Impact of Policy Design on Workflow Resiliency
Computation Time

John C. Mace®) | Charles Morisset, and Aad van Moorsel

School of Computing Science, Newcastle University,
Newecastle upon Tyne NE1 7RU, UK
{john.mace,charles.morisset,aad.vanmoorsel}@ncl.ac.uk

Abstract. Workflows are complex operational processes that include
security constraints restricting which users can perform which tasks. An
improper user-task assignment may prevent the completion of the work-
flow, and deciding such an assignment at runtime is known to be complex,
especially when considering user unavailability (known as the resiliency
problem). Therefore, design tools are required that allow fast evaluation
of workflow resiliency. In this paper, we propose a methodology for work-
flow designers to assess the impact of the security policy on computing
the resiliency of a workflow. Our approach relies on encoding a work-
flow into the probabilistic model-checker PRISM, allowing its resiliency
to be evaluated by solving a Markov Decision Process. We observe and
illustrate that adding or removing some constraints has a clear impact
on the resiliency computation time, and we compute the set of security
constraints that can be artificially added to a security policy in order to
reduce the computation time while maintaining the resiliency.

Keywords: Workflow satisfiability problem - Probabilistic model
checker - User availability

1 Introduction

Workflows are used in multiple domains, for instance business environments,
to represent complex operational processes [7,14], or healthcare environments,
to represent the different protocols that must be respected [26]. There is also
an increasing interest in scientific environments, where platforms like eScience
Central [17] allow domain experts to define scientific processes, which are then
automatically deployed and executed. Although the exact definition can change
from one context to another, a workflow typically consists of a partially ordered
set of tasks, where each task must be executed by a user [1]. Workflow designers
may have to impose complex security policies, restricting which users can per-
form which tasks. This includes static user-task permissions but also dynamic
constraints, such as separation or binding of duty constraints, which indicate
tasks that cannot be performed by the same user [19], or tasks that must be
performed by the same user [9], respectively.

© Springer International Publishing Switzerland 2015

J. Campos and B.R. Haverkort (Eds.): QEST 2015, LNCS 9259, pp. 244-259, 2015.
DOI: 10.1007/978-3-319-22264-6_16

Impact of Policy Design on Workflow Resiliency Computation Time 245

In general, purely granting an assignment request for a task based on its user
permissions and constraints with previously executed tasks may not be enough.
Assigning a specific user to a task can prevent the completion of the workflow
at a later stage, meaning in general, all possible options have to be considered.
Checking that a particular user-task assignment is both valid and allows the
workflow to finish is known as the workflow satisfiability problem (WSP) and
has been shown to be NP-hard [12,28], indicating the runtime assignment process
may be computationally demanding.

Workflow resiliency extends the WSP by considering users may become
unavailable at runtime, a concept first introduced by Wang and Li [28]. This
problem was later refined by Mace et al. [22], who considered a more quantitative
approach, where each user is associated with a probability to become unavail-
able, and showed that calculating the resiliency of a workflow was equivalent
to finding the optimal policy of a Markov Decision Process (MDP). The value
returned by the value function of the MDP provides a measure of likely workflow
completion. Therefore, evaluating resiliency at runtime can ensure assignments
are granted only if the rest of the workflow can be satisfied with a probability
above a given resiliency threshold.

Indeed, contrary to the WSP, which can be solved at design time, maximis-
ing the resiliency of workflow requires to re-compute at each step the expected
resiliency, in order to adjust the user-task assignment to the current availability
of the users. Hence, evaluating resiliency for assignments at runtime has itself an
impact on workflow execution time. Recent optimising approaches for the WSP,
such as [12], and algorithms and tools, such as model-checking [2], have been
proposed, however, they are not directly concerned with user availability.

In this paper, we investigate how to improve the computation time for the
resiliency of a workflow at runtime. In particular, we observe that adding or
removing security components to the security policy has a clear impact on the
resiliency computation time, that can be either increased or decreased. We there-
fore propose a methodology to help a workflow designer assess the impact of such
policy changes. We apply this methodology to show how to compute the set of
security constraints that can be added to a workflow, without impacting the
actual resiliency while significantly decreasing the resiliency computation time.

