′
u(λu(t)),∀u ∈ N , (17)

where βu ∈ (0,1) is the step size. The gradient algorithm in
(17) is distributed over the network. Each peer needs to collect
openly accessible information from its neighboring peers to
evaluate KM , KR and PT . With the property of strong convexity,
we can show in the following the fast convergence of the
algorithm to (16).

Proposition 4.3: Suppose that D′
u(λu) is Lipschitz with

Lipschitz constant L3 and Du(λu) is strongly convex with
D′′

u(λu)� L1. The dual algorithm (17) converges geometrically
to dual optimal λ ∗

u in (16) with step size βu <
min(2,L1)

L3
.

Proof: We can use the technique in [28] to prove the
proposition. Using the property of strong convexity and Lip-
schitz property, we obtain

‖λu(t + 1)−λ ∗
u‖2

= ‖λu(t)−λ ∗
u‖2 − 2βuD′

u(λu(t))(λu(t)−λ ∗
u )

+β 2
u‖D′

u(λu(t))‖2

� ‖λu(t)−λ ∗
u‖2 − 2βu(Du(λu(t))−Du(λ ∗

u ))

+β 2
u L3‖λu(t)−λ ∗

u ‖2

� ‖λu(t)−λ ∗
u‖2 −βuL1‖λu(t)−λ ∗

u‖2

+β 2
u L3‖λu(t)−λ ∗

u ‖2

= (1−βuL1 +β 2
u L3)‖λu(t)−λ ∗

u ‖2.

Hence, when βu <
min(2,L1)

L3
, we have a contraction. In addi-

tion, ‖λu(t +1)−λ ∗
u‖2 � (1−βuL1 +β 2

u L3)
t+1‖λu(0)−λ ∗

u ‖2.
Hence, the convergence rate is geometric.

Note that the condition of strong convexity can be easily
satisfied from (14) if we eliminate trivial cases that all trust
values of neighbors or pvu are zeros.

V. EXPERIMENTS AND EVALUATION

In this section, we perform numerical experiments and
evaluate the trust and resource management capabilities of the
GUIDEX system as described in Sections II, III and IV.

A. Nash Equilibrium Computation

In this section, we implement the dynamic algorithm de-
scribed in Section IV to calculate the Nash equilibrium
centrally. We simulate a three-node network with initial trust
values 0.2,0.6,1.0, respectively. For the ease of demonstration,
we assume that the trust between pair nodes is homogeneous.
i.e., the trust value of node i is the same to all other nodes.
We set the minimum demand of resource to 1 unit and the
maximum to 20 units for all nodes. Every node has an equal
capacity of 20 units and the system parameter α = 100. We
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Fig. 3. Helping Resources v.s. Time - First Approach
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Fig. 4. Helping Resource Received Varies with Trust Value - First Approach

find that, if all peers have the same trust values, then the
resource is fairly and evenly distributed among all peers.
When the trust values are different, peers with higher trust
values receive more resources. Fig. 3 shows that the resources
received by three peers with different trust values converge
fast within two or three iterations. A peer with higher trust
value receives more help than a peer with lower trust value.

Fixing the resource capacity of all peers to 20 units and
the trust values of two of the nodes to 0.5, we vary the trust
value of the third peer from 0.1 to 1.0. In Fig. 4, we observe
that the resource received by the third peer increases with
its trust value under different α values. We also see that all
curves cross at trust value 0.5 and resource 20 units. This
is because all peers should receive equal amount of resources
when they are identically configured, regardless of the α value
we choose. By fixing the trust values of all nodes to 1.0 and
varying the resource capacity of the third peer from 3 to 30, we
observe in Fig. 5 that the amount of resources a peer receives
is roughly linearly proportional to the resources it provides
to the others. Similarly, all curves intersect at capacity 20
and resource 20. These results further confirm our theoretical
analysis in Section III. Figs. 4 and 5 also reveal that a larger
α value leads to a lower marginal helping resource. A smaller
α value provides stronger incentive to the participants.
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Fig. 6. Helping Resources v.s. Time - Second Approach

