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L2-gain Analysis for a Class of Hybrid Systems with
Applications to Reset and Event-triggered Control:

A Lifting Approach
W.P.M.H. Heemels G.E. Dullerud A.R. Teel

Abstract—In this paper we study the stability and L2-gain
properties of a class of hybrid systems that exhibit linear flow
dynamics, periodic time-triggered jumps and arbitrary nonlinear
jump maps. This class of hybrid systems is relevant for a broad
range of applications including periodic event-triggered control,
sampled-data reset control, sampled-data saturated control, and
certain networked control systems with scheduling protocols.
For this class of continuous-time hybrid systems we provide
new stability and L2-gain analysis methods. Inspired by ideas
from lifting we show that the stability and the contractivity
in L2-sense (meaning that the L2-gain is smaller than 1) of
the continuous-time hybrid system is equivalent to the stability
and the contractivity in `2-sense (meaning that the `2-gain
is smaller than 1) of an appropriate discrete-time nonlinear
system. These new characterizations generalize earlier (more
conservative) conditions provided in the literature. We show via a
reset control example and an event-triggered control application,
for which stability and contractivity in L2-sense is the same as
stability and contractivity in `2-sense of a discrete-time piecewise
linear system, that the new conditions are significantly less
conservative than the existing ones in the literature. Moreover,
we show that the existing conditions can be reinterpreted as a
conservative `2-gain analysis of a discrete-time piecewise linear
system based on common quadratic storage/Lyapunov functions.
These new insights are obtained by the adopted lifting-based
perspective on this problem, which leads to computable `2-gain
(and thus L2-gain) conditions, despite the fact that the linearity
assumption, which is usually needed in the lifting literature, is
not satisfied.
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I. INTRODUCTION

In this paper we are interested in a class of hybrid systems
that can be written in the framework of [1] as

d

dt

[
ξ
τ

]
=

[
Aξ +Bw

1

]
, when τ ∈ [0, h] (1a)[

ξ+

τ+

]
=

[
φ(ξ)

0

]
, when τ = h (1b)

z = Cξ +Dw. (1c)

The states of this hybrid system consist of ξ ∈ Rnξ and a
timer variable τ ∈ R≥0. The variable w ∈ Rnw denotes the
disturbance input and z the performance output. Moreover, A,
B, C, D are constant real matrices of appropriate dimensions,
h ∈ R>0 is a positive timer threshold, and φ : Rnξ → Rnξ
denotes an arbitrary nonlinear (possibly discontinuous) map
with φ(0) = 0. Note that φ(0) = 0 guarantees that the set
{
[
ξ
τ

]
| ξ = 0 and τ ∈ [0, h]} is an equilibrium set of (1) in

absence of disturbances (w = 0).
Interpreting the dynamics of (1) reveals that (1) has periodic

time-triggered jumps, i.e., jumps take place at times kh,
k ∈ N (when τ(0) = 0), according to a nonlinear jump
map as given by (1b). In between the jumps the system
flows according to the differential equations in (1a). This
class of systems includes the closed-loop systems arising from
periodic event-triggered control (PETC) for linear systems
[2], networked control with constant transmission intervals
and a shared networked requiring network protocols [3], [4],
reset control systems [5], [6], [7], [8], [9] with periodically
verified reset conditions, and sampled-data saturated controls
[10], as we will show in this paper. In all the mentioned
applications the function φ is a piecewise affine (PWA) map
[11]. For other functions φ other application domains could be
envisioned. Moreover, the results in this paper also apply to
set-valued mappings φ : Rnξ ⇒ Rnξ with φ(0) = {0} mutatis
mutandis, see also [12]. However, for ease of exposition, we
restricted ourselves to single-valued functions. In any case, the
modelling setup in (1) unifies several important applications
in one framework, see also Section II below, which indicates
the relevance of the class of systems under study.

In this paper we are, besides showing the unifying modeling
character of the studied class of hybrid systems, interested
in the stability and L2-gain analysis from disturbance w
to output z for systems in the form (1). The L2-gain is
an important performance measure for many situations and
the existing works [2], [10], [1], [13] already focussed on
obtaining upper bounds on this performance measure for the
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class of systems (1) with φ a piecewise linear (PWL) or
piecewise affine (PWA) map. These works exploited timer-
dependent Lyapunov/storage functions [14], [15] based on
solutions to Riccati differential equations. This resulted in
LMI-based conditions leading to upper bounds on the L2-gain.
In [13] improved conditions that lead to better estimates of the
L2-gain were derived using more flexible Lyapunov functions.
In the present paper, we prove that the LMI-based conditions
obtained in [2], [10], [1] can be interpreted as `2-gain con-
ditions using a common quadratic Lyapunov/storage function
[14] for discrete-time PWL or PWA systems. Moreover, we
will reveal that the LMI-based conditions obtained in [13] can
be seen as an `2-gain analysis of the same PWL systems based
on a special piecewise quadratic Lyapunov/storage function.
Interestingly, if these observations would be particularized to
linear sampled-data systems (i.e., the case of (1) with φ a
linear map), we would recover the well-known lifted system
approach from sampled-data control theory, see, e.g., [16],
[17], [18], [19], [20], [21]. However, the classical lifting-based
approach for sampled-data systems as in [16], [17], [18], [19],
[20], [21] focused on the case of linear systems and controllers
only and, in fact, the linearity property was instrumental in the
main developments. Clearly, linearity is a property not being
satisfied for (1) when φ is nonlinear, which is the case of
interest in the current paper. Therefore, a new perspective is
required on the problem at hand if lifting-based techniques
are to be exploited in a way leading to verifiable conditions
to determine the stability and L2-gain of systems of the form
(1).

Despite the fact that the dynamics are nonlinear in (1),
in this paper we will establish that the stability and the γ-
contractivity (in the sense that the L2-gain is smaller than
γ) of the hybrid system (1) is equivalent to the stability and
the γ-contractivity (in the sense that the `2-gain is smaller
than γ) of a specific discrete-time nonlinear system. As such,
the L2-gain of the hybrid system (1) can be determined by
studying the `2-gain for discrete-time nonlinear systems. In
the context of the PETC, networked control, saturated control
and reset control applications mentioned earlier and in which
φ is a piecewise affine (PWA) mapping, this `2-gain can
be closely upper bounded by employing piecewise quadratic
Lyapunov/storage function [22], [23] for discrete-time PWA
systems. As we will see, our new method provides much
better bounds on the L2-gain of (1) than the earlier results
in [2], [10], [1] and [13] due to the full equivalence between
the stability and γ-contractivity (in L2-sense) of the hybrid
system (1) and the stability and γ-contractivity (in `2-sense)
of a specific discrete-time PWA system. Given the broad
applicability of the hybrid model (1), these improved bounds
might prove to be very valuable. This will be illustrated in
Section VII for two numerical examples in the context of reset
and event-triggered control. Note that this paper significantly
extends our work reported in [12] as it provides full proofs,
a complete computational procedure (Section V), establishes
the connections to existing techniques for stability and L2-
gain analysis of (1) (Section VI) and presents a periodic
reset control example that shows considerable improvements
compared to these existing techniques (all not in [12]). Finally,

an interesting observation is that, to the best of the authors’
knowledge, the current paper is the first to employ lifting-like
techniques outside the linear domain in a manner that leads
to computable, easily verifiable conditions. These results can
be obtained by exploiting the structure in (1) having fixed
(periodic) jump times and having a flow map that is linear for
the non-timer states ξ.

The remainder of this paper is organized as follows. In
Section II we show how classes of networked control systems,
reset control systems, periodic event-triggered controllers and
sampled-data saturated control strategies can be captured in the
modelling framework based on (1). In Section III we introduce
the preliminaries and several definitions necessary to establish
the main results, which can be found in Section IV. The
main result (Theorem IV.4) connects the internal stability and
the contractivity in L2-sense of the hybrid system (1) to the
internal stability and the contractivity in `2-sense of a partic-
ular discrete-time nonlinear system. In Section V we indicate
how particular matrices in the obtained discrete-time nonlinear
system can be computed and how the internal stability and
the `2-gain can be analyzed when φ in (1) is a PWL map. In
Section VI we show how our lifting-based results connect to
earlier results for the L2-gain analysis of the hybrid system
(1) in [2], [10], [1], [13]. In Section VII we show through two
numerical examples that the new conditions provided in the
present paper lead to significantly less conservative conditions
than the existing conditions in [2], [10], [1], [13]. Finally,
conclusions are stated in Section VIII. All technical proofs
can be found in the appendix.

II. UNIFIED MODELLING FRAMEWORK

In this section, we will consider four different control
applications that can be cast in the hybrid system framework
based on (1).

A. Reset Control Systems

Reset control is a discontinuous control strategy proposed
as a means to overcome the fundamental limitations of linear
feedback by allowing to reset the controller state, or subset of
states, whenever certain conditions on its input and output are
satisfied, see e.g., [5], [6], [7], [8]. In all afore-cited papers the
reset condition is monitored continuously, while recently in [9]
it was proposed to verify the reset condition at discrete-time
instances only. In particular, at every sampling time tk = kh,
k ∈ N, with sampling interval h > 0, it is decided whether or
not a reset takes place. This type of reset controllers can be
modelled as a hybrid system (1).

In order to show this, we study the control of a plant{
d
dtxp = Apxp +Bpuu+Bpww

y = Cpxp,
(2)

where xp ∈ Rnp denotes the state of the plant, u ∈ Rnu the
control input and y ∈ Rny the plant output. The control system
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is in the form of a reset controller of the type

d

dt

[
xc
τ

]
=
[
Acxc + Bce

1

]
, when τ ∈ [0, h] (3a)

[
x+
c

τ+

]
=


[
xc
0

]
, when τ = h and ξ>Qξ > 0[

Rcxc
0

]
, when τ = h and ξ>Qξ ≤ 0

(3b)

u = Ccxc +Dce, (3c)

where xc ∈ Rnc denotes the continuous state of the controller
and x+

c its value after a reset, Rc ∈ Rnc×nc is the reset matrix
and e := r−y ∈ Rny is the error between the reference signal
r and the output y of the plant. Moreover, ξ := [x>p x>c ]>

is an augmented state vector containing plant and controller
states. An example of a reset condition, originally proposed
in [24]1 for the case nu = ny = 1, is based on the sign of
the product between the error e and the controller input u. In
particular, the reset controller (3) acts as a linear controller
whenever its input e and output u have the same sign, i.e.,
eu > 0, and it resets its output otherwise. This reset condition
can be represented, for the case r = 0, in a general quadratic
relation as in (3b), with

Q =
[

Cp 0
−DcCp Cc

]> [
0 −1
−1 0

] [
Cp 0

−DcCp Cc

]
. (4)

The interconnection of the reset control system (3) and plant
(2) can be written in the hybrid system format of (1) in which

A =
[
Ap − BpuDcCp BpuCc
−BcCp Ac

]
, B =

[
Bpw

0

]
,

and φ is a piecewise linear (PWL) map given for ξ ∈ Rnξ by

φ(ξ) =

{
J1ξ, when ξ>Qξ > 0

J2ξ, when ξ>Qξ ≤ 0
(5)

with J1 = Inξ and J2 =
[
Inp 0
0 Rc

]
.