After discussing the related work (Sect.2) and formally defining the notion
of workflow resiliency (Sect. 3), we present the contributions of this paper, which
are: the automated analysis of workflow resiliency, using an encoding in the prob-
abilistic model checker PRISM [20] of the theoretical approach presented in [22]
(Sect. 4); the empirical assessment of policy changes on the resiliency computa-
tion time (Sect. 5); the methodology to calculate a set of artificial security policy
constraints, in order to reduce the resiliency computation time while maintain-
ing the actual resiliency value, and its illustration on an example (Sect.6). We
believe that building efficient tools for the analysis of workflows will be help-
ful to workflow designers, by helping them understanding the complexity of the
workflow they are building, and estimating the potential runtime impact of their
security policy designs.

246 J.C. Mace et al.

2 Related Work

A number of previous studies on workflow resiliency appear in the literature.
Wang and Li took a first step in [28] to quantify resiliency by addressing the
problem of whether a workflow can still complete in the absence of users and
defined a workflow as k resilient to all failures of up to k users across an entire
workflow. Lowalekar et al. in [21] use security attributes to choose the most
favourable between multiple assignments exhibiting the same level of k resiliency.

Basin et al. consider the impact of security on resiliency by allowing user-
task permission changes to overcome user failure induced workflow blocks, at a
quantifiable cost [5,6]. Wainer et al. also consider in [27] the explicit overriding
of security constraints in workflows, by defining a notion of privilege. Similarly,
Bakkali [4] suggests overcoming user unavailability through selected delegation
and the placement of criticality values over workflows.

A mechanism for the specification and enforcement of workflow authorisation
constraints is given by Bertino et al. in [8] whilst Ayed et al. discuss security
policy definition and deployment for workflow management systems in [3]. Model
checking has been used by Armando et al. [2] to formally model and automati-
cally analyse security constrained business processes to ensure they meet given
security properties. He et al. in [15] also use modelling techniques to analyse secu-
rity constraint impact in terms of computational time and resources on workflow
execution.

Herbert et al. in [16] model workflows expressed in BPMN as MDPs. The
probabilistic model checker PRISM is utilised to check various probabilistic prop-
erties such as reaching particular states of interest, or the occurrence and order-
ing of certain events. Calinescu et al. use PRISM to evaluate the Quality of
Service (QoS) delivered by dynamically composed service-based systems [11].
PRISM has also been used for identifying and recovering from runtime require-
ment violations in dynamically adaptable application software [10]. Quantitative
access control using partially-observable MDPs is presented by Martinelli et al.
in [25] which under uncertainty, aims to optimise the decision process for a
sequence of access requests.

However, to the best of our knowledge, there is no current literature neither
on automatic analysis of workflow resiliency, nor on the analysis of how changes
to a workflow’s security policy impact resiliency computation, which is the focus
of this paper.

3 Workflow

In this section we provide our working definition of a workflow and describe the
process of assigning users to tasks whilst respecting the security policy, known
as the workflow satisfiability problem (WSP). We then describe the notion of
workflow resiliency which looks to solve the WSP under the assumption users
may become unavailable for future task assignments.

Impact of Policy Design on Workflow Resiliency Computation Time 247

[u17u2] [uhu?}

©-®
TN @0

[uz, us] [uz, u4] [u1, ud]

t1

Fig. 1. Running example workflow Fig. 2. Running example security policy

3.1 Workflow Definition

We define here a workflow in similar fashion to Wang and Li [28] and Crampton
et al. [12]. A workflow firstly consists of a partially ordered set of tasks (T, <),
such that for any two tasks t,t' € T, if t < t/, then ¢t must be performed before
t’ in any given instance of the workflow.

Each task needs to be assigned to a user in a given set U, and such an
assignment must respect a security policy. In general, a policy is a triple p =
(P, S, B) where:

— P CU x T is aset of user-task permissions, such that (u,t) € P if, and only
if u is allowed to perform t.

- S CTxTis aset of separations of duty, such that (¢,¢') € S if, and only if
the users assigned to ¢t and t’ are distinct.

— B CT xTis aset of bindings of duty, such that (¢,t') € B if, and only if the
same user is assigned to ¢t and ¢’.

Definition 1 (Workflow). A workflow is a tuple w = (U, (T, <),p), where U
18 a set of users, T is a partially ordered set of tasks, and p is a security policy.

