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ABSTRACT
The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool
for reasoning about the security of cryptographic protocols
in which the cryptosystems satisfy different equational prop-
erties. It tries to find secrecy or authentication attacks by
searching backwards from an insecure attack state pattern
that may contain logical variables, in such a way that logical
variables become properly instantiated in order to find an
initial state. The execution mechanism for this logical reach-
ability is narrowing modulo an equational theory. Although
Maude-NPA also possesses a forwards semantics naturally
derivable from the backwards semantics, it is not suitable
for state space exploration or protocol simulation.

In this paper we define an executable forwards semantics
for Maude-NPA, instead of its usual backwards one, and
restrict it to the case of concrete states, that is, to terms
without logical variables. This case corresponds to standard
rewriting modulo an equational theory. We prove soundness
and completeness of the backwards narrowing-based seman-
tics with respect to the rewriting-based forwards semantics.
We show its effectiveness as an analysis method that comple-
ments the backwards analysis with new prototyping, simula-
tion, and explicit-state model checking features by providing
some experimental results.

Categories and Subject Descriptors
C.2.2 [Computer-communication Networks]: Network
Protocols; D.2.4 [Software Engineering]: Software/Pro-
gram Verification; D.3.2 [Programming Languages]: Lan-
guage Classifications; D.4.6 [Operating Systems]: Secu-
rity and Protection; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Pro-
grams
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1. INTRODUCTION
Over the years a number of different techniques have been

applied to security analysis of cryptographic protocols via
state space exploration. Many of the earlier approaches
[15, 19, 6] made use of explicit-state model-checking us-
ing forward search. More recently the emphasis has been
on symbolic-state model-checking, in which states are rep-
resented by terms containing variables [3, 12, 2, 9, 16].
Here state transitions are computed using unification or con-
straint based techniques, and search is generally performed
backwards from a symbolic specification of an insecure state.
This approach has many advantages. In particular, the
combination of symbolic states and goal-directed backwards
search can result in a smaller search space.

However, there are still a number of cases when an explicit-
state model checking may be preferable. First, when one
wants to check via simulation whether one has specified
a protocol that perform its functions correctly in the ab-
sence of an attacker, symbolic-state model checking may
be overkill. Second, there are some cases in which cryp-
tographic functions may obey equational theories that do
not integrate well with the unification techniques that have
been developed for symbolic-state based cryptographic pro-
tocol analysis. One example is encryption that is homo-
morphic over a free or Abelian group operator. Although
unification in these theories is decidable, they lack the finite
variant property [8] that is necessary for existing approaches
to symbolic-state analysis of cryptographic protocols [11].
Third, backwards search is not as useful for expressing live-
ness properties, used, for example, in fair exchange proto-
cols [4]. Finally, even if one is using backwards search, it may
still be more practical to develop definitions of certain prop-
erties using a forwards semantics that gives a more natural
representation of the way an intruder increases its knowl-
edge. This is helpful for reasoning about security properties
involving subtle properties of the intruder knowledge, such
as Abadi and Fournet’s observational equivalence [1].
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For the above reasons, one may prefer not to limit oneself
to one approach, but to switch back and forth between these
two. By integrating the two approaches we can obtain the
best of both worlds, using each technique where it works
best. But for such an integration to be correct and useful two
requirements should be met: (1) the forwards and backwards
tools should share the same semantic model and language;
and (2) the operational semantics used in the forwards and
backwards analyses should agree with each other.

In this paper we show how we achieve this integration via
a novel rewriting-based forwards semantics appropriate for
the Maude-NPA protocol analysis tool [12]. Maude-NPA is
a symbolic cryptographic protocol analysis tool designed to
reason about the security of protocols in which the cryp-
tographic algorithms can be described using different equa-
tional theories. It has an operational semantics based on
rewrite rules and is implemented in the Maude rewriting
language [7] via backwards narrowing with respect to the
rewrite rules. Thus it is a natural choice for this integration,
since a forwards semantics can also be defined by rewrite
rules, but executed by rewriting instead of narrowing.

Although Maude-NPA already has an intuitive forwards
semantics obtained by reversing the rewrite rules defining
the backwards semantics, it is not suitable for model check-
ing. First, the rewrite rules in this semantics can introduce
extra variables. This is unproblematic for narrowing-based
symbolic analysis, but unacceptable for rewriting-based for-
wards execution. Second, in this semantics a state contains
explicit information about events occurring in the future
(since they were observed “earlier” in the backwards search).
This information must be removed in the forwards seman-
tics, while still ensuring that reachability is not affected.
Third, in this semantics fresh values (nonces, session keys,
etc.) are represented by special variables. These must be re-
placed by constants in the forwards semantics, again without
affecting reachability.

The approach we developed is: (1) use the strand [13]
model of protocols as the shared semantic model and speci-
fication language for the forwards analysis (Maude-NPA al-
ready used it for backwards analysis); and (2) have two dif-
ferent operational semantics, the given one for backwards
symbolic execution, and the new one for forwards concrete
execution. In this way, a protocol is specified once, and
can then be: (i) executed using the forwards semantics for
prototyping, simulation, and explicit-state model checking;
and (ii) formally analyzed using the backwards semantics.
To ensure the correctness of this integration we prove the
backwards semantics sound and complete with respect to
the forwards semantics. In this way, any security properties
proved or counter-examples found using one technique are
guaranteed to hold for the results of applying the other.

We realized several benefits from developing the forwards
semantics. One is that the forwards semantics can be exe-
cuted and model checked in Maude. We have taken advan-
tage of this feature to implement a prototype explicit-state
cryptographic protocol model-checker in Maude that, like
Maude-NPA, can be used to reason in the presence of dif-
ferent equational theories. Although we have not yet imple-
mented any state space reduction techniques for it —so there
is no current way of achieving termination— it has neverthe-
less been able to automatically find attacks on some simple
protocols that use various equational theories. We summa-
rize the experimental results for this prototype in Section 5.

The definition of this novel rewriting-based protocol analy-
sis is relevant, since the new forwards semantics is directly
implementable in rule-based programming languages such
as Maude without any need for constraint solving or unifi-
cation procedures as it is done in most current approaches
(see [5]), including Maude-NPA, allowing us to explore ap-
plications such as the simulation of prototypes and reasoning
about theories without the finite variant property.

The rest of the paper is organized as follows. In Sec-
tion 2 we give some basic preliminaries on rewriting and
narrowing necessary to understand the paper. In Section 3
we give a description of Maude-NPA, including its strand
model and backwards semantics. In Section 4 we define the
forwards semantics for Maude-NPA and prove the soundness
and completeness of the backwards semantics with respect
to it. In Section 5 we present experimental results obtained
with our forwards rewriting tool. In Section 6 we conclude
the paper and discuss some of the issues that comparing the
backwards with the forwards semantics helped us resolve.

The Science
This work contributes to the science of security by providing
additional theoretical foundations to the Maude-NRL Pro-
tocol Analyzer (Maude-NPA), a tool for the formal analysis
of cryptographic protocols. It achieves this by providing
a new forwards semantics that is proved sound and com-
plete with respect to the original Maude-NPA executable
semantics, which searches backwards from a state descrip-
tion specified by the user. Moreover, the forwards semantics
is directly implementable in a rule-based language such as
Maude, without any need for constraint solving as is done in
most current approaches. This novel analysis method still
needs performance improvements, but allows for easy pro-
totyping and simulation, as is illustrated by our preliminary
experimental results. Thus it not only extends the theoreti-
cal foundations of Maude-NPA, but provides tools that can
be used to enhance its usefulness as a system for crypto-
graphic protocol analysis.

2. PRELIMINARIES
We follow the classical notation and terminology from [22]

for term rewriting, and from [17] for rewriting logic and
order-sorted notions. We assume an order-sorted signature
Σ � pS,¤,Σq with poset of sorts pS,¤q. We also assume
an S-sorted family X � tXsusPS of disjoint variable sets with
each Xs countably infinite. TΣpX qs is the set of terms of
sort s, and TΣ,s is the set of ground terms of sort s. We
write TΣpX q and TΣ for the corresponding order-sorted term
algebras. For a term t, Varptq denotes the set of variables
in t.