B. Periodic Event-Triggered Control Systems

The second domain of application is event-triggered control
(ETC), see e.g., [25] for a recent overview. ETC is a control
strategy that is designed to reduce the usage of computation,
communication and/or energy resources for the implementa-
tion of the control system by updating and communicating sen-
sor and actuator data only when needed to guarantee specific
stability or performance properties. The ETC strategy that we
consider in this paper combines ideas from periodic sampled-
data control and ETC, leading to so-called periodic event-
triggered control (PETC) systems [2]. In PETC, the event-
triggering condition is verified periodically in time instead
of continuously as in standard ETC, see, e.g., [26], [27] and
the references therein. Hence, at every sampling interval it is
decided whether or not new measurements and control signals
need to be determined and transmitted.

We consider again the plant (2), but now being controlled
in an event-triggered feedback fashion using

u(t) = Kx̂p(t), for t ∈ R≥0, (6)

1Note that in [24], the reset condition is verified continuously instead of at
times tk = kh, k ∈ N only as in [9] and considered here.

Plant

Controller

u

xp

x̂p

periodic
event-triggering
condition

Figure 1. Schematic representation of an event-triggered control system.

where x̂p ∈ Rnp is a left-continuous signal2, given for t ∈
(tk, tk+1], k ∈ N, by

x̂p(t) =

{
xp(tk), when ξ(tk)>Qξ(tk) > 0,

x̂p(tk), when ξ(tk)>Qξ(tk) ≤ 0,
(7)

where ξ := [x>p x̂>p ]> and tk, k ∈ N, are the sampling
times, which are periodic in the sense that tk = kh, k ∈ N
with h > 0 the sampling period. Fig. 1 shows a schematic
representation of this PETC configuration. In this figure, x̂p
denotes the most recently received measurement of the state xp
available at the controller. Whether or not x̂p(tk) is transmitted
is based on an event generator (see (7)). In particular, if at
time tk it holds that ξ>(tk)Qξ(tk) > 0, the current state
xp(tk) is transmitted to the controller and x̂p and u are updated
accordingly. If, however, ξ>(tk)Qξ(tk) ≤ 0, the current state
information is not sent to the controller and x̂p and u are kept
the same for (at least) another sampling interval. In [2] it was
shown that such quadratic event-triggering conditions form
a relevant class of event generators, as many popular event
generators can be written in this form. For instance, in [26]
events are generated when ‖x̂p(tk) − xp(tk)‖ > ρ‖xp(tk)‖
(although verified continuously instead of periodically), where
ρ > 0. Clearly, this triggering condition can be written in
the quadratic form in (7) by taking Q =

[
(1− ρ2)I −I
−I I

]
. In

the numerical example of Subsection VII-B another triggering
condition will be shown. The complete model of the PETC
system can be captured in the hybrid system format of (1), by
combining (2), (6) and (7), where we obtain A =

[
Ap BpuK
0 0

]
,

B =
[
Bpw

0

]
, and φ a PWL map as in (5) with J1 =

[
Inp 0
Inp 0

]
and J2 = Inξ . Clearly, next to the case of static state-feedback
controllers as in (6), one can also model dynamic output-
feedback PETC controllers and output-based event-triggering
conditions in the framework of (1), see [2] for more details.

C. Networked Control Systems

Networked control systems (NCSs) are control systems in
which the control loops are closed over a real-time commu-
nication network, see e.g., [28] for an overview and see Fig.
2 for a schematic. In this figure, y ∈ Rny denotes the plant
output and ŷ ∈ Rny its so-called ‘networked’ version, i.e., the
most recent output measurements of the plant that are available
at the controller. The control input is denoted by u ∈ Rnu and
the most recent control input available at the actuators is given
by û ∈ Rnu .

2A signal x : R≥0 → Rn is called left-continuous, if for all t > 0,
lims↑tx(s) = x(t).
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Figure 2. Schematic representation of a networked control system.

If the transmission intervals are assumed to be constant
(equal to h) and the protocols, which determine the access
to the network, are assumed to be of a special type as studied,
for instance, in [3], [4], [29], [30], these NCSs can be modeled
in the framework (1). In order to show this, we consider plants
of the form (2) in which the control input u is replaced by
its networked version û. The output-feedback controller with
state xc ∈ Rnc is assumed to be given by

d

dt
xc = Acxc +Bcŷ u = Ccxc +Dcŷ, (8)

although also a discrete-time controller can be used. The
network-induced errors are defined as e = [e>y e>u ]> with
ey = ŷ − y and eu = û − u, which describe the difference
between the most recently received information at the con-
troller/actuators and the current value of the plant/controller
output, respectively. The network is assumed to operate in
a zero-order hold (ZOH) fashion in between the updates of
the values ŷ and û, i.e., ˙̂y = 0 and ˙̂u = 0 between update
times. We consider the case where the plant is equipped
with ny sensors and nu actuators that are grouped into N
communication nodes. At each transmission time tk = kh,
k ∈ N, only one node σk ∈ {1, 2, . . . , N} is allowed to
communicate. Therefore, we obtain the updates{

ŷ(t+k ) = Γyσky(tk) + (I − Γyσk)ŷ(tk)

û(t+k ) = Γuσku(tk) + (I − Γuσk)û(tk).
(9)

In (9), Γi := diag(Γyi ,Γ
u
i ), i ∈ {1, . . . , N}, are diagonal

matrices given by Γi = diag(γi,1, . . . , γi,ny+nu), in which
the elements γi,j , with i ∈ {1, . . . , N} and j ∈ {1, . . . , ny},
are equal to one, if plant output yj is in node i and are zero
elsewhere, and elements γi,j+ny , with i ∈ {1, . . . , N} and
j∈{1, . . . , nu}, are equal to one, if controller output uj is in
node i and are zero elsewhere. Network protocols determine
which node is allowed to access the network. The hybrid
framework (1) especially allows to study quadratic network
protocols, see e.g., [3], [4], [29], [30], of the form

σk = arg min ξ>(tk)Riξ(tk), (10)

for all i ∈ {1, 2, . . . , N} in which Ri, i ∈ {1, . . . , N}, are
certain given matrices and ξ = [x>p x>c e>y e>u ]>. In fact, the
well-known try-once-discard (TOD) protocol [29] belongs to
this particular class of protocols. In this protocol, the node
with the largest network-induced error is granted access to
the network in order to update its values, which is defined by
σk = arg maxi∈{1,...,N} ‖Γie(tk)‖2.

For simplicity, let us only consider two nodes (although the
extension to N > 2 nodes can be done in a straightforward
fashion). The complete model of the NCS can be written in

the hybrid system format of (1), by combining (2), (8), and
(10) and taking

A =

[
Ap + BpuDcCp BpuCc BpuDc Bpu

BcCp Ac Bc 0
−Cp(Ap + BpuDcCp) −CpBpuCc −CpBpuDc −CpBpu

−CcBcCp −CcAc −CcBc 0

]
,

and

B =

[
Bpw

0
−CpBpw

0

]
and φ is given as in (5) with3 Q = R2 − R1 and Ji =[
I 0
0 I − Γi

]
for i ∈ {1, 2}.

D. Sampled-Data Saturated Control Systems
In the setting of periodic sampled-data saturated control, see

e.g., [10], the plant (2) is controlled by a sampled-data control
law, such that

d

dt
xp(t) = Apxp(t) +Bpuu(tk) +Bpww(t), (11)

for all t ∈ (tk, tk+1], k ∈ N. The control input u ∈ Rnu
is subject to actuator saturation, having saturation levels
ū1, ū2, . . . , ūnu > 0 on the respective input entries. Hence,
the effective control signal for a state-feedback gain K =
[K>1 K>2 . . .K>nu ]> with Ki ∈ R1×np , i = 1, 2, . . . , nu, is
given for k ∈ N by

u(tk) = sat(Kxp(tk)) =

[sat1(K1xp(tk)), sat2(K2xp(tk)), . . . , satnu(Knuxp(tk))]>

with its i-th component given by ui(tk) = sati(Kixp(tk)) :=
sign(Kixp(tk)) min{ūi, |Kixp(tk)|}, i = 1, 2, . . . , nu. Here,
sign(a) denotes the sign of a scalar a.

The complete closed-loop model of the sampled-data satu-
rated control system can now be written as a hybrid system
(1) by taking the augmented state vector as ξ = [x>p u>]>,

and using the matrices A =
[
Ap Bpu
0 0

]
, B =

[
Bbw

0

]
, and the

piecewise affine (PWA) map φ given by φ(ξ) =
[

xp
sat(Kxp)

]
for ξ ∈ Rnξ . In a similar manner also dynamic output-
based feedback controllers with saturation and possibly PWA
controls can be captured in the hybrid model (1), see [10] for
more details.

III. PRELIMINARIES

In this section we introduce preliminary definitions and
notational conventions.

For X,Y Hilbert spaces with inner products 〈·, ·〉X and
〈·, ·〉Y , respectively, a linear operator U : X → Y is called
isometric if 〈Ux1, Ux2〉Y = 〈x1, x2〉X for all x1, x2 ∈ X .
We denote by U∗ : Y → X the (Hilbert) adjoint operator
that satisfies 〈Ux, y〉Y = 〈x, U∗y〉X for all x ∈ X and all
y ∈ Y . Note that U being isometric is equivalent to U∗U = I
(or UU∗ = I). The operator U is called an isomorphism if it
is an invertible mapping. The induced norm of U (provided
it is finite) is denoted by ‖U‖X,Y = supx∈X\{0}

‖Ux‖Y
‖x‖X . If

3In case ξ>R1ξ = ξ>R2ξ we assume for simplicity that node 2 gets
access to the network.
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the induced norm is finite we say that U is a bounded linear
operator. If X = Y we write ‖U‖X and if X,Y are clear from
the context we use the notation ‖U‖. The image of U is written
as imU and its kernel by kerU . An operator U : X → X with
X a Hilbert space is called self-adjoint if U∗ = U . A self-
adjoint operator U : X → X is called positive semi-definite
if 〈Ux, x〉 ≥ 0 for all x ∈ X . Given a positive semi-definite
U we say that the bounded linear operator A : X → X is the
square root of U if A is positive semi-definite and A2 = U .
This square root exists and is unique, see Theorem 9.4-1 in
[31]. We denote it by U

1
2 .