Running Example. As a running example to illustrate the different concepts
presented here, we consider the workflow wy = (U, (T1,<),p1), where Uy =
{U17UQ,’LL37’LL4}, T = {t17t27t37t4,t5} such that t1 <ty <tz <ts andty <ty <
ts, and the py is defined as the triple (Py,S1, B1) where:

= Py = {(u1,t1), (u2, t1), (uz,t2), (us, t2), (u1,t3),
(u27t3)’ (UQ,t4), (U4,t4), (U1, t5)7 (U4,t5)}

= S1={(t2, ta), (t3,ta), (ta, t5)}

— By ={(t1,t3)}

Figure 1 illustrates the task ordering over Ty and Fig. 2 illustrates this security
policy, where a dotted arrow signifies a constraint between the tasks t and t'
labelled # to indicate a separation of duty, and = to indicate a binding of duty.
A label [u;, ..., u;] states the users that are authorised by Py to execute t.

248 J.C. Mace et al.

3.2 Workflow Satisfiability Problem

A workflow assignment is a relation A C U x T, such that (u;,¢;) € A indi-
cates that user u; is assigned to the task ¢;. Intuitively, A is valid when i) the
task ordering is respected; i) all assignments are permitted by the user-task
permission; #44) separation and binding constraints are respected; iv) no task is
executed twice. More formally, given a workflow w = (U, (T, <), (P, S, B)), A is
a valid assignment, and in this case we write A - w if, and only if the following
five conditions are met:

V(u,t) e AV eTt <t=F €U (W,t')e A (1)
ACP (2)

V(t,t') €S I(u,t) e AIW t'Ye A=u #u (3)
V(t,t') € B I(u,t) e AW/, t')e A= =u (4)

Vt €T Vu,u' €U (u,t) € AN (U t) e A= u=1 (5)

A workflow assignment A is said to be a partial if it does not include
an assignment for every task in the workflow. For instance, in our run-
ning example, {(uy,t1), (us,t2), (u2,ts)} is a valid partial assignment whereas
{(u1,t1), (u2,t2), (u2,t4)} is not as it violates the separation of duty constraint
between tasks to and t4. For a workflow to complete successfully, every task
needs to be assigned a user for execution. A workflow assignment A is therefore
said to be complete, if, and only if:

VieT JuelU (u,t) € A (6)

The workflow satisfiability problem (WSP) consists of finding a complete and
valid assignment, and in some cases can be relatively simple. For instance, con-
sider a policy where S = B = (), i.e., where there are no separations or bindings
of duty. In this case, it is enough to assign each task ¢ with a user u such that
(u,t) € P. If there is no such user, the workflow is unsatisfiable. However, in gen-
eral, the WSP has been shown to be NP hard [28], i.e., roughly speaking, finding
a complete and valid assignment might require to check all possible assignments.
With our running example, imagine we want to find a complete assignment for
wy and begin assigning users to tasks t1,t2 and ¢4 to form the partial assignment
A = {(ua,t1), (us, t2), (ua, ts)}. Although this assignment is valid, there is no
user u such that AU {(u,?3)} is also valid, meaning that the workflow cannot
finish. However with the partial assignment {(us,t1), (us,t2), (ug,t4)}, we can
add (uz,t3) and (u1,ts5) to form a valid and complete assignment.

3.3 Workflow Resiliency

Solving the WSP assumes users will always be available for future tasks, how-
ever in practice, sickness, vacation, heavy workloads, etc., can cause users to be
unavailable for a given user-task assignment. It is important to take this into
account when finding A for a given workflow. This is called the resiliency prob-
lem, whether a workflow can be satisfied even when some users become absent.

Impact of Policy Design on Workflow Resiliency Computation Time 249

Wang and Li defined an approach to calculate a valid assignment if one exists,
that is resilient to up to k users failing, in other words declaring a workflow to
be either k resilient or not [28]. This approach is rather binary as in many cases,
finding an assignment for a workflow that is resilient to every combination of k
user failures may be impossible. Yet finding a valid assignment that is resilient
in 9 out of 10 cases is arguably better than choosing a valid assignment that is
resilient in only 1 out of 10 cases.