Positions are represented by sequences of natural numbers
denoting an access path in the term when viewed as a tree.
The top or root position is denoted by the empty sequence
Λ. Given U � Σ Y X , PosU ptq denotes the set of positions
of a term t that are rooted by symbols or variables in U .
The set of positions of a term t is written Posptq, and the
set of non-variable positions PosΣptq. The subterm of t at
position p is t|p and trusp is the term t where t|p is replaced
by u.

A substitution σ P SubstpΣ,X q is a sorted mapping from
a finite subset of X to TΣpX q. Substitutions are written
as σ � tX1 ÞÑ t1, . . . , Xn ÞÑ tnu where the domain of σ is
Dompσq � tX1, . . . , Xnu and the set of variables introduced



by terms t1, . . . , tn is written Ranpσq. The identity substi-
tution is id. Substitutions are homomorphically extended to
TΣpX q. The application of a substitution σ to a term t is
denoted by tσ. For simplicity, we assume that every substi-
tution is idempotent, i.e., σ satisfies DompσqXRanpσq � H.
Substitution idempotency ensures tσ � ptσqσ. The restric-
tion of σ to a set of variables V is σ|V . Composition of two
substitutions σ and σ1 is denoted by σσ1.

A Σ-equation is an unoriented pair t � t1, where t, t1 P
TΣpX qs for some sort s P S. Given Σ and a set E of Σ-
equations, order-sorted equational logic induces a congru-
ence relation �E on terms t, t1 P TΣpX q (see [18]). The E-
equivalence class of a term t is denoted by rtsE and TΣ{EpX q
and TΣ{E denote the corresponding order-sorted term alge-
bras modulo E. Throughout this paper we assume that
TΣ,s � H for every sort s, because this affords a simpler de-
duction system. An equational theory pΣ, Eq is a pair with
Σ an order-sorted signature and E a set of Σ-equations. The
E-subsumption preorder �E (or just � if E is understood)
holds between t, t1 P TΣpX q, denoted t �E t1 (meaning that t
is more general than t1 modulo E), if there is a substitution
σ such that tσ �E t1; such a substitution σ is said to be an
E-match from t1 to t.

An E-unifier for a Σ-equation t � t1 is a substitution σ
such that tσ �E t1σ. For Varptq Y Varpt1q � W , a set of
substitutions CSUW

E pt � t1q is said to be a complete set of
unifiers for the equality t � t1 modulo E away from W iff:
(i) each σ P CSUW

E pt � t1q is an E-unifier of t � t1; (ii)
for any E-unifier ρ of t � t1 there is a σ P CSUW

E pt � t1q
such that σ|W �E ρ|W ; (iii) for all σ P CSUW

E pt � t1q,
Dompσq � pVarptq YVarpt1qq and Ranpσq XW � H. If the
set of variables W is irrelevant or is understood from the
context, we write CSUEpt � t1q instead of CSUW

E pt � t1q.
An E-unification algorithm is complete if for any equation
t � t1 it generates a complete set of E-unifiers. A unifi-
cation algorithm is said to be finitary and complete if it
always terminates after generating a finite and complete set
of solutions.

A rewrite rule is an oriented pair l Ñ r, where1 l R X
and l, r P TΣpX qs for some sort s P S. An (unconditional)
order-sorted rewrite theory is a triple pΣ, E,Rq with Σ an
order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules.

The rewriting relation on TΣpX q, written t ÑR t1 or
t Ñp,R t1 holds between t and t1 iff there exist p P PosΣptq,
l Ñ r P R and a substitution σ, such that t|p � lσ, and
t1 � trrσsp. The subterm t|p is called a redex. The rela-
tion ÑR{E on TΣpX q is �E ;ÑR;�E , i.e., tÑR{E t1 iff there
exists u, u1 s.t. t �E uÑR u

1 �E t1. Note that ÑR{E on
TΣpX q induces a relation ÑR{E on the free pΣ, Eq-algebra
TΣ{EpX q by rtsE ÑR{E rt1sE iff t ÑR{E t1. The transitive

(resp. transitive and reflexive) closure of ÑR{E is denoted

Ñ�
R{E (resp. Ñ�

R{E).

The reducibility of the ÑR{E relation is undecidable in
general since E-equivalence can be undecidable. Therefore,
R{E-rewriting is usually implemented [14] byR,E-rewriting.
A relation ÑR,E on TΣpX q is defined as: tÑp,R,E t1 (or just

1Note that we do not impose here the standard condition
Varprq � Varplq, since extra variables will be introduced in
the righthand side of a rule when Maude-NPA introduces
extra strands. However, Varprq � Varplq will be required
in the forwards semantics, as we will make explicit in the
paper.

tÑR,E t1) iff there exist p P PosΣptq, a rule lÑ r in R, and
a substitution σ such that t|p �E lσ and t1 � trrσsp.

Let t be a term and W be a set of variables such that
Varptq � W , the R,E-narrowing relation on TΣpX q is de-
fined as t;p,σ,R,E t

1 (;σ,R,E if p is understood, ;σ if R,E
are also understood, and ; if σ is also understood) if there
is a non-variable position p P PosΣptq, a rule l Ñ r P R
properly renamed s.t. pVarplq Y Varprqq X W � H, and

a unifier σ P CSUW 1

E pt|p � lq for W 1 � W Y Varplq, such
that t1 � ptrrspqσ. For convenience, in each narrowing step
t;σ t

1 we only specify the part of σ that binds variables of
t. The transitive (resp. transitive and reflexive) closure of
; is denoted by ;� (resp. ;�). We may write t;k

σ t
1 if

there are u1, . . . , uk�1 and substitutions ρ1, . . . , ρk such that
t;ρ1 u1 � � �uk�1 ;ρk t

1, k ¥ 0, and σ � ρ1 � � � ρk.

3. MAUDE-NPA
In this section we give a high-level summary of Maude-

NPA. For further information, please see [12].
Given a protocol P, states are modeled as elements of an

initial algebra TΣP {EP , where ΣP is the signature defining
the sorts and function symbols (for the cryptographic func-
tions and for all the state constructor symbols) and EP is
a set of equations specifying the algebraic properties of the
cryptographic functions and the state constructors. There-
fore, a state is an EP -equivalence class rts P TΣP {EP with
t a ground ΣP -term. However, we explore symbolic state
patterns rtpx1, . . . , xnqs P TΣP {EP pXq on the free pΣP , EPq-
algebra over a set of sorted variables X. There are three
relevant sorts in Maude-NPA, State, Msg, and Fresh, which
are described below. Also, due to the symbolic representa-
tion, we use uppercase names for variables (we omit the sort
of a variable when it is easy to deduce from the context)
and lowercase names for terms (with or without variables).
Indeed, we will make explicit when a term does not contain
variables.

In Maude-NPA [12], a state pattern in a protocol execution
is a term t of sort State (i.e., t P TΣP {EP pXqState) which has
the form tS1 & � � � &Sn & tIKuu where & is an associative-
commutative union2 operator with identity symbol H. Each
element in the set is either a strand Si or the intruder knowl-
edge tIKu at that state.

The intruder knowledge tIKu also belongs to the state
and is represented as a set of facts using the comma as an
associative-commutative union 3 operator with identity op-
erator empty. There are two kinds of intruder facts: positive
knowledge facts (the intruder knows m, i.e., mPI), and neg-
ative knowledge facts (the intruder does not yet know m
but will know it in a future state, i.e., mRI), where m is a

2As described in [12], & can also be treated as an associative-
commutative-idempotent union operator with an identity
symbol because the combination of fresh variables and the
learn-only-once rule allows for that. However, in the forward
semantics, & cannot be idempotent, since there will be sit-
uations where two occurrences of the same strand will lead
to completely different strands later on but their current
partial representation in the state makes them equal. So
keeping only one occurrence of the partial strand is wrong.
3Again, the comma for the intruder’s knowledge is described
in [12] as an associative-commutative union operator with an
identity symbol but it can be understood as being idempo-
tent, though only for the positive intruder facts. In the for-
ward semantics, since there are only positive intruder facts,
this is not a problem.



message expression.
A strand [13] specifies the sequence of messages sent and

received by a principal executing the protocol and is repre-
sented as a sequence of messages
rmsg�1 ,msg

�
2 ,msg

�
3 , . . . ,msg

�
k�1,msg

�
k s such that msg�i

(also written �msgi) represents an input message, msg�i
(also written �msgi) represents an output message, and
each msgi is a term of sort Msg (i.e., msgi P TΣP {EP pXqMsg).