To a Hilbert space X with inner product 〈·, ·〉X , we can
associate the Hilbert space `2(X) consisting of infinite se-
quences x̃ = (x̃0, x̃1, x̃2, . . .) with x̃i ∈ X , i ∈ N, satisfying∑∞
i=0 ‖x̃i‖2X < ∞, and the inner product 〈x̃, ỹ〉`2(X) =∑∞
i=0〈x̃i, ỹi〉X . We denote `2(Rn) by `2 when n ∈ N≥1 is

clear from the context. We also use the notation `(X) to denote
the set of all infinite sequences x̃ = (x̃0, x̃1, x̃2, . . .) with x̃i ∈
X , i ∈ N. Note that `2(X) can be considered a subspace of
`(X). As usual, we denote by Rn the standard n-dimensional
Euclidean space with inner product 〈x, y〉 = x>y and norm
|x| =

√
x>x for x, y ∈ Rn. Ln2 ([0,∞)) denotes the set of

square-integrable functions defined on R≥0 := [0,∞) and

taking values in Rn with L2-norm ‖x‖L2
=
√∫∞

0
|x(t)|2dt

and inner product 〈x, y〉L2
=
∫∞

0
x>(t)y(t)dt for x, y ∈

Ln2 ([0,∞)). If n is clear from the context we also write L2. We
also use square-integrable functions on subsets [a, b] of R≥0

and then we write Ln2 ([a, b]) (or L2([a, b]) if n is clear from
context) with the inner product and norm defined analogously.
The set Ln2,e([0,∞)) consists of all locally square-integrable
functions, i.e., all functions x defined on R≥0, such that for
each bounded domain [a, b] ⊂ R≥0 the restriction x |[a,b] is
contained in Ln2 ([a, b]). We also will use the set of essentially
bounded functions defined on R≥0 or [a, b] ⊂ R≥0, which are
denoted by Ln∞([0,∞)) or Ln∞([a, b]) with the norm given by
the essential supremum denoted by ‖x‖L∞ for an essentially
bounded function x. A function β : R≥0 → R≥0 is called a
K-function if it is continuous, strictly increasing and β(0) = 0.

As the objective of the paper is to study the L2-gain and
internal stability of the system (1), let us first provide rigorous
definitions of these important concepts.

Definition III.1 The hybrid system (1) is said to have an L2-
gain from w to z smaller than γ if there exist a γ0 ∈ [0, γ)
and a K-function β such that, for any w ∈ L2 and any
initial conditions ξ(0) = ξ0 and τ(0) = h, the corresponding
solution to (1) satisfies ‖z‖L2

≤ β(|ξ0|)+γ0‖w‖L2
. Sometimes

we also use the terminology γ-contractivity (in L2-sense) if
this property holds. Moreover, 1-contractivity is also called
contractivity (in L2-sense).

Definition III.2 The hybrid system (1) is said to be inter-
nally stable if there exists a K-function β such that, for
any w ∈ L2 and any initial conditions ξ(0) = ξ0 and
τ(0) = h, the corresponding solution to (1) satisfies ‖ξ‖L2

≤
β(max(|ξ0|, ‖w‖L2)).

A few remarks are in order regarding this definition of inter-
nal stability. The requirement ‖ξ‖L2

≤ β(max(|ξ0|, ‖w‖L2
))

is rather natural in this context as we are working with L2-
disturbances and investigate L2-gains. Indeed, just as in Defi-
nition III.1, where a bound is required on the L2-norm of the
output z (expressed in terms of a bound on |ξ0| and ‖w‖L2),
we require in Definition III.2 that a similar (though less strict)
bound holds on the state trajectory ξ. Below we will show that
this property implies also global attractivity of the origin (i.e.,
limt→∞ ξ(t) = 0 for all w ∈ L2, ξ(0) = ξ0 and τ(0) = h)
and also Lyapunov stability of the origin as we will also have
‖ξ‖L∞ ≤ β(max(|ξ0|, ‖w‖L2

)), see Proposition IV.1 below.
In the case where φ is positively homogeneous, i.e., φ satisfies
φ(λx) = λφ(x) for all x and all λ ≥ 0, and is continuous (or
outer semicontinuous and locally bounded in the case φ is a
set-valued mapping), it can be shown that the internal stability
property is equivalent to the property that limt→∞ ξ(t) = 0
for any solution ξ corresponding to some initial conditions
ξ(0) = ξ0 and τ(0) = h and zero disturbance w ≡ 0.

Consider the discrete-time system of the form

ξk+1 = χ(ξk, vk) (12a)
rk = ψ(ξk, vk) (12b)

with vk ∈ V , rk ∈ R, ξk ∈ Rnξ , k ∈ N, with V and R Hilbert
spaces, and χ : Rnξ × V → Rnξ and ψ : Rnξ × V → R.

Also for this general discrete-time system we formally
introduce `2-gain specifications and internal stability.

Definition III.3 The discrete-time system (12) is said to have
an `2-gain from v to r smaller than γ if there exist a γ0 ∈
[0, γ) and a K-function β such that, for any v ∈ `2(V ) and
any initial state ξ0 ∈ Rnξ , the corresponding solution to (12)
satisfies

‖r‖`2(R) ≤ β(‖ξ0‖) + γ0‖v‖`2(V ). (13)

Sometimes we also use the terminology γ-contractivity (in `2-
sense) if this property holds. Moreover, 1-contractivity is also
called contractivity (in `2-sense).

Definition III.4 The discrete-time system (12) is said to be
internally stable if there is a K-function β such that, for any
v ∈ `2(V ) and any initial state ξ0 ∈ Rnξ , the corresponding
solution ξ to (12) satisfies

‖ξ‖`2 ≤ β(max(|ξ0|, ‖v‖`2(V )). (14)

Note that this internal stability definition for the discrete-
time system (12) parallels the continuous-time version in Def-
inition III.2. Moreover, since ‖ξ‖`∞ ≤ ‖ξ‖`2 and ‖ξ‖`2 <∞
implies limk→∞ ξk = 0, we also have global attractivity and
Lyapunov stability properties of the origin when the discrete-
time system is internally stable.

The lemma below will be useful for later purposes. The
proof can be obtained by standard arguments and is therefore
omitted.

Lemma III.5 Let Ha, Hb and Hd be Hilbert spaces. Consider
sequences a = {ak}k∈N ∈ `2(Ha), b = {bk}k∈N ∈ `2(Hb)
and d = {dk}k∈N with dk ∈ Hd, k ∈ N. If for α ≥ 0 and β ≥
0 it holds that ‖dk‖Hd ≤ α‖ak‖Ha + β‖bk‖Hb for all k ∈ N,
then d ∈ `2(Hd) and ‖d‖`2(Hd) ≤ δα‖a‖`2(Ha) + δβ‖b‖`2(Hb)
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for some δα, δβ ≥ 0, i = 1, 2. Moreover, if 0 ≤ α < 1 one
can take 0 ≤ δα < 1.

IV. INTERNAL STABILITY AND L2-GAIN ANALYSIS

In this section we will analyze the L2-gain and the internal
stability of (1) using ideas from lifting [16], [17], [18], [19],
[20], [21]. In particular, we focus on the contractivity of the
system (1) as γ-contractivity can be studied by proper scaling
of the matrices C and D in (1).

To obtain necessary and sufficient conditions for the internal
stability and the contractivity of (1), we will use a procedure
consisting of three main steps:
• In Subsection IV-A we apply lifting-based techniques

to (1) (having finite-dimensional input and output
spaces) leading to a discrete-time system with infinite-
dimensional input and output spaces (see (16) below).
The internal stability and contractivity of both systems
are equivalent.

• In Subsection IV-B we apply a loop transformation to the
infinite-dimensional system (16) in order to remove the
feedthrough term, which is the only operator in the sys-
tem description having both its domain and range being
infinite dimensional. This transformation is constructed in
such a manner that the internal stability and contractivity
properties of the system are not changed. This step is
crucial for translating the infinite-dimensional system to
a finite-dimensional system in the last step.

• In Subsection IV-C the loop-transformed infinite-
dimensional system is converted into a discrete-
time finite-dimensional nonlinear system (again without
changing the stability and the contractivity properties
of the system). Due to the finite dimensionality of the
latter system, stability and contractivity in `2-sense can be
analyzed, for instance, using well-known Lyapunov-based
arguments. We will elaborate on these computational
aspects in Section V.

These three steps lead to the main result as formulated
in Theorem IV.4, which states that the internal stability and
contractivity (in L2-sense) of (1) is equivalent to the internal
stability and contractivity (in `2-sense) of a discrete-time
finite-dimensional nonlinear system. All proofs of the technical
results can be found in the appendix.

A. Lifting

To study contractivity, we introduce the lifting operator
W : L2,e[0,∞) → `(K) with K = L2[0, h] given for
w ∈ L2,e[0,∞) by W (w) = w̃ = (w̃0, w̃1, w̃2, . . .) with

w̃k(s) = w(kh+ s) for s ∈ [0, h] (15)

for k ∈ N. Obviously, W is a linear isomorphism mapping
L2,e[0,∞) into `(K) and, moreover, W is isometric as a
mapping from L2[0,∞) to `2(K). Using this lifting operator,
we can rewrite the model in (1) as

ξk+1 = Âξ+
k + B̂w̃k (16a)

ξ+
k = φ(ξk) (16b)

z̃k = Ĉξ+
k + D̂w̃k (16c)

in which ξ0 is given and ξk = ξ(kh−) = lims↑kh ξ(s), k ∈
N≥1, and ξ+

k = ξ(kh+) = lims↓kh ξ(s) = ξ(kh) (assuming
that ξ is continuous from the right) for k ∈ N, and w̃ =
(w̃0, w̃1, w̃2, . . .) = W (w) ∈ `2(K) and z̃ = (z̃0, z̃1, z̃2, . . .) =
W (z) ∈ `(K). Here we assume in line with Definition III.1
that τ(0) = h in (1). Moreover,

Â : Rnξ → Rnξ B̂ : K → Rnξ

Ĉ : Rnξ → K D̂ : K → K

are given for x ∈ Rnξ and ω ∈ K by

Âx = eAhx (17a)

B̂ω =

∫ h

0

eA(h−s)Bω(s)ds (17b)

(Ĉx)(θ) = CeAθξ (17c)

(D̂ω)(θ) =

∫ θ

0

CeA(θ−s)Bω(s)ds+Dω(θ), (17d)

where θ ∈ [0, h].
By writing the solution of (1) explicitly, comparing to the

formulas (17) and using that W is an isometric isomorphism, it
follows that (16) is contractive if and only if (1) is contractive.
In fact, we have the following proposition.

Proposition IV.1 The following statements hold:
• The hybrid system (1) is internally stable if and only if

the discrete-time system (16) is internally stable.
• The hybrid system (1) is contractive if and only if the

discrete-time system (16) is contractive.
• Moreover, in case (1) is internally stable, it also holds that

limt→∞ ξ(t) = 0 and ‖ξ‖L∞ ≤ β(max(|ξ0|, ‖w‖L2
)) for

all w ∈ L2, ξ(0) = ξ0 and τ(0) = h.