The problem of resiliency adds another level of complexity to the WSP.
For instance, consider {(ui,t1),(ua,t2), (u1,ts), (u4,ts), (u1,t5)} F wy in our
running example, where u4s has a very high probability of failing at or
before t4. If wuy does fail, t; cannot be reassigned to any other user
meaning the workflow cannot finish. If we chose a different assignment
{(u1,t1), (us, ta), (ur, t3), (u4,ts), (u1,t5)} F wq, intuitively the workflow is more
resilient as ¢4 can be reassigned to us and still finish if u4 did indeed fail. In [22],
Mace et al. introduce probabilistic user failures and show that computing the
optimal policy of an MDP is equivalent to finding A + w that maximises the
value function. The value function returns 0 < v < 1 if there exists A = w where
v indicates the probability of the workflow to finish, or 0 otherwise.

Moreover, Mace et al. define in [24] several user availability models and dis-
cuss the effects model choice can have on workflow resiliency analysis. In this
paper we consider a dynamic user availability model meaning any user who
becomes unavailable for a task may become available again at any step later in
the workflow.

4 Computing Workflow Resiliency at Runtime

Although user availability is modelled in a probabilistic way, at runtime, a user
is either available or not. In other words, the resiliency of a workflow denotes
a prediction of completion, and not a level a completion: a workflow only ter-
minates if all tasks have been assigned to a user available for that task. When
the availability of users does not change at runtime, any valid assignment com-
puted before execution remains valid throughout execution. However, when user
availability is dynamic, the validity of an assignment might change during the
execution, and therefore a new assignment might need to be found.

According to Crampton and Khambhammettu [13], there are two main work-
flow execution models: workflow-driven execution model (WDEM), where users
are automatically assigned tasks to execute, and user-driven execution model
(UDEM), where users initiate requests to be assigned tasks at runtime. The
impact of dynamic user availability is slightly different between the two models:
with WDEM, intuitively, we want to continuously compute the most resilient
assignment, adapting to changes in user availability; Whereas with UDEM, we
want to ensure that a user asking to execute a specific task either belongs to the
most resilient assignment, or satisfies a threshold of resiliency.

With either model, resiliency might then need to be recomputed at runtime,
which can be done by solving a Markov Decision Process (MDP) [22]. There are

250 J.C. Mace et al.

[(u,t) valid]
‘A‘;"' .
Select next Select Check
_______ > D i Falled
task ¢ € nextt | [next, # @] | user u (u,t) [(u,t) invalid]

—> Deterministic transition
------ > Non-deterministic transition
next, = 0 [Success] .
[t g > Probabilistic transition

[guard] Guard on transition

Fig. 3. Process computing the resiliency of a workflow, where next; denotes the set of
tasks remaining to be executed.

many ways to solve an MDP including dynamic programming (e.g. value iter-
ation) [18]. This technique is provided by the probabilistic model checking tool
PRISM, which enables the specification, construction and analysis of probabilis-
tic models such as MDPs [20]. PRISM is an intuitive choice as it can model both
probabilistic and non-deterministic choice, and gives an efficient way to solve an
MDP whilst providing analysis data regarding computation overheads.

The workflow assignment process is shown as a state diagram in Fig. 3. Each
node represents a process state while each directed arrow between two states s
and s’ indicates a transition from state s to state s’. The assignment process
works as follows: 1) given a starting state the next unassigned task ¢ in the
workflow is selected, where the set of possible tasks is represented by next;.
Task selection is in general non-deterministic since several tasks can be the next
one (i.e. in the case of parallel execution). If all tasks have been assigned then
next, = (; 2) When a task ¢ is selected, an arbitrary user u is selected to be
assigned to t. The selection of u is non-deterministic as the MDP will essentially
try every user for each task assignment. 3) The user-task assignment (u, t) is then
checked to see whether it is valid; in other words whether w available and (u,t)
satisfies the workflow’s security policy p. This check is probabilistic, since user
availability is probabilistic. If (u,t) is valid, u is assigned to ¢t and the process
starts again with the next task, otherwise the workflow terminates early.

The resiliency of the workflow is therefore computed as the maximal prob-
ability of reaching the state Success. We provide an overview of the PRISM
modelling language and the full PRISM encoding of our running example in a
technical report [23]. In our running example the resiliency is computed to be
51.16 % with the probabilistic user availabilities given in Table4, Appendix A.

