Accounting for User Behavior in Predictive Cyber Security Models
Masooda Bashir, Ken Keefe, Andrew Marturano, Mohammad Noureddine, Bill Sanders
The Problem: Humans Make Mistakes

• Humans are involved in most security incidents
• Public utility compromised, 2014
 • Hackers took advantage of a weak password security system at a public utility in the US
• Cook County highway department shutdown, 2013
 • A County employee allowed a virus infection by surfing the web, or using a flash drive from home
• US Electric utility virus infection, 2012
 • A third party technician used a USB drive that was infected with a virus

Repository of Industrial Security Incidents (http://www.risidata.com/)
Motivation: Usable Security

• Attempt to design systems that are usable by non-expert users

• Create designs conforming to the concept of “psychological acceptability”
 • security software must not make it harder for users to perform their daily tasks

• Designers use knowledge based on empirical studies to understand how users think and use their designs

• But this approach alone cannot predict how effective a particular approach will be
Quantitative Metrics

• **System security is not absolute**
 – No real system is perfectly secure
 – Some systems are more secure than others
 – Some policies provide more security

• **System metrics often neglect human aspects**
 – Does making the password policy more complex make the system more secure?
 – How frequently should we ask users to change their passwords?
 – Should we adopt a sanctions and rewards policy?
Mobius-SE Security Evaluation Approach

• Adversary-driven analysis
 – Considers characteristics and capabilities of adversaries

• Account for user behavior
 – Account for user behavior and its impact on system cyber security

• State-based analysis
 – Considers multi-step attacks

• Quantitative metrics
 – Enables trade-off comparisons among alternatives

• Mission-relevant metrics
 – Measures the aspects of security important to owners/operators of the system
Overall Goal: Mobius-SE Quantitative Security Evaluation Tool

- System Information
- User Information
- Adversary Information
- Security Question

Convert Information into Mobius-SE Model Inputs

- Attack Execution Graph
- HITOP Profile
- Adversary Profile
- Metrics Specification

Auto-Generate the Executable Mobius-SE Model

Executable Mobius-SE Model

Execute the Mobius Model

Quantitative Metrics Data
Möbius: Model-Based Evaluation of System Dependability, Security, and Performance

Framework Component

- Atomic Model
- Composed Model
- Solvable Model
- Connected Model
- Study Specifier (generates multiple models)

Use:
- Academic Licenses at hundreds of academic sites for teaching and research.
- Corporate licenses to a range of industries: Defense/Military, satellites, telecommunications, biology/genetics
- Development of new plugins for Möbius: Univ. of Dortmund, Univ. of Edinburgh, Univ. of Twente, Carleton University, and many others
Adversary Modeling in Mobius-SE

• Year 1
 • Complete HITOP implementation – Complete
 • Design data collection algorithm for model parameters – Complete

• Year 2
 • Develop prototype data collection tool – In Progress
 • Execute case study to test approach – In Progress
 • Refine both implementations base on case study results – Upcoming

• Year 3
 • Build a stable tool for distribution – Upcoming
 • Develop two additional case studies – Upcoming
 • Further refine tools from feedback from case studies and third party users – Upcoming
a process is a structured flow of tasks performed by one or more participants using one or more components.
Statistically-Driven Data Collection Algorithm (HotSoS ’15)

Parameters P

- p_1 with μ and σ^2
- p_2 with μ
- p_3 with μ and $x = 2.5$

Inputs

- I_1
- I_2
- I_3

Model M

Outputs

- $g(Y)$
- $\text{Var}(g(Y))$
- Y
- \ldots

$x = 2.5$
Remainder of This Talk

• Reviews theories that explain the behavior of human users in the cyber world
• Presents a sample case study that illustrates the impact of human decisions on system security
• Suggests directions for future work
Theories of Human Behavior

• Psychologists, social scientists, as well as computer science researchers have attempted to explain the behavior of users in the cyber world
• They present several theories that provide guidelines to understand and improve the behavior of users
• *Normative theories*: how things should be, ideal behavior
 – Easier to quantify
• *Descriptive theories*: how things are, describe actual behavior
 – Harder to quantify
Rational Choice Theory

- Ideally, humans should make decisions by balancing costs and benefits of each of the possible actions [Bulgurcu, 2010]
- Bounded rationality
 - Collect bounded information about the possible actions and choose the one that gives the best cost/benefit ratio
- It is frequently used in economics to predict market information
- Highlights factors affecting human decisions in cyber space such as
 - Workload
 - Experience
 - Training [Kreamer, 2007]
- But it is also criticized by psychologists and social scientists claiming humans are not rational in their decisions [Schneier, 2008]
General Deterrence Theory

• Focuses on disincentives or sanctions against “bad” security behavior and decision making [D’Arcy, 2009]

• Originally popular in the Cold War
 – Have enough nuclear power to deter a more powerful opponent from attacking you (before the attack happens)

• For security policies
 – Impose enough sanctions on the employees of a company to prevent them from neglecting security policies

• It can be useful in the context of firms, but what about clients or home users?
Other Theories

• **Theory of Planned Behavior [Ifinedo, 2012]**

 – Highlights personal as well as social factors that affect human users in the cyber world

 – What is the user’s perception of security? How do the beliefs of other people affect individual users’ views?