For each positive message msg�i in a strand, the variables
occurring in message msgi must appear4 in previous mes-
sagesmsg1, . . . ,msgi�1, except for variables denoting princi-
pal names (they are considered as initial knowledge available
to all participants) and variables of sort Fresh. Variables of
sort Fresh are unique for each instance of a strand schemata,
i.e., if we compare two strands for Alice or a strand for Alice
and a strand for Bob, they will have different, unique, fresh
variables associated with them.

Strands are used to represent both the actions of honest
principals (with a strand specified for each protocol role) and
the actions of an intruder (with a strand for each operator
an intruder is able to perform on terms). In Maude-NPA,
strands evolve over time; the symbol | is used to divide past
and future. That is, given a strand
rm1

�, . . . , mi
� |mi�1

�, . . . , mk
� s, messagesm�

1 , . . . ,m
�
i

are the past messages, and messages m�
i�1, . . . ,m

�
k are the

future messages (m�
i�1 is the immediate future message).

We often remove the nils for clarity, except when there is
nothing else between the vertical bar and the beginning or
end of a strand. A strand rmsg�1 , . . . ,msg

�
k s is a shorthand

for rnil | msg�1 , . . . ,msg
�
k , nils. An initial state is a state

where the bar is at the beginning for all strands in the state,
and the intruder knowledge is empty. A final state is a state
where the bar is at the end for all strands in the state and
there is no intruder fact of the form mRI.

Since Fresh variables must be treated differently from other
variables by Maude-NPA, we make them explicit by writing
:: r1, . . . , rk :: rm�

1 , . . . ,m
�
n s, where each ri first appears in

an output message m�
ji

and can later be used in any input

and output message of m�
ji�1, . . . ,m

�
n . If there are no Fresh

variables, we write :: nil :: rm�
1 , . . . ,m

�
n s.

Let us remark that the restriction mentioned in Foot-
note 4 that the variables of each positive message in a strand
must appear in previous input messages, except for vari-
ables denoting principal names and variables of sort Fresh,
together with the explicit identification of which are the
variables of sort Fresh created by each strand are essential
in the rewriting-based forwards semantics below for obtain-
ing rewrite rules without extra variables, i.e., rewrite rules
l Ñ r where Varprq � Varplq, which allows for effectively
executable rewriting computations.

Example 1. Let us consider the well-known Diffie-
Hellman protocol, used without authentication. This protocol
uses exponentiation to share a secret between two parties, Al-
ice and Bob. The protocol involves an initiator, Alice, and a
responder, Bob. We use the common notation A ãÑ B : M
to stand for “A sends message M to B”. Encryption of
message M using a key K is denoted by tMuK . Decryp-
tion is done when the principal knows the appropriate key.

4This restriction is common in protocol analysis using con-
straint systems and corresponds to deterministic constraint
systems, see [5].

Concatenation of two messages M1 and M2 is denoted by
M1;M2. Raising message M to the power of exponent X
is denoted by pMqX . There is a public term denoted by g,
which will be the base of our exponentiations. We represent
the product of exponents by using the symbol �, which is an
associative-commutative symbol. Nonces are represented by
NX , denoting a nonce created by principal X. The expres-
sion sec(A,r) denotes a secret term generated by principal
A. The protocol description is as follows.

1. A ãÑ B : A;B; gNA

Alice creates a new nonce NA and sends her name,
Bob’s name, and gNA to Bob.

2. B ãÑ A : B;A; gNB

Bob creates a new nonce NB and sends his name, Al-
ice’s name, and gNB to Alice.

3. A ãÑ B : tsecretu
gNB

NA

Alice computes gNB
NA and encrypts the secret data.

The key gNB
NA is equal to gNB�NA using the alge-

braic property XY Z � XZY � XY �Z . Bob computes

gNA
NB and obtains the secret data.

This protocol is described using strands as follows. Here en-
cryption tMuK is denoted by epK,Mq and exponentiation
XY is denoted by exppX,Y q. Nonces are denoted by terms
of the form npA, rq, where r is a fresh variable that ensures
uniqueness and A is a variable used to identify which prin-
cipal generated the nonce.

:: r, r1 ::: rpA;B; exppg, npA, rqqq�, pB;A;Xq�,
epexppX,npA, rqq, secpA, r1qq�sq &

:: r2 :: rpA;B;Y q�, pB;A; exppg, npB, r2qqq�,
epexppY, npB, r2qq,Srqs

Intruder strands are also included for each function. For ex-
ample, encryption by the intruder is described by the strand
r�pKq,�pMq,�pepK,Mqqs, and decryption by the intruder
is described by the strand r�pKq,�pMq,�pdpK,Mqqs to-
gether with the equational property dpK, epK,Mqq � M .
The intruder can also generate nonces via the strand
:: r :: r�pnpi, rqqs.

In Section 3.1 we show how backwards analysis works in
Maude-NPA and in Section 3.2 we specify the rewrite rules
governing the backwards semantics. In Section 4.1 we define
the new forwards semantics for a protocol and in Section 4.2
we specify the rewrite rules governing the forwards seman-
tics.

3.1 Backwards Reachability Analysis
Since the number of states TΣP {EP is in general infinite,

rather than exploring concrete protocol states rts P TΣP {EP
we explore symbolic state patterns
rtpx1, . . . , xnqs P TΣP {EP pXq on the free pΣP , EPq-algebra
over a set of variables X. In this way, a state pattern
rtpx1, . . . , xnqs represents not a single concrete state but a
possibly infinite set of such states, namely all the instances
of the pattern rtpx1, . . . , xnqs where the variables x1, . . . , xn
have been instantiated by concrete ground terms.

The protocol analysis methodology of Maude-NPA is then
based on the idea of symbolic backward reachability analysis,
where we begin with one or more state patterns correspond-
ing to attack states, and want to prove or disprove that they
are unreachable from the set of initial protocol states.



Example 2. Given the protocol of Example 1, the final
state pattern associated to Bob receiving some secret data
from a communication with Alice and the intruder learning
the secret is as follows (where Y , SR, SS, and IK are vari-
ables and we use lowercase a and b to represent the actual
names of Alice and Bob instead of variable names A and B):

:: r2 :: r�pa; b;Y q,�pb; a; exppg, npb, r2qqq,
�pepexppY, npb, r2qq,SRqq | nilsq

The strands of the initial state found by the tool correspond
to a very general man-in-the-middle attack, with two ses-
sions and variables B1, NS and NS1. The principal strands
are as follows, where Alice (principal name a) is talking to
some principal name B1 and Bob (principal name b) believes
is talking to Alice:

:: r1, r2 :: r�pa;B1; exppg, npa, r2qqq,
�pB1; a; exppg,NSqq,
�pepexppg,NS � npa, r2qq, secpa, r1qqqsq &

:: r3 :: r�pa; b; exppg,NS 1qq,
�pb; a; exppg, npb, r3qqq,
�pepexppg,NS 1 � npb, r3qq, secpa, r1qqqs

The Dolev-Yao intruder strands are as follows, where vari-
ables NS and NS1 correspond to sets of nonces generated
by the intruder but the tool does not actually try to find in-
stances of those variables:

r�pa;B1; exppg, npa, r2qqq,�pB
1; exppg, npa, r2qqqs &

r�pB1; exppg, npa, r2qqq,�pexppg, npa, r2qqqs &

r�pexppg, npa, r2qqq,�pNSq,�pexppg,NS � npa, r2qqqs &

r�pexppg,NS � npa, r2qqq,�pepexppg,NS � npa, r2qq, secpa, r1qqq,
�psecpa, r1qqs &

r�pexppg, npb, r3qqq,�pNS 1q,�pexppg,NS 1 � npb, r3qqqs &

r�pexppg,NS 1 � npb, r3qqq,�psecpa, r1qq,
�pepexppg,NS 1 � npb, r3qq, secpa, r1qqqs &

r�pb; a; exppg, npb, r3qqq,�pa; exppg, npb, r3qqqs &

r�pa; exppg, npb, r3qqq,�pexppg, npb, r3qqqs

Note that Maude-NPA does not display the initial knowledge
of the intruder, since it corresponds to all the input and
output messages appearing in the initial strands above.