B. Nash Equilibrium using Distributed Computation

In this experiment, we use a stochastic discrete-event based
simulation to model the IDN. In this simulation, each node
collaborates with others by sending out requests and waits
for their responses. At the beginning of each day, nodes
send resource upper-bound/lower-bound to all their neighbors
and wait for the resource quota from them. The resource
quota allocation is determined through optimizing (4). The
consultation requests are generated randomly following a
Poisson process with an average arrival rate equal to the
resource quota they receive. Upon the arrival of a request at
its destination queue, it will be replied by the corresponding
peer on a first-come-first-serve basis. Each peer estimates the
resource it receives from other peers by calculating the average
number of consultation requests answered by each peer. In this
experiment, all peers initialize with an unbiased allocation, and
then apply the resource allocation scheme.

For the purpose of comparing with the numerical ex-
periment, we use the same experiment configuration as in
Section V-A, i.e., we simulate a network of 3 nodes; we set
the minimum resource requirement to 1 request/day and the
maximum to 20 requests/day for all peers; each peer has a
capacity of 20 requests; we set α = 100 and the trust values
of nodes to be 0.2, 0.6, and 1.0, respectively.

Fig. 6 illustrates the received resources for all three nodes
with respect to time. We note that the helping resource
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Fig. 7. Helping Resource Received Varies with Trust Value - Second Approach
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Fig. 8. Helping Resource Received Varies with Resource Contribution -
Second Approach

converges to the Nash equilibrium at steady state, and nodes
with higher trust values obtain more resource. This confirms
that our resource allocation scheme provides incentives in the
collaborative network.

By fixing the resource capacity of all peers to 20, the trust
values of two of the peers to 0.5, and varying the trust values
of the third peer from 0.1 to 1.0, we obtain in Fig. 7 that
the received resource of the third peer increases with its trust
value under different α values. Fixing the resource capacity
of the first two peers to 20 requests/day and trust values to
1.0 for all peers, we vary the capacity of the third peer from 3
requests/day to 30 requests/day and observe that the resource
received by the third node also increases with its resource
capacity under different α values, as shown in Fig. 8. The
simulation results are consistent with the theoretical results
obtained in Section III and the ones in Section V-A.

C. Robustness Evaluation

Robustness is a required and important feature for the
design of an IDN. In this subsection, we discuss a few
common insider threats against the incentive-based resource
allocation mechanism, and we show how GUIDEX is robust
to these attacks. Note that all participants in GUIDEX have to
abide by the protocols with a given flexibility in parameters
tuning. However, due to the reciprocity of the mechanism,
IDSs with selfish or dishonest behaviors will be punished and

 0

 5

 10

 15

 20

 25

 10  15  20  25  30

R
ec

ei
ve

d 
H

el
pi

ng
 R

es
ou

rc
e

Exchanged Upper-Bound

True upper-bound

α=10
α=20

α=100

Fig. 9. Resource received vs. exchanged upper-bound. We simulate a network
of 3 identically configured nodes with true desired upper-bound ri j = 20
requests/day, lower-bound mi j = 1 request/day and resource capacity Ci = 20
requests/day, for all i, j ∈ {1,2,3}. We observe the received resources from
nodes 2 and 3 when node 1 changes its claimed upper-bound from 6
requests/day to 30 requests/day.

eventually removed from the network. This execution process
is an integrated part of the GUIDEX system.

1) Free Riding: Free riders are nodes that enjoy resources
from others while not contributing themselves [31], [32]. A
free rider in GUIDEX may collaborate with a large number
of IDSs, aiming at receiving a good amount of accumulated
resources m̄ from the large number of collaborators. However,
GUIDEX is not beneficial to free riders. First, the amount of
help that a node receives is proportional to the resources it
allocates to others. Second, the larger the number of collab-
orators a node has, the more demanding it is for the node
to maintain the collaboration since each collaborator needs
minimum resource m̄ to be satisfied. Therefore, a node that
does not contribute to the collaboration will end up receiving
bare minimum helping resources from others. We simulate
a scenario where a free rider with initial trust value 1.0
switches to a free riding mode at day 200 (Fig. 10). We
notice that the amount of helping resources received by the
free rider drops quickly and converges to a low level. This is
because the collaborators of the free rider can notice the drop
of contributed resources from the free rider and adjust their
resource allocation according to (4). The result coorroborates
that free riding is not practical in GUIDEX.