B. Removing the feedthrough term

Following [17] we aim at removing the feedthrough operator
D̂ as this is the only operator with both its domain and range
being infinite dimensional. Removal can be accomplished by
using an operator-valued version of Redheffer’s lemma, see
Lemma 5 in [17]. The objective is to obtain a new system
(without feedthrough term) and new disturbance inputs ṽk ∈
K, new state ξ̄k ∈ Rnξ and new performance output r̃k ∈ K,
k ∈ N, given by

ξ̄k+1 = Āξ̄+
k + B̄ṽk (18a)

ξ̄+
k = φ(ξ̄k) (18b)
r̃k = C̄ξ̄+

k (18c)

such that (16) is internally stable and contractive if and only
if (18) is internally stable and contractive. To do so, we first
observe that a necessary condition for the contractivity (16) is
that ‖D̂‖K < 1. Indeed, ‖D̂‖K ≥ 1 would imply that for any
0 ≤ γ0 < 1 there is a w̃0 ∈ K\{0} with ‖D̂w̃0‖K ≥ γ0‖w̃0‖K,
which, in turn, would lead for the system (16) with ξ0 = 0
and thus ξ+

0 = 0 and disturbance sequence (w̃0, 0, 0, . . .) to
a contradiction with the contractivity of (16). The following
proposition will be useful in the sequel. It can be established
based on [31].
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Proposition IV.2 Consider a linear bounded operator D̂ :
H → H with H a real Hilbert space and let ‖D̂‖H < 1.
Then we have the following results.

1) ‖D̂∗D̂‖H = ‖D̂‖2H = ‖D̂D̂∗‖H = ‖D̂∗‖2H .
2) The operators I − D̂∗D̂ and I − D̂D̂∗ are invertible,

bounded, and positive semi-definite.
3) The operators (I−D̂∗D̂)−1, (I−D̂D̂∗)−1, (I−D̂∗D̂)

1
2 ,

(I − D̂D̂∗)
1
2 , (I − D̂∗D̂)−

1
2 and (I − D̂D̂∗)−

1
2 are

invertible, bounded, and positive semi-definite.
4) For l ∈ Z it holds that

(I − D̂∗D̂)l
1
2 D̂∗ = D̂∗(I − D̂D̂∗)l 12 and

(I − D̂D̂∗)l 12 D̂ = D̂(I − D̂∗D̂)l
1
2 .

Consider now the linear bounded operator Θ : K × K →
K×K given by

Θ =

(
−D̂ (I − D̂D̂∗)

1
2

(I − D̂∗D̂)
1
2 D̂∗

)
. (19)

The operator Θ is unitary in the sense that Θ∗Θ = I and
ΘΘ∗ = I , see Theorem 6 in [17], and thus for all u, v ∈ K×K
we have

〈Θu,Θv〉K×K = 〈u, v〉K×K and ‖Θu‖K×K = ‖u‖K×K(20)

implying that Θ is an isometric isomorphism. This operator

will be used to transform, for each k ∈ N,
(
w̃k
z̃k

)
of (16) into(

ṽk
r̃k

)
according to the following equality(
r̃k
w̃k

)
= Θ

(
ṽk
z̃k

)
. (21)

In fact, given
(
w̃k
z̃k

)
we can uniquely solve (21) leading to(

ṽk
r̃k

)
=

(
(I − D̂∗D̂)−

1
2 −(I − D̂∗D̂)−

1
2 D̂∗

−D̂(I − D̂∗D̂)−
1
2 (I − D̂D̂∗)−

1
2

)(
w̃k
z̃k

)
.(22)

Conversely, when
(
ṽk
r̃k

)
is given, we can uniquely solve (21)

to obtain(
w̃k
z̃k

)
=

(
(I − D̂∗D̂)−

1
2 (I − D̂∗D̂)−

1
2 D̂∗

(I − D̂D̂∗)−
1
2 D̂ (I − D̂D̂∗)−

1
2

)(
ṽk
r̃k

)
. (23)

Hence, the mappings in (23) and (22) are both isomorphisms
and (22) is the inverse of (23) and vice versa. Combining (21)
with (16c) gives

w̃k = (I − D̂∗D̂)
1
2 ṽk + D̂∗z̃k

= (I − D̂∗D̂)
1
2 ṽk + D̂∗[Ĉξ+

k + D̂w̃k]. (24)

Solving for w̃k gives

w̃k = (I − D̂∗D̂)−
1
2 ṽk + (I − D̂∗D̂)−1D̂∗Ĉξ+

k

= (I − D̂∗D̂)−
1
2 ṽk + D̂∗(I − D̂D̂∗)−1Ĉξ+

k (25)

and leads to the system (18) with bounded linear operators

Ā : Rnξ → Rnξ B̄ : K → Rnξ C̄ : Rnξ → K

given by

Ā = Â+ B̂D̂∗(I − D̂D̂∗)−1Ĉ, (26a)

B̄ = B̂(I − D̂∗D̂)−
1
2 , (26b)

C̄ = (I − D̂D̂∗)− 1
2 Ĉ. (26c)

Note that C̄ follows from the calculations

r̃k = −D̂ṽk + (I − D̂D̂∗) 1
2 z̃k

= −D̂ṽk + (I − D̂D̂∗) 1
2 [Ĉξ+

k D̂(I − D̂∗D̂)−
1
2 ṽk

+D̂D̂∗(I−D̂D̂∗)−1Cξ+
k ]

= (I − D̂D̂∗) 1
2 [I + D̂D̂∗(I − D̂D̂∗)−1]Cξ+

k

= (I − D̂D̂∗)− 1
2 Ĉξ+

k , (27)

where we used in the last equality that I + D̂D̂∗(I −
D̂D̂∗)−1 = (I − D̂D̂∗)−1.

Based on the above developments we can establish now the
following result.

Theorem IV.3 Consider the system (16) with Â, B̂, Ĉ and D̂
as in (17) and assume ‖D̂‖K < 1. Consider also system (18)
with Ā, B̄ and C̄ as in (26). Then the following hold.

1) Let ξ0 and w̃ = (w̃0, w̃1, . . .) ∈ `(K) be given and
leading to a state sequence {ξk}k∈N and output sequence
z̃ = (z̃0, z̃1, . . .) ∈ `(K) for system (16). Then there exists
ṽ = (ṽ0, ṽ1, . . .) ∈ `(K) such that (18) with initial state
ξ̄0 = ξ0 leads to the state trajectory {ξ̄k}k∈N and output
sequence r̃ = (r̃0, r̃1, . . .) ∈ `(K) satisfying for k ∈ N

ξ̄k = ξk and (28)
‖r̃k‖2K − ‖ṽk‖2K = ‖z̃k‖2K − ‖w̃k‖2K. (29)

2) Let ξ̄0 and ṽ = (ṽ0, ṽ1, . . .) ∈ `(K) be given and leading
to a state sequence {ξ̄k}k∈N and output sequence r̃ =
(r̃0, r̃1, . . .) ∈ `(K) for system (18). Then there exists
w̃ = (w̃0, w̃1, . . .) ∈ `(K) such that (16) with initial
state ξ0 = ξ̄0 leads to the state trajectory {ξk}k∈N and
output sequence z̃ = (z̃0, z̃1, . . .) ∈ `(K) satisfying (28)
and (29) for k ∈ N.

3) Internal stability and contractivity of (16) are equivalent
to internal stability and contractivity of (18).

C. From infinite-dimensional to finite-dimensional systems

The system (18) is still an infinite-dimensional system,
although the operators Ā, B̄, and C̄ have finite rank and there-
fore have finite-dimensional matrix representations. Following
(and slightly extending) [17] we now obtain the following
result.

Theorem IV.4 Consider system (1) and its lifted version (16)
with ‖D̂‖K < 1. Define the discrete-time nonlinear system

ξ̄k+1 = Adφ(ξ̄k) +Bdvk (30a)
rk = Cdφ(ξ̄k) (30b)

with

Ad = Â+ B̂D̂∗(I − D̂D̂∗)−1Ĉ (31a)

and Bd ∈ Rnξ×nv and Cd ∈ Rnr×nξ are chosen such that

BdB
>
d = B̄B̄∗ = B̂(I − D̂∗D̂)−1B̂∗ and

C>d Cd = C̄∗C̄ = Ĉ∗(I − D̂D̂∗)−1Ĉ. (31b)

The system (1) is internally stable and contractive if and only
if the system (30) is internally stable and contractive.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 8

Hence, this theorem states that under the assumption
‖D̂‖K < 1 (which is a necessary condition for contractivity
of (1)) the internal stability and contractivity (in L2-sense)
of (1) is equivalent to the internal stability and contractivity
(in `2-sense) of a discrete-time finite-dimensional nonlinear
system given by (30). In the next section we will show how the
matrices Ad, Bd and Cd in (30) can be constructed, how the
condition ‖D̂‖K < 1 can be tested, and how internal stability
and contractivity can be tested for the system (30) in case the
nonlinear mapping φ is piecewise linear as in (5), which is
relevant for several applications mentioned in Section II.

V. COMPUTATIONAL CONSIDERATIONS

In this section we demonstrate how the discrete-time system
(30) provided in Theorem IV.4 can be computed and how the
internal stability and contractivity analysis can be carried out
for the discrete-time system (30) when φ is PWL as in (5).

A. Computing the discrete-time nonlinear system

To explicitly compute the discrete-time system (30) pro-
vided in Theorem IV.4 we need to determine the opera-
tors B̂D̂∗(I − D̂D̂∗)−1Ĉ, B̂(I − D̂∗D̂)−1B̂∗, and Ĉ∗(I −
D̂D̂∗)−1Ĉ to obtain the triple (Ad, Bd, Cd) in (30). For self-
containedness we recall the procedure proposed in [32] to
compute them, assuming throughout that ‖D̂‖K < 1.

First we recall the tests given in [32], [16] to verify
‖D̂‖K < 1, which is a necessary condition for the contractivity
of (1). The condition ‖D̂‖K < 1 is normally verified using
Lemma 3.2 in [32] or Theorem 13.5.1 in [16]. In fact, in
these references ‖D̂‖K < 1 is shown to be equivalent to
‖D‖ =

√
λmax(D>D) < 1 and Qγ11(h) being invertible for

all γ ≥ 1 with Qγ(t) :=
(
Qγ11(t) Qγ12(t)
Qγ21(t) Qγ22(t)

)
= eE

γt for t ∈ R
and

Eγ :=
[
−A> − γ−2C>DMγB> −C>LγC

γ−2BMγB> A+ γ−2BMγD>C

]
, (32)

where Mγ := (I−γ−2D>D)−1 and Lγ := (I−γ−2DD>)−1.
Alternative tests can also be found in [33]. In Theorem VI.3
below we will present another equivalent test (given in As-
sumption VI.1), which has some computational advantages and
is useful for constructing Lyapunov/storage functions for (16)
proving the contractivity and internal stability in specific cases
(see Section VI).

The procedure in [32] to find Ad, Bd and Cd boils down
to computing Q(h) := Q1(h), which then leads to

Ad = Q11(h)−> (33)

and Bd and Cd are matrices satisfying

BdB
>
d = Q21(h)Q11(h)−1,

C>d Cd = −Q11(h)−1Q12(h), (34)

see [32] for the details. This provides the matrices needed
for explicitly determining the discrete-time nonlinear system
(30) for which the internal stability and contractivity tests
need to be carried out. In the next section we show which
computational tools can be used to carry out these tests for
the situation where φ is a PWL map as in (5).