Maude-NPA also allows verification of authentication prop-
erties by using never patterns, i.e., the reachability analysis
succeeds when none of the states in the reachability sequence
is an instance of the never pattern. Never patterns can share
variables with the attack pattern in order to have more spe-
cific patterns and the vertical bar is not included in strands
of never patterns, since all the combinations of the vertical
bar are taken into account. For instance, we can specify the
following authentication attack pattern for Diffie-Hellman by
including Bob’s strand and adding never patterns for Alice’s
strand (note that we have to specify two never patterns be-
cause states may contain always partial strands, this also
happens in the forwards semantics):

t:: r2 :: r�pa; b;Y q,�pb; a; exppg, npb, r2qqq,
�pepexppY, npb, r2qq,SRqq | nils & SS & tIK uu ^

neverp:: r, r1 :: r�pa; b; exppg, npa, rqqqsq ^

neverp:: r, r1 :: r�pa; b; exppg, npa, rqqq,�pb; a;Xq,
�pepexppX,npa, rqq, secpa, r1qqqsq

The initial state above is also a solution of this attack pat-
tern with never patterns, since Alice was talking to a differ-
ent participant in a different session. Because (as we shall
see in Section 3.2) terms available to the intruder are not
always explicitly represented in the intruder knowledge, we
assume that never patterns as implemented in Maude-NPA
consist only of strands, and do not describe intruder knowl-
edge terms. This is generally the case for authentication
patterns. However, if we do wish to specify a never pattern
in which the intruder knows a particular message, this can be
represented as a set of never patterns, each one containing
one of the possible strands containing that message as a posi-
tive term. Note that explicitly specifying the message as part
of the intruder knowledge in the never pattern would not rule
out all states in which the message is produced, since in both
the forwards and backwards semantics the intruder knowl-
edge is only guaranteed to contain the messages the intruder
uses to get to the (main) final state; it is not guaranteed to
contain all the messages produced in the protocol execution.

3.2 Backwards Operational Semantics
In the backwards reachability analysis performed by Maude-

NPA sketched in Section 3.1, state changes are described by
means of a set RBP of rewrite rules, so that the rewrite the-
ory pΣP , EP , RBPq characterizes the behavior of protocol P
modulo the equations EP for backwards execution. In this
section we use RBP to denote the rewrite rules associated
to protocol P for backwards execution, whereas in Section
4.2 we will use RFP to denote the new rewrite rules associ-
ated to protocol P for forwards execution. The rules RBP
are defined in two blocks below: (i) generic rules (1), (2),
and (3), and (ii) protocol-specific rules (4) generated for each
principal and intruder strand in the given protocol.

The following rewrite rules, though written in a forward
sense, are used in a backwards sense (by reversing the direc-
tion of the arrow) and describe5 the general state transitions:

tSS & rL | M�, L1s & tMPI, IKuu

Ñ tSS & rL,M� | L1s & tMPI, IKuu (1)

tSS & rL | M�, L1s & tIKuu

Ñ tSS & rL,M� | L1s & tIKuu (2)

tSS & rL | M�, L1s & tMRI, IKuu

Ñ tSS & rL,M� | L1s & tMPI, IKuu (3)

Variables L and L1 denote lists of input and output messages
of the form m� or m� within a strand, IK denotes a set
of intruder facts (mPI or mRI), and SS denotes a set of
strands.

Rule (1) used in a forwards sense means that the intruder
knows the message that a strand is waiting to receive, but
when executed backwards by narrowing on a symbolic state
with variables SS1 and IK 1 it may either unify the input
message with some term already in the intruder knowledge
or unify SS1 or IK 1 with parts of the rule, thus adding new
information to the symbolic state. Rule (2) used in a for-
wards sense, means that the intruder did not learn a message
generated by a strand, but when executed backwards by nar-
rowing on a symbolic state with variables SS1 and IK 1, it

5We do not include the fresh variables in rules (1), (2), and
(3) for simplicity, but a expression :: r1, . . . , rk :: should
always appear before each strand.



either moves the bar to the left or unifies variable SS1 with
parts of the rule. Rule (3) used in a forwards sense means
that the intruder learns a message M generated by a strand
that it did not know before (expressed by MRI) , but when
executed backwards by narrowing on a symbolic state with
variables SS1 and IK 1, it either detects the instant where
the intruder is learning a message and, thus, transforms a
fact mPI into mRI to identify the transition in which the
fact MPI was learned, or unifies variables SS1 or IK 1 with
parts of the rule, thus adding new information to the sym-
bolic state.

For an unbounded number of sessions, we have extra
rewrite rules (one for each positive message in a protocol
or intruder strand) that dynamically introduce additional
strands into a state:

@ rl1, u
�, l2s P P :

ttSS&r l1|u
�, l2 s& tuRI, IKuu Ñ tSS&tuPI, IKuuu

(4)

Note that these rules are essential in a backwards sense, since
they will dynamically introduce new strands guided by ex-
isting terms in the intruder knowledge. For example, the in-
truder encryption capability r�pKq,�pMq,�pepK,Mqs pro-
duces the following extra rewrite rule adding a new strand
(when the rules are executed backwards) if a message of the
form epK,Mq appears in the intruder knowledge:

tSS& r�pKq,�pMq | �pepK,Mqs& tpepK,MqRI, IKuu

Ñ tSS& tepK,MqPI, IKuu

The way to analyze backwards reachability is then relatively
easy, namely, to symbolically run the protocol“in reverse”by
narrowing modulo the equations EP . This can be achieved
by using the set of rules R�1

BP (where v ÝÑ u is in R�1
BP iff

u ÝÑ v is in RBP), and performing backwards narrowing
(see Section 2) steps of the form S;

R�1
BP ,EP

S1 to search for

an initial state pattern.

Definition 1. Let P be a protocol with signature ΣP and
equational theory EP . We define the backwards rewrite the-
ory characterizing P to be pΣP , EP , R

�1
BPq where R�1

BP is the
result of reversing the rewrite rules t(1), (2), (3)u Y (4).

4. A REWRITING-BASED FORWARDS SE-
MANTICS FOR MAUDE-NPA

In this section we define a rewriting-based forwards se-
mantics for Maude-NPA and prove that the backwards sym-
bolic semantics of Maude-NPA is sound and complete w.r.t.
the forwards semantics.

As explained in the Introduction, designing a suitable for-
wards semantics requires much more than simply reversing
the transition rules of the backwards semantics. The reader
may notice that rules of type (1), (2), and (3) allow the
definition of an intuitive forwards semantics associated to
Maude-NPA (see [12]) but it works only for validation of a
given execution sequence, since an initial state must contain
all the strands, and not for searching for an attack, where
the initial state must be empty and strands would have to
be added during forwards search.

Our solution is based on two ideas. First, to match input
terms in a strand always with the intruder’s knowledge, so
that the previous backwards semantics rule is defined in our
forward semantics differently:

tSS& tKPI,MPI, IKuu
Ñ tSS& r�pKq,�pMq,�pepK,Mqqs

& tKPI,MPI, epK,MqPI, IKuu

Second, the restriction mentioned in Footnote 4 ensures that
principal names as well as new fresh variables are the only
extra variables in rules of this form. Thus, they can be
treated as numeric constants by using a global counter xNy
that will be appropriately incremented. For instance, the
Dolev-Yao strand for new nonces :: r :: r�pnpi, rqqs will be
represented by a transition rule of the form:

tSS & tIKu & xNyu
Ñ tSS & r�pnpi,Nqqs & tIKu & xN � 1yu

where the global counter N is incremented by one. The
formal definition of how forwards transition rules are gener-
ated from the strand specification now requires some nota-
tion to indicate how the global counter is increased. Given
a message u and a counter xiy, we write uÒni , to denote
that those principal names and fresh variables appearing
in term u that are identified as new have been numbered
starting with i and ending in n � 1, with n the next avail-
able value of the counter. For example, given the term
u � exppg, np0, 1q�npA, rqq where 0 corresponds to a princi-
pal name already replaced and 1 to a fresh variable already
replaced, but A is a new principal name and r is a new fresh
variable, we write uÒ12

10 � exppg, np0, 1q � np10, 11qq, i.e., the
substitution tA ÞÑ 10, r ÞÑ 11u has been applied. In the
forwards semantics, we remove the list of fresh variables at
the beginning of each strand and the vertical bar, since they
are no longer necessary.