5 Empirical Assessment of Policy Changes

In this section we provide an empirical assessment of resiliency computation
time to help understanding of how it can be improved at runtime. In doing so
we investigate the impact upon computation time of adding security constraints
to the security policy.

Impact of Policy Design on Workflow Resiliency Computation Time 251

Table 1. Result averages when applying randomly generated security policies to a
workflow with 10 tasks and 5 users

0 1~5 6~10 11~15 |16~20 |21~25 |26~30 |31~35 |36~40 |41~45
Resiliency (%) 58.23 | 57.97 |55.73 52.78 50.49 46.02 34.85 15.31 | 0.89 0
0 % resiliency 0 0 0 1 0 11 90 305 488 500
Computation (s)|0.11 |0.38 1.56 2.24 1.80 1.08 0.52 0.20 0.07 0.04
Build time (s) 0.56 |2.83 16.12 25.91 21.72 13.81 7.52 4.38 2.55 1.78
Total time (s) 0.67 |3.21 17.68 28.15 23.52 14.89 8.04 4.58 2.62 1.82
States 3893 | 58246 |346992 |600287 |522850 |332259 |171627 |89361 |47140 |29387
Transitions 73249 | 758351 | 3352889 | 4754705 | 3649065 | 2171394 | 1090709 | 561534 | 294596 | 182751

5.1 Assessment Methodology

We first consider one workflow with 10 tasks and 5 users. For simplicity we
only consider the addition of separation of duty constraints which is sufficient
to show the changes to resiliency computation time. The maximum number of
separation of duty constraints for a workflow of 10 tasks is 45 constraints. For
each ¢ where 0 < ¢ < 45 we generate 100 random security policies such that
the permissions policy P contains between 2 and 5 users for each task, the
separations of duty policy S contains i constraints, and the bindings of duty
policy B has 0 constraints. Each policy is applied to the workflow meaning in all
we analyse 4500 workflows using a computing platform incorporating a 2.40Ghz
i7-4500U Intel processor and 8GB RAM. To take into account any influence the
computing platform may have on analysis time, each analysis is repeated 50
times for each workflow and the average values taken.

In terms of user availability we use a dynamic availability model with proba-
bilities of between 0.8 and 1.0 for each user u to be available for a task ¢ (Table 5,
Appendix A) . The resiliency of each workflow is calculated with an unmodi-
fied version 4.2.1 of the PRISM model checker using the ezplicit engine. This
is suitable for models with a potentially very large state space, only a fraction
of which is actually reachable. A test program has been implemented which,
given a number of inputs (number of workflows, tasks, users, etc.) creates the
required workflows with randomly generated security policies and generates the
corresponding PRISM definition files. Each file is passed in turn to the PRISM
model checker which logs the output composed of the resiliency value and other
computational values including computation time.

5.2 Results

The results shown in Table1 are given for our workflow with random separa-
tion of duty constraints applied, from 0 to 45. To place the workflow resiliency
value and its computation time into perspective the following result averages are
provided:

— Resiliency : workflow resiliency value
— 0% resiliency : number of workflows unable to complete
— Computation : time to verify the state Success is reachable (Sect. 4)

252 J.C. Mace et al.

T T
sol N i 15| « .
Fo 5 N :
SR % = «
_ 6of x e 1 E)
X e = 1op o x)
= Xt 5
I i §iﬁ : 2 _
£ 40| % e 1 Z %, x
7 2
Q = 5 -
=) < {1 @
:{ iiiiiiiiiiiiilg%ix
0l x X XARANHNHIAAAAIARIRAHNK | ol xllllil I illliiilii“llxixxxxxx 4
Il Il Il Il Il
0 10 20 30 40 m
Separation of duties Separation of duties
Fig. 4. Resiliency values for a workflow Fig. 5. Average computation times for
with 10 tasks and 5 users a workflow with 10 tasks and 5 users

— Build time : time to build PRISM model

— Total time : computation + build time

— States : number of reachable states in PRISM model
— Transitions : number of transitions between states

The following sections provide more detailed analysis of resiliency and com-
putation time.

Resiliency Analysis. Note the resiliency returned by a single execution of a
workflow is the same as the average resiliency of 50 executions, in other words the
resiliency does not change due to fixed parameters. Each plot in Fig. 4 therefore
represents a set of workflows with the same resiliency value and the same number
of separation of duty constraints (although each workflow in the set comes with
a different set of constraints).