B. Stability and contractivity of discrete-time PWL systems

For several important applications, including the reset,
event-triggered and saturated control systems mentioned in
Subsection II-A, Subsection II-B and Subsection II-C, respec-
tively, the nonlinear mapping φ in the hybrid system (1) is
PWL as specified in (5). As a consequence, the system (30)
in Theorem IV.4 particularizes in this case to the discrete-time
system

ξk+1 =

{
A1ξk +Bdvk, when ξ>k Qξk > 0

A2ξk +Bdvk, when ξ>k Qξk ≤ 0
(35a)

rk =

{
C1ξk, when ξ>k Qξk > 0

C2ξk, when ξ>k Qξk ≤ 0,
(35b)

k ∈ N, with Ai = AdJi, and Ci = CdJi, i = 1, 2.
To guarantee the internal stability and contractivity of a

discrete-time PWL system as in (35) (in order to guarantee
these properties for the hybrid system (1) using Theorem IV.4),
an effective approach is to use versatile piecewise quadratic
Lyapunov/storage functions [22], [23] of the form

V (ξ) = ξ>Piξ with i = min{j ∈ {1, . . . , N} | ξ ∈ Ωj},
(36)

based on the regions

Ωi :=
{
ξ∈ Rnξ

∣∣ ξ>Xiξ ≥ 0
}
, i ∈ {1, . . . , N} (37)

in which the symmetric matrices Xi, i ∈ {1, . . . , N}, are
such that {Ω1,Ω2, . . . ,ΩN} forms a partition of Rnξ , i.e.,
∪Ni=1Ωi = Rnξ and the intersection of Ωi ∩ Ωj is of zero
measure for all i, j ∈ {1, . . . , N} with i 6= j. Moreover,
we assume that {ξ ∈ Rnξ | ξ>Qξ ≤ 0} =

⋃N1

i=1 Ωi and
{ξ ∈ Rnξ | ξ>Qξ ≥ 0} =

⋃N
i=N1+1 Ωi for some N1 < N .

To establish contractivity of (35) we will use the dissipation
inequality [14], [15]

Ṽ (ξk+1)− Ṽ (ξk) ≤ −r>k rk + v>k vk, k ∈ N (38)

and require that it holds along the trajectories of the system
(35). This translates into sufficient LMI-based conditions for
stability and contractivity using three S-procedure relaxations
[34], as formulated next.

Theorem V.1 Let N1 < N hold. Suppose that there exist
matrices Pi = P>i , i ∈ {1, . . . , N}, and scalars µi,j ≥ 0,
βi,j ≥ 0 and κi ≥ 0, i, j ∈ {1, . . . , N}, satisfying[
Pi − µi,jXi−βi,jA>1 XjA1 − C>1 C1 − A>1 PjA1 −A>1 PjBd

? I − B>d PjBd

]
� 0

(39a)

for all i ∈ {N1 + 1, . . . , N}, j ∈ {1, . . . , N}, and[
Pi − µi,jXi−βi,jA>2 XjA2 − C>2 C2 − A>2 PjA2 −A>2 PjBd

? I − B>d PjBd

]
� 0

(39b)

for all i ∈ {1, . . . , N1}, j ∈ {1, . . . , N}, and

Pi − κiXi � 0, for all i ∈ {1, . . . , N}. (39c)

Then the discrete-time PWL system (35) is internally stable
and contractive.
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Two comments are in order regarding this theorem. Firstly,
note that due to the strictness of the LMIs (39) we guar-
antee that the `2-gain is strictly smaller than 1, which can
be seen from appropriately including the strictness into the
dissipativity inequality (38). Moreover, due to the strictness
of the LMIs we also guarantee internal stability. Secondly, the
LMI conditions of Theorem V.1 are obtained by performing
a contractivity analysis on the discrete-time PWL system (35)
using all possible S-procedure relaxations, i.e.,

(i) require that ξ>Piξ is positive only when ξ ∈ Ωi \ {0},
i.e., in (39c) we have Pi − κiXi � 0 for all i ∈
{1, . . . , N} and κi ≥ 0;

(ii) use a relaxation related to the current time instant, i.e.,
if V (ξk) = ξ>k Piξk, then it holds that ξ>k Xiξk ≥ 0 (this
corresponds to the terms µi,jXi in (39a)-(39b));

(iii) use a relaxation related to the next time instant,
i.e., if V (ξk+1) = ξ>k+1Pjξk+1, then it holds that
ξ>k+1Xjξk+1 ≥ 0 (this corresponds to the terms
−βi,jA>1 XjA1 and −βi,jA>2 XjA2 in (39a)-(39b)).

Theorem V.1 can be used to guarantee the internal stability
and contractivity of (35) and hence, the internal stability and
contractivity for the hybrid system (1) with φ given by (5). In
the next section we will rigorously show that these results form
significant improvements with respect to the earlier conditions
for contractivity of (1) presented in [1], [2], [10] and [13].
In Section VII we also illustrate this improvement using two
numerical examples.

Remark V.2 Similar techniques as above can also be applied
to the stability and (γ-)contractivity of sampled-data saturated
control systems described in Subsection II-D in which the
mapping φ in the hybrid system (1) is PWA and the discrete-
time nonlinear system (30) particularizes to a PWA system. In
this case also piecewise quadratic Lyapunov/storage functions
can be used leading to LMI-based conditions, see [22], [23].

VI. CONNECTIONS TO AN EXISTING LYAPUNOV-BASED
APPROACH

In this section we will recall the LMI-based conditions
for analyzing the stability and contractivity analysis for (1)
provided in [2], [10] and [13], focussing on the case where
φ is PWL as given in (5), and show the relationship to
the conditions obtained in the present paper. This will also
reveal that the conditions in this paper are (significantly) less
conservative.

We follow here the setup discussed in [2], which is based
on using a timer-dependent storage function V (ξ, τ), see [14],
satisfying

d
dtV ≤ −z

>z + w>w, (40)

during the flow (1a), and

V (J1ξ, 0) ≤ V (ξ, h), for all ξ with ξ>Qξ > 0, (41a)

V (J2ξ, 0) ≤ V (ξ, h), for all ξ with ξ>Qξ ≤ 0, (41b)

during the jumps (1b) with φ as in (5). . From these conditions,
we can guarantee that the L2-gain from w to z is smaller than

or equal to 1, see, e.g., [30]. In fact, in [2] V (ξ, τ) was chosen
in the form

V (ξ, τ) = ξ>P (τ)ξ (42)

with P (·) the solution to the Riccati differential equation

d
dτ P = −A>P − PA− C>C

− (PB + C>D)M(B>P +D>C), (43)

provided the solution exists on [0, h], in which M := (I −
D>D)−1 exists and is positive definite as we assume, as
before, that 1 > λmax(D>D). As shown in the proof of
[2, Theorem III.2], this choice for the matrix function P
implies the “flow condition” (40). The “jump condition” (41)
is guaranteed in [2] by LMI-based conditions that lead to a
proper choice of the boundary value Ph := P (h). To formulate
the result of [2], we introduce the Hamiltonian matrix

H :=
[
A+BMD>C BMB>

−C>LC −(A+BMD>C)>

]
(44)

with L := (I − DD>)−1, which is positive definite, since
1 > λmax(D>D) = λmax(DD>). In addition, we introduce
the matrix exponential

F (τ) := e−Hτ =
[
F11(τ) F12(τ)
F21(τ) F22(τ)

]
, (45)

allowing us to provide the explicit solution to the Riccati
differential equation (43), yielding

P (0) = (F21(h)+F22(h)Ph)
(
F11(h)+F12(h)Ph

)−1
,(46)

provided that the solution (46) is well defined on [0, h], see,
e.g., [35, Lem. 8.2]. To guarantee this, in [2] the following
assumption was used.

Assumption VI.1 λmax(D>D) < 1 and F11(τ) is invertible
for all τ ∈ [0, h].

Let us also introduce the notation F̄11 := F11(h), F̄12 :=
F12(h), F̄21 := F21(h) and F̄22 := F22(h), and a matrix S̄
that satisfies S̄S̄> = −F̄−1

11 F̄12. In [2] the following LMIs
were derived guaranteeing (41) by using (46). Note that we
applied here an additional Schur complement compared to the
equivalent LMIs formulated in [2].

Proposition VI.2 Consider the hybrid system (1) and let As-
sumption VI.1 hold. Suppose that there exist a matrix Ph � 0,
and scalars µi ≥ 0, i ∈ {1, 2}, such that for i ∈ {1, 2}[
Ph + (−1)iµiQ− J>i F̄21F̄

−1
11 Ji − J>i F̄

−>
11 PhF̄

−1
11 Ji J>i F̄

−>
11 PhS̄

? I − S̄>PhS̄

]
� 0. (47)

Then, the hybrid system (1) is internally stable and has an
L2-gain from w to z smaller than or equal to 1.

In the spirit of Section V-B, it is not difficult to see that the
LMI-based conditions in this proposition can be shown to be
equivalent to a conservative check of the `2-gain being smaller
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than or equal to 1 for the discrete-time piecewise linear (PWL)
system

ξk+1 =

{
F̄−1

11 J1ξk + S̄wk if ξ>k Qξk > 0

F̄−1
11 J2ξk + S̄wk if ξ>k Qξk ≤ 0

(48a)

zk =

{
C̃J1ξk if ξ>k Qξk > 0

C̃J2ξk if ξ>k Qξk ≤ 0,
(48b)

k ∈ N, where S̄ and C̃ satisfy

S̄S̄> = −F̄−1
11 F̄12 and C̃>C̃ := F̄21F̄

−1
11 . (49)

In particular, the stability and contractivity tests in Proposi-
tion VI.2 use a common quadratic storage function and only
one of the S-procedure relaxations discussed in Section V-B
(only (ii) is used). In addition to this new perspective on
the results in [1], [2], [10], a strong link can be estab-
lished between the existing LMI-based conditions described
in Proposition VI.2 and the lifting-based conditions obtained
in this paper, as formalized next.

Theorem VI.3 The following statements are true:
1) Assumption VI.1 is equivalent to ‖D̂‖K < 1.
2) If ‖D̂‖K < 1, then the PWL system (48) and the PWL

system (35) are essentially the same in the sense that
F̄−1

11 = Ad, S̄S̄> = BdB
>
d and C̃>C̃ = C>d Cd.

Moreover, if the hypotheses of Proposition VI.2 hold and the
regions4 in (37) are chosen such that for each i = 1, 2, . . . , N
there is a ξ̄i ∈ Rnξ such that ξ̄>i Xiξ̄i > 0, then ‖D̂‖K < 1
and the hypotheses of Theorem V.1 hold.