In Section 4.1 we give an overview of how a forwards pro-
tocol analysis can be performed in the strand-based model.
Then in Section 4.2 we define a forwards rewriting-based
semantics for Maude-NPA and, finally, in Section 4.3 we
prove that the backwards symbolic semantics of Section 3.2
is sound and complete w.r.t. the forwards semantics.

4.1 Forward Reachability Analysis
In a forward execution of a protocol we begin with an

empty initial state containing no information in the intruder
knowledge and, since we consider the unbounded session
case, no strand in the initial state. The execution of the
protocol implies searching for a final state which is an in-
stance of the pattern denoting the desired class of attack
states.

Example 3. Given the protocol of Example 1, the initial
state is just the empty state:

tH & temptyu & x0yu

The final state pattern where the intruder has learned the
secret is as follows, where Y , SR, SS, IK , r, and r 1 are
variables and a and b represent the actual names of Alice
and Bob:

tr�pa; b;Y q,�pb; a; exppg, npb, r2qqq,�pepexppY, npb, r2qq,SRqqs

& SS & tSRPI, IK uu

The forwards analysis is easily performed in the Maude
system by using Maude’s search command, which receives



the initial term and the final pattern as input and generates
the search state space. Similar to the backwards analysis, the
solution to the forwards reachability analysis is as follows.
The principal strands are (where ca, cb, cb1, r1, r2, r3, r4

are natural numbers but the actual value is irrelevant):

r�pca; cb1; exppg, npca, r2qqq,
�pcb1; ca; exppg, npi, r4qqq,
�pepexppg, npi, r4q � npca, r2qq, secpca, r1qqqsq &

r�pca; cb; exppg, npi, r4qqq,
�pcb; ca; exppg, npcb, r3qqq,
�pepexppg, npi, r4q � npcb, r3qq, secpca, r1qqqs &

The Dolev-Yao intruder strands are as follows:

r�pnpi, r4qqs &

r�pca; cb1; exppg, npca, r2qqq,�pcb
1; exppg, npca, r2qqqs &

r�pcb1; exppg, npca, r2qqq,�pexppg, npca, r2qqqs &

r�pexppg, npca, r2qqq,�pnpi, r4qq,
�pexppg, npi, r4q � npca, r2qqqs &

r�pexppg, npi, r4q � npca, r2qqq,
�pepexppg, npi, r4q � npca, r2qq, secpca, r1qqq,
�psecpca, r1qqs &

r�pexppg, npcb, r3qqq,�pnpi, r4qq,
�pexppg, npi, r4q � npcb, r3qqqs &

r�pexppg, npi, r4q � npcb, r3qqq,�psecpca, r1qq,

� pepexppg, npi, r4q � npcb, r3qq, secpca, r1qqqs &

r�pcb; ca; exppg, npcb, r3qqq,�pca; exppg, npcb, r3qqqs &

r�pca; exppg, npcb, r3qqq,�pexppg, npcb, r3qqqs

It is also possible to specify authentication attacks in
Maude for the forwards semantics by using again Maude’s
search command to search for an attack, but making it
conditional to the never patterns not having been encoun-
tered. Note that the forwards semantics is monotonic in the
sense that for s, s1 concrete states such that s Ñ� s1, then
s1 “stores” s as a “substate.” This means that if a never
pattern is avoided by s1 it is also avoided by s. Therefore,
given an attack pattern S and never patterns S1, . . . , Sn, we
can search for an attack avoiding such patterns by giving to
Maude the conditional search command:

search initÑ� S such that

pS1pSq � false ^ . . .^ pSnpSq � false .

where each predicate pSi holds for a concrete state s iff s
is an instance of the pattern Si. When a never pattern Si
shares variables v0, . . . , vki with S, the predicate pSi is ex-
tended in the form pSipS, v0, . . . , vkiq; if a never pattern has
variables not appearing in S, these will be created and used
within the predicate. This method has allowed us to analyze
by forward model checking all the examples in Section 5.

Example 4. Given the following attack S, and never pat-
terns Alice1 and Alice2 (not sharing variables with S) of the
Diffie-Hellman protocol in Example 2:

S � t :: r2 :: r�pa; b;Y q,�pb; a; exppg, npb, r2qqq,
�pepexppY, npb, r2qq, SRqq | nils

& SS & tIKuu

Alice1 � :: r, r1 :: r�pa; b; exppg, npa, rqqqs

Alice2 � :: r, r1 :: r�pa; b; exppg, npa, rqqq,�pb; a;Xq,
�pepexppX,npa, rqq, secpa, r1qqqs

The Maude conditional search command to search for the
attack S avoding the never patterns for Alice’s strand, is as
follows:

search initÑ� S such that

pAlice1pSq � false ^ pAlice2pSq � false .

where the predicates pAlice1 and pAlice2 check whether any
strand of the concrete state S is an instance of the strands
Alice1 and Alice2, respectively.

4.2 Forwards Operational Semantics
In a forward reachability analysis, we define state changes

by means of a set RFP of rewrite rules, so that the rewrite
theory pΣP , EP , RFPq characterizes the behavior of protocol
P modulo the equations EP . Here we do not have generic
transition rules, as in the backwards semantics, and all the
rules are generated from principal and intruder strands. The
intuitive idea is that a state consists of a multiset of partially
executed strands and a set of terms in the intruder’s knowl-
edge. Unlike the backwards semantics, only the part of the
strand that has already executed is present in the state, and
each such partial strand instantiates a prefix of a strand in
P. One progresses by either: (i) adding a positive term m�

to an existing strand and either adding or not adding m to
the intruder’s knowledge, (ii) adding a negative term m�

to an existing strand only if it is already present in the in-
truder’s knowledge, or (iii) starting a new strand, and if it
starts with a m� that either adds or not to the intruder’s
knowledge. For example, the intruder encryption capability
r�pKq,�pMq,�pepK,Mqs produces the rewrite rules:

tSS& tKPI, IKu& xNyu
Ñ tSS& r�pKqs& tKPI, IKu& xNyu
tSS& r�pKqs& tMPI, IKu& xNyu
Ñ tSS& r�pKq,�pMqs& tMPI, IKu& xNyu
tSS& r�pKq,�pMqs& tIKu& xNyu
Ñ tSS& r�pKq,�pMq,�pepK,Mqs&

tepK,MqPI, IKu& xNyu

The sets of rewrite rules for output messages are generated
as follows, note that some rewrite rules are conditional:

$'''''&
'''''%

@ ru�1 , . . . , u�j�1, u
�
j , u

�
j�1, . . . , u

�
n s P P ^ j ¡ 1 :

tSS& tIKu& ru�1 , . . . , u�j�1s& xNyu

Ñ

tSS& tujÒ
M
N PI, IKu& ru�1 , . . . , u�j�1, pujÒ

M
N q�s& xMyu

IF pujÒ
M
N PIq R IK

,/////.
/////-

(5)

$'&
'%
@ ru�1 , . . . , u�j�1, u

�
j , u

�
j�1, . . . , u

�
n s P P ^ j ¡ 1 :

tSS& tIKu& ru�1 , . . . , u�j�1s& xNyu

Ñ tSS& tIKu& ru�1 , . . . , u�j�1, pujÒ
M
N q�s& xMyu

,/.
/- (6)

$''&
''%
@ ru�1 , . . . , u�n s P P :

tSS& tIKu& xNyu
Ñ tSS& rpu1ÒMN q�s& tu1ÒMN PI, IKu& xMyu

IF pu1PIÒMN q R IK

,//.
//- (7)

#
@ ru�1 , . . . , u�n s P P :

tSS& tIKu& xNyu Ñ tSS& rpu1ÒMN q�s& tIKu& xMyu

+
(8)



Each transition rule of type (5) accepts output messages
and the intruder’s knowledge is positively increased, while
each transition rule of type (6) simply accepts output mes-
sages without modifying the intruder’s knowledge. Each
transition rule in (7) and (8) introduces a new strand be-
ginning with an output message. Similarly, rules of type (7)
introduce a new strand and the intruder’s knowledge is pos-
itively increased, whereas rules of type (8) introduce a new
strand but the intruder’s knowledge is not increased 6 .