• **Social Learning Theory [Theoharidou, 2005]**

 – Describes the effect peers and superiors have on the individual decisions of employees and general users

• **Neutralization Theory [Siponen, 2010]**

 – Users rationalize non-compliant behavior to avoid guilt

 – Example: “my bank should handle all my data and money very carefully so I do not have to worry about it”
Challenges

• Turning human behavior models into executable mathematical models that can be used for analysis
 – Descriptive theories are closer to reality but are harder to quantify
 – Normative theories are easier to quantify but they can be different than the real world behavior

• Our initial case study illustrates the use of bounded rationality and deterrence theory in the context of cyber-security
Motivating Case Study

• Model the password dynamics in a typical firm
• The firm’s managers define the complexity of the password policy
• They make recommendations about the frequency of password reset requests
• The firm performs regular audits every two weeks and sanctions violating employees
• We study the correlation between the security policy and the system’s security, taking into consideration the behavior of the employees
Password Change Process

- P_c: probability the tried password meets requirements
- The employee tries to compose new passwords
 - If she creates a successful password in less than N tries, she considers it to be a positive experience
 - If she fails to create it, she considers the password to be too complex and writes it down on a sticky note next to the computer

![Diagram](image_url)

- Try new password
- Meets Requirements? P_c
- $(1 - P_c)$
- If number tries < N
 - Positive exp++
- Else
 - Negative exp++
 - Write it down
Attacker model

• We assume attackers are attempting to steal data from the firm

• The attackers are both insiders and outsiders
 – Outsiders attempt brute force attacks to gain access to employee accounts
 – Insiders seek written down passwords to gain unauthorized access

• The probability of a successful brute force attack depends on the complexity of the password policy
 – We assume it is 0.10 lower than \(P_c \)

• The probability of a successful insider attack depends on whether employees have written down their passwords
 – We assume it is 0.7 if employee have written it down, 0.05 otherwise
Security Utility

• We use utility functions to study the impact of the security policy on the security of the system

\[
\text{Security utility} = \frac{\text{Successful attacks}}{\text{Total attacks}}
\]

• We vary the password complexity \((P_c)\) and the password write threshold \((N)\)
Employee Utility

• The employee utility illustrates the relative “happiness” of the employee given the firm’s security and sanctions policy

• It incorporates sanctions, positive and negative experiences and their cognitive load
 – Our future work also focuses on availability and productivity as part of the employee’s utility

\[
\text{Employee utility} = \alpha \times \frac{\text{positive exp}}{\text{total exp}} - \beta \times \text{sanctions} + \gamma \times \text{rewards} - \varepsilon \times \text{cognitive load}
\]

• \(\alpha \) and \(\gamma \) are positively scaling parameters

• \(\beta \) and \(\varepsilon \) is a negatively scaling parameters
Utilities

- Utility functions are an application of the bounded rationality theory
 - We used $\alpha = 0.1$, $\beta = 0.3$, $\gamma = 0.2$, $\varepsilon = 0.1$

- Setting $\beta = 0.3$ will assign more weight on the sanctions
 - This is in accordance with the general deterrence theory
Implementation and Simulation

• We modeled the attacker, the employee and the password reset mechanism using Stochastic Activity Networks (SAN)
• We ran our simulation for a period of 6 simulation months
• We gathered results for the security utility for various password complexities and password write-down thresholds
SAN Models: Attackers

Outsider attacks: Attackers try to exploit other vulnerabilities.

Outsider attacks: Attempt to brute force passwords to gain unauthorized access. Probability of a successful attack depends on the password complexity.

Insider attacks: Probability of success depends on whether employee have written down their passwords.
SAN Model: Employee

Password reset mechanism
SAN Model: Security Policy

Sanctions policy: Depending on the audits frequency, the firm either imposes sanctions or provides rewards for its employees.

Progress of working days

Password reset notifications generator
Discussion

• Our results conform with general deterrence theory
 – Imposing frequent sanctions on the employees makes them try harder to comply with security policy, shown by the highest utility with a threshold of 7

• Having a very complex security utility is not always the best choice, as employees writing their passwords down can outweigh the apparent benefits of complex passwords

• We are working on an extension that includes other factors and choice
 – Phishing emails, malware
Challenges

• Designing accurate utility functions for both the employees and the system
 – That’s what the presented theories are there for

• Characterizing the model
 – How to determine input probabilities and distributions

• Validation
 – The results give us important insights into the relationships between the different components of the system
 – Varying policy requirements can help judge which systems can be more secure
Conclusion and Future Directions

• It is important to include human behavior in our modeling of systems for security assessment
• Empirical studies suggest several theories to explain human behavior and decision making in cyber security
• We provided evidence on the importance of modeling human behavior for giving insights into security analysis and assessment
Selected References