2) Denial-of-Service (DoS) Attacks: DoS attacks happen
when malicious nodes send a large amount of information
to overload the victim [33]. In GUIDEX, the amount of
information exchanged between participant nodes is negotiated
beforehand. A quota is calculated and sent to all nodes. If
a node sends more data than the given quota, then it is
considered malicious, and hence will be removed from the
collaboration network.

3) Dishonest Insiders: In GUIDEX, dishonest nodes can
report false information to gain advantages. For example,
a dishonest node can misinform about its upper-bound and
lower-bound requests for gaining more resources from its
collaborators. GUIDEX imposes a maximum lower-bound m̄
for all nodes. In addition, experimental results in Fig. 9 show
that claiming a higher upper-bound than the true value lowers
received resource, while claiming a lower upper-bound may
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Fig. 10. Resource received after free riding attack

lead to a bounded gain that is controllable by system parameter
α . A lower upper-bound will not lead to full satisfaction of
the node when resource constraints are inactive.

D. Large-Scale Simulation

Previous experiments are based on a small-scale network.
In this subsection, we design numerical experiments to study
the resource allocation in a large-scale intrusion detection
network. We set up a network of 100 nodes, which are
randomly scattered in a 100× 100 square. Each node shares
its resources with the other nodes in the vicinity at a distance
of 5. The trust values are generated according to a uniform
distribution from 0 to 1.0. The lower bound and the upper
bound on the requests are 1 and 20, respectively, for each
node. We separate nodes into two groups: one group with a
capacity of 20 units and the other with 40. In Fig. 11, we can
see that, in both groups, nodes with higher trust values tend to
receive more assistance. The response to trust value appears
to be more prominent for the group with capacity of 40 units.
It can be explained by the fact that when the resource capacity
is low, most of the resource is used to satisfy the lower bound
of all the neighbors and little is left to allocate based on
incentives. In the second experiment, we fix trust values of
all nodes to 1.0 and randomly choose the resource capacity
of each node between 0 and 30. Fig. 12 shows the resource
received by nodes with different resource capacities. We note
that, on the average, nodes with higher resource capacities
receive more resources. This confirms the incentives under a
large collaboration group.

VI. CONCLUSION

In this paper, we have proposed GUIDEX, a collaborative
intrusion detection architecture, and have discussed its two
major building blocks, namely, trust and resource manage-
ment. In particular, we have analyzed an incentive-based
resource allocation problem based on trust management in
the context of a collaborative intrusion detection network. By
formulating an associated continuous-kernel noncooperative
game, we have shown that a Nash equilibrium exists and
is unique under certain system conditions. We have also
shown that the unique Nash equilibrium possesses features
that allow peers to communicate in a conducive environment
in which peers endeavor to contribute knowledge and resource
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to assist neighbor nodes. Any selfish or free-riding behavior
will receive a tit-for-tat response from the neighbors as a
consequence. The dynamic algorithm proposed in the paper is
used to compute the Nash equilibrium. Experimental results
showed that the algorithm converges to the Nash equilibrium at
a geometric rate, further corroborating the theoretical results.
We have also discussed the resistance of GUIDEX to common
insider attacks, such as free-riding, dishonest insiders, and DoS
attacks. As a future work, we plan to develop an admission
control system for IDSs to construct their neighbor lists
based on dynamic evaluations of trust and expertise levels. In
addition, we can study other potential attacks to the GUIDEX
system, for example, the application of reverse engineering for
modifying objectives from binary codes.
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