The following set of rewrite rules describes the general
state transition for a negative message, generating specific
rewrite rules according to the protocol strands:

$'&
'%
@ ru�1 , . . . , u�j�1, u

�
j , u

�
j�1, . . . , u

�
n s P P ^ j ¡ 1 :

tSS &tujPI, IKu& ru�1 , . . . , u�j�1s& xNyu

Ñ tSS& tujPI, IKu& ru�1 , . . . , u�j�1, u
�
j s& xNyu

,/.
/- (9)

$'&
'%
@ru�1 , u�2 , . . . , u�n s P P :

tSS& tu1PI, IKu& xNyu

Ñ tSS & ru�1 s& tu1PI, IKu& xNyu

,/.
/- (10)

Each transition rule in (9) and (10) accepts input messages
if the intruder’s knowledge matches them. Note that in (10)
a new strand is introduced.

Definition 2. Let P be a protocol with signature ΣP and
equational theory EP . We define the forward rewrite theory
characterizing P to be pΣP , EP , RFPq where RFP � (5) Y
(6) Y (7) Y (8) Y (9) Y (10).

Example 5. The rewrite rules associated to Alice’s
strand in the forwards semantics of our running example
are as follows, where the increment of the global counter can
be clearly identified. Alice’s strand is defined as

::: r, r1 ::: r�pA;B; exppg, npA, rqqq,�pB;A;Xq,
�pepexppX,npA, rqq, secpA, r1qqqs

and the rewrite rules associated to it are as follows:

tSS & tIKu & xNyu
Ñ tSS & r�pN ;N � 1; exppg, npN,N � 2qqqs &

tpN ;N � 1; exppg, npN,N � 2qqqPI, IKu & xN � 3yu

tSS & r�pA;B; exppg, npA,Rqqqs &
tpB;A;XqPI, IKu & xNyu
Ñ tSS & r�pA;B; exppg, npA,Rqqq,�pB;A;Xqs &

tpB;A;XqPI, IKu & xNyu
tSS & r�pA;B; exppg, npA,Rqqq,�pB;A;Xqs &
tIKu & xNyu
Ñ tSS & r�pA;B; exppg, npA,Rqqq,�pB;A;Xq,

�pepexppX,npA,Rqq, secpA,Nqqqs &
tepexppX,npA,Rqq, secpA,NqqqPI, IKu & xN � 1yu

When the intuder impersonates Bob, the first rule is:

tSS & tIKu & xNyu
Ñ tSS & r�pN ; i; exppg, npN,N � 1qqqs &

tpN ; i; exppg, npN,N � 1qqqPI, IKu & xN � 2yu

where i is a constant denoting the intruder’s name. Note
that it is not necessary to duplicate the other two rules.

6Note that the use of the global counter for new principal
names in previous rules has to take into account when one
of those principals is indeed the intruder; see Example 5 for
the case in which the intruder impersonates Bob.

4.3 Soundness and Completeness of the For-
wards Semantics

In the previous section we defined the rewriting-based for-
wards semantics for Maude-NPA. Now we need to prove
that the backwards operational semantics of Maude-NPA
is sound and complete w.r.t. to this semantics. We first
introduce some definitions and concepts that will be used in
these proofs. First, we define what a symbolic state is, i.e.,
a state with variables.

Definition 3 (Symbolic P-state). Given a protocol
P, a symbolic P-state S is a term of the form:

S � t :: r11 , . . . , rm1 :: ru�11
, . . . u�i1�1 | u�i1 , . . . , u

�
n1
s &

...

:: r1k , . . . , rmk :: ru�1k
, . . . , u�ik�1 | u�ik , . . . , u

�
nk
s & SS

tw1PI, . . . , wmPI, w1
1RI, . . . , w1

m1RI, IKuu

where for each 1 ¤ j ¤ k, there exists a strand
rm�

1j
, . . .m�

ij�1,m
�
ij
, . . . ,m�

nj
s P P and a substitution ρj :

X Ñ TΣpX q such that m1jρj �EP u1j , . . . , mnjρj �EP
unj , SS is a variable denoting a (possibly empty) set of
strands, and IK is a variable denoting a (possibly empty)
set of intruder’s knowledge facts.

Second, we define what a ground state is, i.e., a state
without variables.

Definition 4 (Ground P-state). Given a protocol P,
a ground P-state s is a term without variables of the form:

s � tru�11
, . . . u�i1�1s & � � �& ru�1k

, . . . , u�ik�1s &

tw1PI, . . . , wmPIu & xJyu

where for each 1 ¤ j ¤ k, there exists a strand
rm�

1j
, . . .m�

ij�1,m
�
ij
, . . . ,m�

nj
s P P and a substitution ρj :

X Ñ TΣ such that m1jρj �EP u1j , . . . , mijρj �EP uij .

Third, we define a suitable instantiation relation between
symbolic and ground states.

Definition 5 (Lifting relation). Given a symbolic
P-state S and a ground state s we say that s lifts to S,
or that S instantiates to s with a grounding substitution
θ : pVarpSq � tSS , IK uq Ñ TΣ, writen S ¡θ s iff

 for each strand :: r1, . . . , rm :: ru�1 , . . . u
�
i�1 | u

�
i , . . . , u

�
n s

in S, there exists a strand rv�1 , . . . v
�
i�1s in s such that

@1 ¤ j ¤ i� 1, vj �EP ujθ.

 for each positive intruder fact wPI in S, there exists a
positive intruder fact w1PI in s such that w1 �EP wθ,
and

 for each negative intruder fact wRI in S, there is no
positive intruder fact w1PI in s such that w1 �EP wθ.

Let us now prove that narrowing with the backwards
rewrite theory pΣP , EP , R

�1
BPq is complete with respect to

rewriting with the forwards rewrite theory pΣP , EP , RFPq.
First, the lemma below shows how the lifting of a ground
term to a symbolic state induces a lifting of a forward rewrit-
ing step in the forwards semantics to a backwards narrowing
step in the backwards semantics. This will be used to prove



Theorem 1, which allows us to lift a rewriting sequence in
the forwards semantics to a narrowing sequence in the back-
wards semantics.

Lemma 1 (Lifting Lemma). Given a protocol P, two
states s and s1, a P-symbolic state S1 and a substitution θ1

s.t. s Ñ s1 and S1 ¡θ
1

s1, then there exist a P-symbolic
state S and a substitution θ s.t S ¡θ s and either S1ø S
or S � S1.

The following theorem states that the symbolic reach-
ability analysis is complete with respect to the forwards
rewriting-based semantics, i.e., any concrete attack state
s, matching an attack pattern S and reachable by the for-
wards semantics from a concrete initial state s0 can be found
by backwards symbolic reachability analysis from the at-
tack pattern S. Its proof is a straightforward corollary of
Lemma 1.

Theorem 1 (Completeness). Given a protocol P,
two ground states s, s0, a symbolic P-state S, a substitution
θ s.t. (i) s0 is an initial state, (ii) s0 Ñ

n s, and (iii) S ¡θ s
then there exist a symbolic initial P-state S0, two substitu-

tions µ and θ1, and k ¤ n, s.t. S0
k
øµ S, and S0 ¡

θ1 s0.

In the following we prove that the backwards rewrite the-
ory pΣP , EP , R

�1
BPq is sound with respect to the forward

rewrite theory pΣP , EP , RFPq. That is, we need to show
that if we find a symbolic initial state S0 from a symbolic
attack pattern S then, for any concrete initial state s0 such
that S0 ¡θ s0, there is a reachable concrete attack states

such that s0 Ñ�
s with S ¡θ

1

s. We first provide a lemma
that says that for any backwards narrowing step there exist
a corresponding sequence of forwards rewriting steps.