This theorem reveals an intimate connection between the
results obtained in [1], [2], [10] and the new lifting-based
results obtained in the present paper. Indeed, as already men-
tioned, the LMI-based conditions in [1], [2], [10] as formulated
in Proposition VI.2 boil down to an `2-gain analysis of a
discrete-time PWL system (48) based on a quadratic storage
function using only a part of the S-procedure relaxations
possible (only using (ii), while the S-procedure relaxations (i)
and (iii) mentioned at the end of Section V-B are not used).
Moreover, Theorem VI.3 shows that the new lifting-based
results using Theorem V.1 and Theorem IV.4 never provide
worse estimates of the L2-gain of (1) than the existing results
as formulated in Proposition VI.2. In fact, since the stability
and contractivity conditions based on (35) can be carried out
based on more versatile piecewise quadratic storage functions
and more (S-procedure) relaxations (see Theorem V.1), the
new conditions are typically significantly less conservative
than the ones obtained in [1], [2], [10]. These benefits will
be demonstrated quantitatively in the next section using two
numerical examples.

Remark VI.4 To emphasize, note that in [1], [2], [10] the
connection to an `2-gain analysis of a PWL system was not
uncovered. In the present paper, we do not only uncover
this connection, but we show even the complete equivalence
between the stability and contractivity of (1) and the stability

4This condition implies that each region has a non-empty interior thereby
avoiding redundant regions of zero measure.

and the stability and contractivity of (35), and not only for
PWL maps φ, but for arbitrary nonlinear (even set-valued)
maps φ.

Remark VI.5 The above uncovered connection also shows
that the approach in [1], [2], [10], which does not resort
to lifting-based arguments or infinite-dimensional systems,
provides an alternative route in the linear sampled-data context
to obtain the equivalence of the stability and the contractivity
of (1) with φ linear and the stability and the contractivity of a
particular discrete-time linear system. Moreover, the result in
[1], [2], [10] also provides as a byproduct a Lyapunov/storage
function proving the internal stability and contractivity (in the
sense of dissipativity with the supply rate −z>z + w>w by
satisfying (40) and (41)) for the system (1).

Remark VI.6 Note that we also improve with respect to our
recent Lyapunov-based conditions in [13], which established
only upper bounds on the L2-gain of (1) by using piecewise
quadratic Lyapunov/storage functions of the form (36) and
only one relaxation as in (ii). The full equivalence as proven
in Theorem IV.4 was not obtained in [13].

VII. NUMERICAL EXAMPLES

In this section we illustrate the improvement of the pre-
sented theory with respect to the existing literature using two
numerical examples.

A. A periodic reset control application
The first example is inspired by [8] and studies a re-

set control application. In this example, the plant con-
sists of an integrator system of the form (2) with[
Ap Bpu Bpw Cp

]
=
[

0 1 1 1
]
, which is con-

trolled by a periodic First-Order Reset Element (FORE) of

the form (3) with
[
Ac Bc
Cc Dc

]
=

[
−β 1
1 0

]
, Rc = 0, and

sampling interval h = 0.01. Q is given as in (4).
To apply the lifting-based results in this paper to analyze

the stability and L2-gain (γ-contractivity) of the resulting
closed-loop reset control system in the form (1) we have to
determine the contractivity of the discrete-time PWL linear
system (35) for various scaled values of C and D (next to
checking ‖D̂‖K < 1). We will perform such an analysis
based on the method discussed in Section V-B using the
piecewise quadratic Lyapunov/storage function (36) To do
so, we exploit a partition of the state-space into N regions
Ωi, i ∈ {1, . . . , N} inspired by [7], [36] and based on
defining the vectors φi = [− sin(θi) cos(θi)]

> for θi = iπ
N ,

i ∈ {0, 1, . . . , N}, with N an even number. We define the
matrices Si = φi(−φi−1)> + φi−1(−φi)>, which lead to the
symmetric matrices

Xi =
[

Cp 0
−DcCp Cc

]>
Si

[
Cp 0

−DcCp Cc

]
, i ∈ {1, . . . , N} (50)

providing the state space partition as discussed in Section V-B,
see also [7], [36] for more details. In the remainder of this
example, we select N1 = 5, N = 10.

In Fig. 3, the upper bounds on the L2-gain of the closed-
loop system are presented as a function of the pole β of the



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 11

−3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

pole β of the FORE

L 2
-g
ai
n

 

 
Nesic et al. Automatica 2008
Heemels et al. TAC 2012
van Loon et al. CDC 2014
New conditions

Figure 3. L2-gain as a function of the pole β of the FORE.

FORE for both the existing and the new approaches. The thick
solid (blue) line is included for comparison reasons and is
obtained by the LMI conditions of [36, Theorem 3] (in which
essentially h = 0 and the reset conditions are checked contin-
uously instead of periodically). The dashed (magenta) curve is
obtained by the conditions of [2, Theorem III.2] (Proposition
VI.2 of this paper). The thin(ner) solid (green) line is obtained
by the conditions of [13, Theorem IV.2], see also Remark VI.6.
Finally, the dash-dotted (red) line is obtained by our new
conditions in Theorem V.1. Due to Theorem VI.3 it is guaran-
teed that the new conditions in Theorem V.1 would never be
worse than the results of [2, Theorem III.2] (Proposition VI.2).
However, due to several additional relaxations in Theorem
V.1, we expect significant improvements. The displayed curves
indeed confirm this expectation and show that the new results
in Theorem V.1 provide a significant improvement compared
to both the existing approaches. To stress this further, observe
that for β > 0 the approach in [2, Theorem III.2] could
not even establish a finite L2-gain, while the new approach
presented here does lead to such guarantees.

B. A periodic event-triggered control application

In this example the plant

d

dt
xp =

[
1 2
−2 1

]
xp +

[
0
1

]
u+

[
1
1

]
w (51)

will be controlled using a PETC strategy specified by (6),
(7), in which K = [−0.45 − 3.25]. At sampling times
tk = kh, k ∈ N, with h = 0.19, we will transmit the state
xp(tk) to the controller and update the control action when
‖Kx̂p(tk)−Kxp(tk)‖ > ρ‖Kx̂p(tk)‖ with ρ ≥ 0. This PETC
setup corresponds to

Q =
[

(1− ρ2)K>K −K>K
−K>K K>K

]
(52)

in the function φ given in (5) for (1).
To study the stability and the L2-gain of the resulting

closed-loop system in the form (1) we follow the same
procedure based on the method discussed in Section V-B and
the piecewise quadratic Lyapunov/storage function (36) as in
the previous example. The partition of the state-space into
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Figure 4. Upper bound of the L2-gain as a function of the triggering
parameter ρ. The solid (blue) line is based on [2], while the dashed (red)
line uses the new results presented in this paper.

N regions Ωi, i ∈ {1, . . . , N} as in (37) is again based on
the ideas in [7], [36], where we take N1 = 1 and N = 4
for various values of ρ ≥ 0. This results in Fig. 4. Also
the upper bounds on the L2-gain of (1) corresponding to
the sufficient conditions obtained in the earlier works [2],
[10], [1] are provided. In Fig. 4 we observe that also for
this PETC application the new conditions lead to significantly
better bounds than the existing ones.

VIII. CONCLUSIONS

In this paper we studied internal stability and L2-gain
properties of a class of hybrid systems that exhibit linear
flow dynamics, periodic time-triggered jumps and arbitrary
nonlinear jump maps. We showed the relevance of this class
of hybrid systems by explaining how a broad range of appli-
cations in event-triggered control, sampled-data reset control,
sampled-data saturated control, and networked control can be
captured in this unifying modelling framework. In addition,
we derived novel conditions for both the internal stability and
the contractivity (in terms of L2-gains) for these dynamical
systems. In particular, we provided a lifting-based approach
that revealed that the stability and the contractivity of the
continuous-time hybrid system is equivalent to the stability
and the contractivity (now in terms of `2-gains) of an ap-
propriate discrete-time nonlinear system. These new lifting-
based characterizations generalize earlier (more conservative)
conditions provided in the literature and we showed via a
reset control example and a periodic event-triggered control
application, for which the L2-gain analysis reduces to an `2-
gain analysis of discrete-time piecewise linear systems, that
the new conditions are significantly less conservative than
the existing ones. Moreover, we showed that the existing
conditions can be reinterpreted as a conservative `2-gain
analysis of a discrete-time piecewise linear system based on
common quadratic storage/Lyapunov functions. These new
insights were obtained by the adopted lifting-based perspective
on this problem, which leads to computable `2-gain (and
thus L2-gain) conditions, despite the fact that the linearity
assumption, which is usually needed in the lifting literature,
is not satisfied for this class of systems.
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APPENDIX

Proof of Proposition IV.1: As already stated before the
proposition, it is straightforward to see that contractivity is
equivalent for both systems. To show that internal stability
carries over, assume first that (1) is internally stable and
consider w̃ ∈ `2(K) and initial state ξ0 for (16) leading to the
discrete-time state trajectory {ξk}k∈N (and correspondingly
also to {ξ+

k }k∈N). Also consider the corresponding “unlifted”
disturbance version w = W−1(w̃) ∈ L2, and the trajectory
ξ ∈ L2 of (1) corresponding to ξ(0) = ξ0 and τ(0) = h. In
addition, we consider the lifted version of ξ ∈ L2 given by
ξ̃ = (ξ̃0, ξ̃1, ξ̃2, . . .) = W (ξ). Due to W being isometric, we
have ‖ξ̃‖`2(K) = ‖ξ‖L2

, next to ‖w̃‖`2(K) = ‖w‖L2
. Note that

we have

ξ̃k = M̂ξ+
k + N̂w̃k for k ∈ N (53)

with M̂ : Rnξ → K and N̂ : K → K given for x ∈ Rnξ and
ω ∈ K by

(M̂x)(θ) = eAθx and

(N̂ω)(θ) =

∫ θ

0

eA(θ−s)Bω(s)ds

with θ ∈ [0, h]. Note that M̂ and N̂ are bounded linear
operators. Moreover, M̂ is invertible as a mapping from Rnξ
to im M̂ and its inverse is a bounded linear operator as well,
since

‖Mx‖2K =

∫ h

0

|eAθx|2dθ

= x>
∫ h

0

eA
>θeAθdθx ≥ ν2|x|2,

where we used the fact that the Gramian
∫ h

0
eA
>θeAθdθ ≥

ν2I for some ν > 0. From (53) we get for all k ∈ N that
M̂−1(ξ̃k − N̂w̃k) = ξ+

k and thus

|ξ+
k | ≤

1

ν
[‖ξ̃k‖K + ‖N̂w̃k‖K] ≤ c1(‖ξ̃k‖K + ‖w̃k‖K)

for some c1 > 0, where in the latter inequality we used the
boundedness of N̂ . Using now Lemma III.5 we get for some
δ > 0 that

‖{ξ+
k }k∈N‖`2 ≤ δmax(‖ξ̃‖`2(K), ‖w̃‖`2(K))

= δmax(‖ξ‖L2
, ‖w‖L2

).