Lemma 2. Given a protocol P, two symbolic P-states

S, S1, a ground state s and a substitution θ, if S
µ
øS1 and

S ¡θ s, then there exist a state s1 and a substitution θ1 such

that sÑ s1, and S1 ¡θ
1

s1.

The following theorem is a straightforward corollary of
Lemma 2. It proves that the symbolic reachability anal-
ysis is sound with respect to the forwards rewriting-based
semantics,

Theorem 2 (Soundness). Given a protocol P, two
symbolic P-states S0, S

1, an initial ground state s0 and a
substitution θ s.t. (i) S0 is a symbolic initial state, and (ii)

S0
�
ø S1 , and (iii) S0 ¡

θ s0 then there exist a ground state

s1 and a substitution θ1, s.t. (i) s0 Ñ
� s1, and (ii) S1 ¡θ

1

s1.

The proofs of Lemmas 1 and 2 are provided in Appendix A.

5. EXPERIMENTS
We have performed several experiments to evaluate the

feasibility of the rewriting-based forwards semantics defined
in Section 4. We have used four protocols to perform five
experiments: (i) the standard Needham-Schroeder proto-
col (NSPK) [20], (ii) a version of the Needham-Schroeder-
Lowe protocol in which one of the concatenation operators is
replaced by an exclusive-or, presented in [21] (NSL-XOR),
(iii) the Denning-Sacco Symmetric Key protocol [10], and
(iv) a protocol with Diffie-Hellman exponentiation. More

Table 1: Rewrite steps until finding the attack

Protocol Length Forwards
NSPK-sec 9

NSPK-auth 9
NSL-XOR 13

Denning-Sacco 11
Diffie-Hellman 22

Table 2: States generated in each rewrite step

Protocol 1 2 3 4 5
NSPK-sec 6 20 116 604 3026

NSPK-auth 6 20 116 604 3026
NSL-XOR 7 21 72 218 594

Denning-Sacco 7 28 132 596 2624
Diffie-Hellman 7 22 65 162 354

specifically, we have verified both secrecy and authentication
properties for NSPK, secrecy properties for XOR-NSL and
Diffie-Hellman, and authentication properties for Denning-
Sacco. Since the forwards rewrite-based semantics defined
in this paper does not include optimizations to reduce the
search space and, therefore, is not currently possible to ob-
tain a finite search space, we have analyzed insecure proto-
cols, i.e., protocols with known secrecy and/or authentica-
tion attacks. The specifications of these protocols and more
detailed information can be found at http://www.dsic.upv.

es/~ssantiago/forwards-semantics.html.
Table 1 provides an experimental validation of the imple-

mentation of the forwards semantics defined in this paper in
Maude w.r.t. the symbolic backwards operational semantics
of Maude-NPA, since for each protocol the forwards search
found the same authentication or secrecy attacks that are
found by Maude-NPA.

Table 2 gathers for each experiment the number of states
generated during the first five steps of the forwards search.
The reader can check that the number of generated states
is the same for both experiments of the NSPK protocol,
since the search space is the same and only the attack being
searched is different. We used experimental heuristics to
decrease the size of the state space. However systematic
study of state space reduction techniques in the forwards
semantics is left for future work.

Summarizing, the results of our early experimental evalu-
ation suggest that, even though its implementation is still at
an early stage, the forwards semantics presented in this pa-
per is feasible and encouraging. However, much work needs
to be done, specially with respect to the efficiency of the
analysis.

6. CONCLUSIONS
In this paper we have presented a forwards rewriting-

based semantics for Maude-NPA (or protocol analysis tools
based on strands). We have proved that the backwards
narrowing-based semantics of Maude-NPA is sound and com-
plete w.r.t. the forwards semantics. This work serves two
purposes. First, it gives the definition of a novel rewriting-
based protocol analysis, where the new forwards semantics
is directly implementable in rule-based programming lan-
guages such as Maude without any need for constraint solv-
ing or unification procedures as it is done in most current

http://www.dsic.upv.es/~ssantiago/forwards-semantics.html
http://www.dsic.upv.es/~ssantiago/forwards-semantics.html


approaches. Second, it can be used as a logical founda-
tion for the Maude-NPA tool, from which the analyses are
proved sound, thus linking the results of the Maude-NPA
backwards execution with the results of the rewriting-based
forward execution. Here the Maude-NPA already had an
intuitive forwards semantics, but it was not optimized for
model checking, and so could not be used in this way. This
work also reduces the gap between the Maude-NPA and the
realm of standard model checking, shedding some light on
how its internal semantics and the logical reachability anal-
ysis correspond to an intuitive forward execution of a pro-
tocol with the intruder model. This opens up several re-
search directions: the integration of Maude-NPA state re-
duction techniques into the forwards semantics, clarification
of the relation of equational theories in the forward seman-
tics, and investigation of how standard model-checking tech-
niques can improve the protocol analysis in the forwards se-
mantics. Also, there is a vast literature in term rewriting
and tree automata on forward and backwards reachability
analysis and their pros and cons, which is outside the scope
of this paper, but that should be very useful for improving
the forwards analysis.
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APPENDIX
A. PROOF OF THEOREMS IN SECTION 4

Proof of Lemma 1
First of all, all the forward rewriting rules act on the ground
state s1 by either adding one more element to an existing
strand (rules (5), (6) , and (9)), adding a positive fact to the
intruder knowledge (rules (5) and (7)), adding a new strand
(rules (7), (8), and (9)), or repeating a positive intruder fact
that is already in s1 (rules (9) and (10)). This allows us to
identify six cases for the grounding substitution θ1 of S1 into
s1, depending upon whether the grounding substitution of S
under θ contains the relevant strands and positive intruder
facts.

a) There is a strand ru�1 , . . . , u
�
i�1, u

�
i , . . . , u

�
n s in P, n ¥

1, 1 ¤ i ¤ n, and a substitution ρ such that
ru�1 , . . . , u

�
i�1, u

�
i sρ is a strand in s1, ru�1 , . . . , u

�
i�1 |

u�i , . . . , u
�
n sρ is a strand in S1θ1, and uiρPI appears in

the intruder knowledge of S1θ1. This is valid for rules
in sets (5), (7), (9), and (10). If i ¡ 1, then we also
know that ru�1 , . . . , u

�
i�1sρ is a strand in s.

b) There is a strand ru�1 , . . . , u
�
i�1, u

�
i , . . . , u

�
n s in P, n ¥

1, 1 ¤ i ¤ n, and a substitution ρ such that
ru�1 , . . . , u

�
i�1, u

�
i sρ is a strand in s1, ru�1 , . . . , u

�
i�1 |

u�i , . . . , u
�
n sρ is a strand in S1θ1, but uiρPI does not

appear in the intruder knowledge of S1θ1. This is valid
for rules in sets (5), (7), (9), and (10). If i ¡ 1, then
we also know that ru�1 , . . . , u

�
i�1sρ is a strand in s.

c) There is a strand ru�1 , . . . , u
�
i�1, u

�
i , . . . , u

�
n s in P, n ¥

1, 1 ¤ i ¤ n, and a substitution ρ such that
ru�1 , . . . , u

�
i�1, u

�
i sρ is a strand in s1, uiρPI appears

in the intruder knowledge of S1θ1, but ru�1 , . . . , u
�
i�1 |

u�i , . . . , u
�
n sρ is not a strand in S1θ1. This is valid for

rules in sets (5), (7), (9), and (10). If i ¡ 1, then we
also know that ru�1 , . . . , u

�
i�1sρ is a strand in s.

d) There is a strand ru�1 , . . . , u
�
i�1, u

�
i , . . . , u

�
n s in P, n ¥

1, 1 ¤ i ¤ n, and a substitution ρ such that
ru�1 , . . . , u

�
i�1, u

�
i sρ is a strand in s1 but uiρPI does not

appear in the intruder knowledge of S1θ1 and
ru�1 , . . . , u

�
i�1 | u�i , . . . , u

�
n sρ is not a strand in S1θ1.

This is valid for rules in sets (5), (7), (9), and (10).
If i ¡ 1, then we also know that ru�1 , . . . , u

�
i�1sρ is a

strand in s.

e) There is a strand ru�1 , . . . , u
�
i�1, u

�
i , . . . , u

�
n s in P, n ¥

1, 1 ¤ i ¤ n, and a substitution ρ such that
ru�1 , . . . , u

�
i�1, u

�
i sρ is a strand in s1 and ru�1 , . . . , u

�
i�1 |

u�i , . . . , u
�
n sρ is a strand in S1θ1. This is valid for rules

in sets (6) and (8). If i ¡ 1, then we also know that
ru�1 , . . . , u

�
i�1sρ is a strand in s.

f) There is a strand ru�1 , . . . , u
�
i�1, u

�
i , . . . , u

�
n s in P, n ¥

1, 1 ¤ i ¤ n, and a substitution ρ such that
ru�1 , . . . , u

�
i�1, u

�
i sρ is a strand in s1 but ru�1 , . . . , u

�
i�1 |

u�i , . . . , u
�
n sρ is not a strand in S1θ1. This is valid for

rules in sets (6) and (8). If i ¡ 1, then we also know
that ru�1 , . . . , u

�
i�1sρ is a strand in s.

Now, we consider each forward rewrite rule application in
the step sÑ s1.

 Given states s and s1 such that s Ñ s1 using a rule
in set (5), then there exist a substitution τ , variables
SS1 and IK 1, and a strand ru�1 , . . . , u

�
j�1, u

�
j , u

�
j�1, . . . ,

u�n s in P such that s � tSS1τ & tIK 1τu& rpu1τq
�, . . . ,

puj�1τq
�su, and s1 � tSS1τ & tpujτqPI, IK 1τu&

rpu1τq
�, . . . , puj�1τq

�, pujτq
�su and pujτqPI appears

in IK 1τ . Since there exists a substitution θ1 s.t S1 ¡θ
1

s1, we consider the four applicable cases for substitution
θ1:

– Case a) Both the strand and the intruder fact ap-
pear in S1θ1 and thus we can perform a backwards
narrowing step from S1 with rule (3) to obtain a
state S, i.e., S1; S. Since there is no extra vari-
able in the rule, we have that the same substitution

θ1 is valid for S and S ¡θ
1

s.

– Case b) The strand appears in S1θ1 but not the
intruder fact. We also perform a backwards nar-
rowing step from S1 with rule (3) to obtain a state
S, i.e., S1;σ S. But the variable IK in state S1

gets instantiated σ � tIK ÞÑ wPI, IK2u in such
a way that wθ1 �EP ujτ . Since there is no extra

variable in the rule, again S ¡θ
1

s.

– Case c) The intruder fact appears in S1θ1 but not
the strand. Here we perform a backwards narrow-
ing step from S1 with a rule in set (4) to obtain
a state S, i.e., S1; S. This rules introduces a
new strand into the symbolic state S, i.e., there is
a substitution γ such that rpu1γq

�, . . . , puj�1γq
� |

pujγq
�, puj�1γq

�, . . . , punγq
�s is a strand in S.

Note that this new strand contains variables but
there is a substitution θ such that S ¡θ s, since
rpu1γθq

�, . . . , puj�1γθq
�s corresponds to

rpu1τq
�, . . . , puj�1τq

�s .

– Case d) The strand and the intruder fact do not
appear in S1θ1. This case is very simple, since θ1

makes valid S1 as a symbolic state of s, i.e., S � S1

and S1 ¡θ
1

s.

 Given states s and s1 such that s Ñ s1 using a rule
in set (6), then there exist a substitution τ , variables
SS1 and IK 1, and a strand ru�1 , . . . , u

�
j�1, u

�
j , u

�
j�1, . . . ,

u�n s in P such that s � tSS1τ & tIK 1τu& rpu1τq
�, . . . ,

puj�1τq
�su, and s1 � tSS1τ & tIK 1τu& rpu1τq

�, . . . ,
puj�1τq

�, pujτq
�su. Since there exists a substitution

θ1 s.t S1 ¡θ
1

s1, we consider the two applicable cases for
substitution θ1:

– Case e) The strand appears in S1θ1 and thus we
can perform a backwards narrowing step from S1

with rule (2) to obtain a state S, i.e., S1; S. Since
there is no extra variable in the rule, we have that

the same substitution θ1 is valid for S and S ¡θ
1

s.

– Case f) The strand does not appear in S1θ1. This
case is very simple, since θ1 makes valid S1 as a

symbolic state of s, i.e., S � S1 and S1 ¡θ
1

s.

 Given states s and s1 such that s Ñ s1 using a rule
in set (7), then there exist a substitution τ , variables
SS1 and IK 1, and a strand ru�1 , . . . , u

�
n s in P such that

s1 � tSS1τ & tpu1τqPI, IK 1τu& rpu1τq
�su and pujτqPI

does not appear in IK 1τ . This is similar to the case
above of a rule in set (5).



 Given states s and s1 such that s Ñ s1 using a rule
in set (8), then there exist a substitution τ , variables
SS1 and IK 1, and a strand ru�1 , . . . , u

�
n s in P such that

s1 � tSS1τ & tIK 1τu& rpu1τq
�su. This is similar to the

case above of a rule in set (6).

 Given states s and s1 such that sÑ s1 using a rule in set
(9), then there exist a substitution τ , variables SS1 and
IK 1, and a strand ru�1 , . . . , u

�
j�1, u

�
j , u

�
j�1, . . . , u

�
n s in P

such that s � tSS1τ & tpujτqPI, IK 1τu& rpu1τq
�, . . . ,

puj�1τq
�su, and s1 � tSS1τ & tpujτqPI, IK 1τu&

rpu1τq
�, . . . , puj�1τq

�, pujτq
�su. Since there exists a

substitution θ1 s.t S1 ¡θ
1

s1, we consider the four appli-
cable cases for substitution θ1:

– Case a) Both the strand and the intruder fact ap-
pear in S1θ1 and thus we can perform a backwards
narrowing step from S1 with rule (1) to obtain a
state S, i.e., S1; S. Since there is no extra vari-
able in the rule, we have that the same substitution

θ1 is valid for S and S ¡θ
1

s.

– Case b) The strand appears in S1θ1 but not the
intruder fact. We also perform a backwards nar-
rowing step from S1 with rule (1) to obtain a state
S, i.e., S1;σ S. But the variable IK in state S1

gets instantiated σ � tIK ÞÑ wPI, IK2u in such
a way that wθ1 �EP ujτ . Since there is no extra

variable in the rule, again S ¡θ
1

s.

– Case c) The intruder fact appears in S1θ1 but not
the strand. This case is very simple, since θ1 makes
valid S1 as a symbolic state of s, i.e., S � S1 and

S1 ¡θ
1

s.

– Case d) The strand and the intruder fact do not

in S1θ1. This case is very simple, since θ1 makes
valid S1 as a symbolic state of s, i.e., S � S1 and

S1 ¡θ
1

s.

 Given states s and s1 such that s Ñ s1 using a rule in
set (10), then there exist a substitution τ , variables SS1

and IK 1, and a strand ru�1 , . . . , u
�
n s in P such that s1 �

tSS1τ & tpu1τqPI, IK 1τu& rpu1τq
�su. This is similar

to the case above of a rule in set (9).

This concludes the proof.

Proof of Lemma 2
Since rewriting is simply a special case of narrowing, the
proof of this lemma is simpler than that of Lemma 1. We
take into account that S ¡θ s implies the strand and in-

truder facts used in the narrowing step S
µ
øS1 are present

in s.

 If we use rule (1) in S
µ
øS1, then there are associated

rules in the sets (9) and (10).

 If we use rule (2) in S
µ
øS1, then there are associated

rules in the sets (6) and (8).

 If we use rule (3) in S
µ
øS1, then there are associated

rules in the sets (5) and (7).

 And if we use a rule in set (4) in S
µ
øS1, then there

are associated rules in the sets (5) and (7).

Note that substitution θ1 is just a restriction of substitution
θ, since each backwards narrowing step instantiates some
variable or add new terms (possibly with new variables) but
never removes any term or variable already present. This
concludes the proof.
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