Note that the constants c1 and δ do not depend on the particular
ξ0 and w̃ considered. Based on internal stability of (1), the
above inequality gives

‖{ξ+
k }k∈N‖`2 ≤ β̃(max(|ξ0|, ‖w‖L2

)) (54)

for some K-function β̃. To transform the above bound on
{ξ+
k }k∈N to {ξk}k∈N, we use (16a) and the boundedness of Â

and B̂ to get for all k ∈ N that |ξk+1| ≤ c2(|ξ+
k | + ‖w̃k‖K)

for some c2 > 0. Again applying Lemma III.5 in combination
with the bound (54) leads to

‖{ξk}k∈N‖`2 ≤ β̄
(
max(|ξ0|, ‖w̃‖`2(K))

)
(55)

for some K-function β̄. Hence, since ξ0 and w̃ were arbitrary,
this establishes internal stability of the discrete-time system
(16).

To prove the converse statement, we assume that (16) is
internally stable. Consider w ∈ L2, ξ(0) = ξ0 and τ(0) =
h and the corresponding trajectory ξ of (1). Using the same
notations as above, we get from (16a) and the invertibility of
Â that there exists a c3 > 0 such that

|ξ+
k | ≤ c3(|ξk+1|+ ‖w̃k‖K), k ∈ N. (56)

Using Lemma III.5 and internal stability of (16) guarantees
the existence of a K-function β̂ with

‖{ξ+
k }k∈N‖`2 ≤ β̂(max(|ξ0|, ‖w‖L2)).

Finally, using (53) and one more time Lemma III.5 yields the
desired bound on ‖ξ‖L2 and thus the internal stability of (1).
This proves the equivalence as stated in the theorem.

Moreover, note that if (1) is internally stable, due to the
above developments we obtain the bound (54). Using now
(53) and realising that the operators M̂ and N̂ can also be
considered as bounded linear operators from Rnξ and K,
respectively, to L∞[0, h], guarantee the existence of a c4 > 0
such that

‖ξ̃k‖L∞ ≤ c4(|ξ+
k |+ ‖w̃k‖K), k ∈ N. (57)

Since the right-hand side of the latter inequality can be
upper bounded by using (54), we obtain that ‖ξ‖L∞ ≤
β′(max(|ξ0|, ‖w‖L2

)) for some K-function β′. Since w̃k → 0
(in K-sense) and ξ+

k → 0 (cf. (56)) when k → ∞, this gives
based on (57) that ‖ξ̃k‖L∞ → 0 when k → ∞ and thus we
obtain limt→∞ ξ(t) = 0, thereby completing the proof of the
proposition.

Proof of Theorem IV.3: To prove Statement 1), let ξ0
and w̃ = (w̃0, w̃1, . . .) ∈ `(K) result in a state sequence
{ξk}k∈N and output sequence z̃ = (z̃0, z̃1, . . .) ∈ `(K) for
system (16). Consider now the property, denoted by PK for
K ∈ N, stating that there exists (ṽ0, ṽ1, . . . , ṽK−1) ∈ KK such
that (18) with initial state ξ̄0 = ξ0 leads to the state trajectory
{ξ̄k}k=0,1,2,...,K and output sequence (r̃0, r̃1, . . . , r̃K−1) ∈
KK satisfying (28) for k = 0, 1, 2 . . . ,K and (29) for
k = 0, 1, . . . ,K − 1. The property P0 obviously holds.
Proceeding by induction, assume PK holds for K ∈ N.
Consider now ξ̄K = ξK and ξ̄+

K = φ(ξK) = ξ+
K . Note that

ξK+1 = Âξ+
K + B̂w̃k. We take now ṽK and r̃K according to

(22) thereby satisfying (21) for k = K, which based on (20)
gives (29) for k = K. Additionally, r̃k satisfies (27). Moreover,
from (22) and the expressions (26) and (25) it follows that

ξK+1 = Âξ+
K + B̂w̃k

(25),(26)
= Āξ+

K + B̄ṽk = Āξ̄+
K + B̄ṽk = ξ̄K+1.

This shows that property PK+1 holds. Hence, using complete
induction, this proves Statement 1). Statement 2) can be proven
in a similar fashion only using (23) instead of (22).

To prove Statement 3), we assume the internal stability
and contractivity of (18). First we prove the internal stability
of (16). Therefore, let ξ0 and w̃ ∈ `2(K) be given with
corresponding solution {ξk}k∈N to (16) with output sequence
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z̃ ∈ `(K). Due to Statement 1) there is a ṽ ∈ `(K) (specified
through (22)) such that the solution {ξ̄k}k∈N of (18) for initial
state ξ0 is equal to {ξk}k∈N with output sequence r̃ ∈ `(K).
To show that ṽ ∈ `2(K) and to obtain a bound on ‖ṽ‖`2(K)

we use Θ−1 = Θ∗ (due to Θ being unitary) leading to(
ṽk
z̃k

)
= Θ∗

(
r̃k
w̃k

)
=

(
−D̂∗ (I − D̂∗D̂)

1
2

(I − D̂D̂∗)
1
2 D̂

)(
r̃k
w̃k

)
. (58)

Since γ0 := ‖D̂∗‖K = ‖D̂‖K < 1 and c5 := ‖(I −
D̂∗D̂)

1
2 ‖K < ∞, we get now that, for all k ∈ N, ‖ṽk‖K ≤

γ0‖r̃k‖K + c5‖w̃k‖K. Let us now consider the sequences
ṽ|K := (ṽ0, ṽ1, . . . , ṽK , 0, 0, 0, . . .) for K ∈ N. By using
Lemma III.5 we obtain the existence of 0 ≤ γ̃0 < 1 and
c6 > 0 such that ‖ṽ|K‖`2(K) ≤ γ̃0‖r̃|K‖`2(K) + c6‖w̃‖`2(K).
Moreover, due to the contractivity of (18) we also have
the existence of a K-function β̃ and 0 ≤ γ1 < 1 such
that ‖r̃|K‖`2(K) ≤ β̃(|ξ0|) + γ1‖ṽ|K‖`2(K). Combining these
inequalities we get for all K ∈ N

‖ṽ|K‖`2(K) ≤ γ̃0

[
β̃(|ξ0|) + γ1‖ṽ|K‖`2(K)

]
+ c6‖w̃‖`2(K),

which gives

‖ṽ|K‖`2(K) ≤
1

1− γ0γ1
γ̃0β̃(|ξ0|) +

c6
1− γ0γ1

‖w̃‖`2(K).

This proves that ṽ ∈ `2(K) and

‖ṽ‖`2(K) ≤
1

1− γ0γ1
γ̃0β̃(|ξ0|)+

c6
1− γ0γ1

‖w̃‖`2(K). (59)

Using now the internal stability of (18), we obtain

‖{ξk}k∈N‖`2 = ‖{ξ̄k}k∈N‖`2 ≤ β(max(|ξ0|, ‖ṽ‖`2(K)))(60)

for a K-function β (independent of ξ0, w̃ and ṽ). Substituting
(59) in (60) shows the internal stability of (16) as ξ0 and
w̃ ∈ `2(K) were arbitrary.

To prove contractivity of (16), let again ξ0 and w̃ ∈ `2(K)
be given with corresponding solution {ξk}k∈N and output
sequence {z̃k}k∈N to (16). Following the internal stability
proof, we take ṽ ∈ `2(K) as in Statement 1) providing
the solution {ξk}k∈N to (18) for initial state ξ0 and output
sequence {r̃k}k∈N such that (29) is satisfied for all k ∈ N.
Note that {r̃k}k∈N and {z̃k}k∈N are both in `2(K) due to
contractivity of (18). First we will establish that there exist a
positive constant ρ and K-function β1 (independent of ξ0, w̃)
such that

‖ṽ‖`2(K) ≥ ρ‖w̃‖`2(K) − β1(|ξ0|). (61)

Again using the identity (58), in particular, ṽk = −D̂∗r̃k +
(I − D̂∗D̂)

1
2 w̃k, gives that

µ‖w̃k‖K ≤ ‖(I − D̂∗D̂)
1
2 w̃k‖K

= ‖ṽk + D̂∗r̃k‖K ≤ ‖ṽk‖K + ‖r̃k‖K, k ∈ N.

Here we used that ‖D̂∗‖K = ‖D̂‖K < 1 and, moreover,
since ‖D̂‖K < 1 we have the existence of a µ > 0 such
that for all w̃k ∈ K the inequality ‖(I − D̂∗D̂)

1
2 w̃k‖K =√

〈w̃k, (I − D̂∗D̂)w̃k〉K =
√
‖w̃k‖2K − ‖D̂w̃k‖2K ≥ µ‖w̃k‖K

is satisfied. Lemma III.5 leads now to the existence of ρ1 > 0
and ρ2 > 0 such that ‖w̃‖`2(K) ≤ ρ1‖ṽ‖`2(K) + ρ2‖r̃‖`2(K).

Combining the latter inequality with the contractivity of (18)
gives (61) as desired. Note that (61) also leads to

‖ṽ‖2`2(K) ≥ ρ̄‖w̃‖
2
`2(K) − β2(|ξ0|) (62)

for some ρ̄ > 0 and K-function β2. To complete the proof of
contractivity of (16), we use again the contractivity of (18),
which gives the existence of a K-function β̃ and 0 ≤ γ1 < 1
such that ‖r̃‖2`2(K) ≤ β̃(|ξ0|) + γ2

1‖ṽ‖2`2(K), or, rewritten,

‖r̃‖2`2(K) − ‖ṽ‖
2
`2(K) ≤ β̃(|ξ0|) + (γ2

1 − 1)‖ṽ‖2`2(K).

Using now (29) gives that

‖z̃‖2`2(K) − ‖w̃‖
2
`2(K) = ‖r̃‖2`2(K) − ‖ṽ‖

2
`2(K)

≤ β̃(|ξ0|) + (γ2
1 − 1)‖ṽ‖2`2(K).

Combining this inequality with (62) yields

‖z̃‖2`2(K) ≤ β̃(|ξ0|) + ‖w̃‖2`2(K) + (γ2
1 − 1)‖ṽ‖2`2(K)

≤ β̃(|ξ0|) + (1− [1− γ2
1 ]ρ̄)‖w̃‖2`2(K) + (1− γ2

1)β2(|ξ0|),

which establishes the contractivity of (16) as

(1− [1− γ2
1 ]ρ̄) < 1.

The converse statement follows in a similar manner.

Proof of Theorem IV.4: Proposition IV.1 and Theo-
rem IV.3 show that this theorem is proven if we establish
that internal stability and contractivity of the system (18) is
equivalent to the internal stability and the contractivity of (30).
To establish the equivalence we will first prove the following
claim.

Claim 1: The following statements are equivalent:

(i) The system (18) is internally stable and contractive.
(ii) The system (18) with input sequences restricted to ṽ ∈

`2(im B̄∗) is internally stable and contractive.

Obviously, (i) implies (ii). To show that (ii) implies (i) note
that ker B̄ ⊕ im B̄∗ = K and im B̄∗ = (ker B̄)⊥ due to
Theorem 1, page 57, and Theorem 3, page 157 in [37] using
the closedness of im B̄∗, which is a consequence of im B̄∗

being a finite-dimensional subspace. Consider for system (18)
an input sequence ṽ and decompose ṽ as ṽ = ṽ0 + ṽ⊥ such
that ṽ0 ∈ `2(ker B̄) and ṽ⊥ ∈ `2(im B̄∗). Since ṽ0

k ∈ ker B̄,
k ∈ N, it is obvious that for a given ξ̄0 the sequence ṽ produces
the same state trajectory {ξ̄k}k∈N and output sequence r̃ as
ṽ⊥. Due to the subspaces im B̄∗ and ker B̄ being orthogonal,
it holds that ‖ṽ⊥‖`2(K) ≤ ‖ṽ‖`2(K) and the reverse implication
(ii) ⇒ (i) follows as well.

Using Claim 1 we can restrict our attention to system (18)
with inputs ṽk ∈ im B̄∗, k ∈ N. Take now vectors s1, . . . , sp ∈
Rnξ with p = dim im B̄∗ < ∞ such that {B̄∗s1, . . . , B̄

∗sp}
is a basis for im B̄∗ ⊂ K. Also consider the set of vectors
{B>d s1, . . . , B

>
d sp} ⊂ Rnv .

Property 1: For α1, α2, . . . , αp ∈ R it holds that

‖
p∑
i=1

αiB̄
∗si‖K = ‖

p∑
i=1

αiB
>
d si‖Rnv .
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This property follows from the manipulations

‖
p∑
i=1

αiB̄
∗si‖2K = 〈

p∑
i=1

αiB̄
∗si,

p∑
j=1

αjB̄
∗sj〉K

= 〈B̄∗(
p∑
i=1

αisi), B̄
∗(

p∑
j=1

αjsj)〉K

= 〈(
p∑
i=1

αisi), B̄B̄
∗(

p∑
j=1

αjsj)〉Rnξ

= 〈(
p∑
i=1

αisi), BdB
>
d (

p∑
j=1

αjsj)〉Rnξ

= 〈B>d (

p∑
i=1

αisi), B
>
d (

p∑
j=1

αjsj)〉Rnv = ‖
p∑
i=1

αiB
>
d si‖2Rnv .

From this property it follows that B>d s1, . . . , B
>
d sp are

independent vectors, because B̄∗s1, . . . , B̄
∗sp are. Moreover,

{B>d s1, . . . , B
>
d sp} is a basis for imB>d due to this indepen-

dence and

rankB>d = rankBd = dim imBd

= dim imBdB
>
d = dim im B̄B̄∗

= dim im B̄ = dim im B̄∗ = p.

Claim 2: The following statements are equivalent:
(a) System (18) with input sequences restricted to ṽ ∈

`2(im B̄∗) is internally stable and contractive.
(b) The system

ξ̄k+1 = Āξ̄+
k +Bdvk; ξ̄+

k = φ(ξ̄k); r̃k = C̄ξ̄+
k (63)

with input sequences restricted to v ∈ `2(imB>d ) is
internally stable and contractive.

To prove that (b) implies (a) note that for each ṽ ∈
`2(im B̄∗) we have that there is a unique sequence {αk}k∈N ∈
`2(Rp) such that ṽk =

∑p
i=1 αk,iB̄

∗si, k ∈ N, as
{B̄∗s1, . . . , B̄

∗sp} is a basis for im B̄∗. Then we have for
all k ∈ N that

B̄ṽk =

p∑
i=1

αk,iB̄B̄
∗si

=

p∑
i=1

αk,iBdB
>
d si = Bd (

p∑
i=1

αk,iB
>
d si)︸ ︷︷ ︸

=:vk

.

Clearly, v := {vk}k∈N ∈ `2(imB>d ). Due to statement (b)
and Property 1 (and thus ‖ṽk‖K = ‖vk‖Rnv and ‖ṽ‖`2(K)) =
‖ v‖`2(K)), we have (a) as the system (18) with input ṽ and
initial state ξ̄0 and the system (63) with input v (with the same
norm as ṽ) and the same initial state produce the same state
trajectory {ξ̄k}k∈N and output response {r̃k}k∈N. The reverse
implication (a) ⇒ (b) follows in a similar manner using that
{B>d s1, . . . , B

>
d sp} is a basis for imB>d .

Claim 3: The following statements are equivalent:
(A) The system (63) with input sequences restricted to v ∈

`2(imB>d ) is internally stable and contractive.
(B) The system (63) is internally stable and contractive.

Claim 3 can be proven analogously to Claim 1 using
kerBd ⊕ imB>d = Rnv .

Combining now Claims 1, 2 and 3 yields that the following
statements are equivalent:

(I) The system (18) is internally stable and contractive.
(II) The system (63) is internally stable and contractive.
Considering now that an output sequence r̃ of system (63)

(for some ξ̄0 and v ∈ `2) satisfies

‖r̃‖2`2(K) =

∞∑
k=0

‖r̃k‖2K =

∞∑
k=0

〈C̄ξ̄+
k , C̄ξ̄

+
k 〉K

=

∞∑
k=0

〈ξ̄+
k , C̄

∗C̄ξ̄+
k 〉Rnξ =

∞∑
k=0

〈ξ̄+
k , C

>
d Cdξ̄

+
k 〉Rnξ

=

∞∑
k=0

〈C̄dξ̄+
k , Cdξ̄k〉Rnr =

∞∑
k=0

‖C̄dξ̄+
k ‖

2
Rnr = ‖r‖2`2(Rnr ),

where r is the output sequence of (30) (for the same ξ̄0 and
v ∈ `2), it follows that (18) is internally stable and contractive
if and only if (30) is.

Proof of Theorem VI.3: In the proof of Statement 1) we will
use for τ ∈ R≥0 the operator D̂A,B,C,D

τ : L2[0, τ ]→ L2[0, τ ]

defined through (D̂A,B,C,D
τ w)(t) =

∫ t
0
CeA(t−η)Bw(η)dη +

Dw(t) with t ∈ [0, τ ] for w ∈ L2[0, τ ]. We prove now
first Statement 1) for the case D = 0 by considering
D̂τ := D̂A,B,C,0

τ . Note that D̂h = D̂. In [38] it is proven
that I− D̂∗τ D̂τ is invertible if and only if F11(τ) is invertible,
see also the discussion on page 432 of [17]. “⇒” Since
‖D̂‖K < 1 implies ‖D̂τ‖L2[0,τ ] < 1 for all τ ∈ [0, h] and thus
the invertibility of I − D̂∗τ D̂τ for all τ ∈ [0, h], we can use
the above mentioned result in [38] to get for all τ ∈ [0, h] the
invertibility of F11(τ). “⇐” We show the converse statement
by assuming ‖D̂‖K ≥ 1. Since τ 7→ ‖D̂τ‖L2[0,τ ] is a
continuous function and limτ↓0 ‖D̂τ‖L2[0,τ ] = 0, ‖D̂‖K ≥ 1

implies the existence of a τ ∈ [0, h] such that ‖D̂τ‖L2[0,τ ] = 1.
The latter condition results in I − D̂∗τ D̂τ not being invertible
and thus that F11(τ) is not invertible. As a consequence,
Assumption VI.1 is not true, thereby completing the proof
for the case D = 0.

The case D 6= 0 follows from the case D = 0 by using a
standard (pointwise) loop-shifting argument in a similar way
as done in Subsection IV-B leading to the equivalence of the
following statements:
• ‖D̂A,B,C,D

h ‖K < 1.
• ‖D‖ =

√
λmax(D>D) < 1 and ‖D̂Al,Bl,Cl,0

h ‖K < 1

with Al = A+BMD>C, Bl = BM
1
2 and Cl = L

1
2C.

By applying now Statement 1) for D = 0 to the latter
establishes Statement 1) also for D 6= 0.

Statement 2) follows by proving the identities (see (33),
(34), and (49))

F̄−1
11 = Q11(h)−>, (64a)

−F̄−1
11 F̄12 = Q21(h)Q11(h)−1, (64b)
F̄21F̄

−1
11 = −Q11(h)−1Q12(h). (64c)

To prove these identities, first we define E := E1 and observe
that for T =

(
0 I
I 0

)
we get E = THT−1 and T = T−1
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such that eEt = TeHtT−1. Defining G(t) := eHt and
partitioning this similarly as E we obtain from eEt = TeHtT
that

Q11(t) = G22(t); Q12(t) = G21(t); (65a)
Q21(t) = G12(t); Q22(t) = G11(t). (65b)

Due to F (t) satisfying F>(t)ΩF (t) = Ω for all t ∈ R with

Ω =

(
0 I
−I 0

)
(see proof Theorem III.2 in [2]), we obtain

ΩF (t) = [F>(t)]−1Ω. Combining the latter identity with

[F>(t)]−1 = F>(−t) = [eHt]> =
(
G>11(t) G>21(t)

G>12(t) G>22(t)

)
leads to ΩF (t) = G>Ω. This gives

F̄21 = −G21(h)>; F̄22 = G11(h)>; (66a)

F̄11 = G22(h)>; F̄12 = −G12(h)>. (66b)

Combining (65) and (66) gives F̄−1
11 = Q11(h)−>,

− F̄−1
11 F̄12 = Q11(h)−>Q21(h)>

= (Q21(h)Q11(h)−1)> = Q21(h)Q11(h)−1,

and

F̄21F̄
−1
11 = −Q12(h)>Q11(h)−>

= −[Q11(h)−1Q12(h)]> = −Q11(h)−1Q12(h).

These are the desired inequalities in (49).
To prove Statement 3) we assume that the hypotheses of

Proposition VI.2 hold, i.e., Assumption VI.1 holds and there
are a matrix Ph � 0 and scalars µi ≥ 0, i ∈ {1, 2},
satisfying the LMIs (47). Due to Statement 1) this guarantees
that ‖D̂‖K < 1 .

To link the feasibility of the LMIs in Proposition VI.2 to the
feasibility of the LMIs in Theorem V.1 it is important to note
that according to [39, Sec. 2.6.3] the implication ξ>Xiξ ≥
0 ⇒ ξ>Qξ ≤ 0 for i = 1, 2, . . . , N1 yields the existence of
ζi, i = 1, 2, . . . , N1, such that −Q � ζiXi, i = 1, 2, . . . , N1.
Similarly, since ξ>Xiξ ≥ 0 ⇒ ξ>Qξ ≥ 0 for i = N1 +
1, . . . , N there exist ζi, i = N1 + 1, . . . , N , such that Q �
ζiXi, i = N1 + 1, . . . , N . Also note that due to Statement 2)
the PWL systems used in Proposition VI.2 and Theorem V.1
are essentially the same. As such, if Ph � 0, and µi ≥ 0,
i ∈ {1, 2} satisfy (47), it follows that Pi = Ph and κi = 0,
i = 1, 2, . . . , N , βi,j = 0, i, j = 1, 2, . . . , N , and µi,j = ζiµ1

for i = N1 + 1, . . . , N , j = 1, 2, . . . , N , and µi,j = ζiµ2 for
i = 1, . . . , N1, j = 1, 2, . . . , N , form a solution to the LMIs
(39). This completes the proof.
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