Figure 4 shows how in general, resiliency steadily reduces following an incre-
mental introduction of separation of duty constraints. For example, with no
constraints, the workflows generally have between 40 and 80 % resiliency and
with 20 constraints between 30 and 70 %. All the workflows with between 0 and
10 constraints are shown to be resilient to some degree and up to the point where
20 constraints are applied, all except 1 workflow have some resiliency.

Each plot where resiliency is zero indicates a set of workflows with the same
number of separation of duty constraints whose security policy prevents com-
pletion. For example, 2 out of 100 workflows with 21 constraints are unable to
complete, whilst 36 out of 100 are unable to complete with 30 constraints. No
workflow is resilient once 40 constraints have been applied, however some work-
flows do exist which have some resiliency even with up to 39 out of a possible 45
constraints. The results indicate that some separation of duty constraints can
be added or removed with no effect on resiliency.

Impact of Policy Design on Workflow Resiliency Computation Time 253

Computation Time. The overall time to compute the resiliency of a workflow
can be separated into the time it takes to construct the PRISM model from
the workflow definition (build time), and the time it takes to verify the finishing
property holds in model (computation time). If a change is made to the definition
before verification, PRISM automatically rebuilds and verifies the model so the
total time must be considered. However, once a model has been built and no
changes are made, it need not be rebuilt. This is useful where cached, pre-built
models can be imagined meaning only computation time need be taken into
account when making runtime assignments. It is this time we are interested in
improving.

Figureb shows how in general, the computation time increases and then
decreases despite an incremental introduction of separation of duty constraints.
The actual times measured are of course somewhat dependent on the efficiency
of the model checker used, in this case PRISM. The maximum average compu-
tation time is 2.24 s with 11~15 separation of duty constraints. With zero con-
straints and 41~45 constraints the average computation time is 0.11 and 0.04s
respectively. The latter results can intuitively be attributed to the average 0%
resiliency value when all 45 constraints are applied. However, even with 26~30
constraints and an average 34.85 % resiliency, the average computation time is
lower at 0.52s than the time with 11~15 constraints. This would indicate the
workflows are on average at their most complex in terms of longest resiliency
computation time when approximately 11~15 separation of duty constraints
have been applied.

By observing the size of the model that PRISM must solve, in terms of the
number of states and transitions, the computation time can be put into con-
text. The maximum average of 2.24s is the computation time taken by PRISM
to solve a model with an average 600287 states and 4.75 million transitions.
These two values are the maximum average values recorded for states and tran-
sitions respectively. As one would expect, computation time appears to be closely
related to the size of the model meaning in order to reduce computation time we
must look to reduce the size of the model without losing resiliency. The results
do indicate that in some cases separation of duty constraints can be added or
removed to a workflow without any loss of resiliency.

6 Reducing Computation Time

In this section we provide a methodology to calculate a set of dummy security
policy constraints (e.g., redundant separation-of-duty constraints or removing
unused user-task permissions), in order to reduce the resiliency computation
time while maintaining the actual resiliency value.

It was shown in Sect. 5 that in some cases, separation of duty constraints could
be added to or removed from a workflow security policy. We are not in a position
to say which constraints can be removed as this may weaken the security policy.
Therefore we only consider strengthening the policy, in other words adding sepa-
ration of duty constraints and removing user-task permissions which in effect can
be removed at a later stage if necessary without any loss of security.

254 J.C. Mace et al.

Table 2. Average computation times and resiliency values when adding a single sep-
aration of duty constraint or removing a single permission from the running example

policy p1

P1 +(t2,t3) | +(t2, t5) | +(t3,t5) | +(t1,ta) | —(ua,ta) | —(ua,ts) | —(u2,ta) | —(u1,t1)
Resiliency (%) |51.16|47.89 51.16 51.16 51.16 39.47 51.16 51.16 51.16
Computation (s)| 0.11| 0.109 0.141 0.11 0.063 0.047 0.121 0.11 0.062

6.1 Adding Separations of Duty

In our running example workflow w; coming with probabilistic user availabilities
(Table4, Appendix A), the resiliency is computed to be 51.16 % at an average
computation time of 0.11s, based on the average of 50 resiliency calculations.
Imagine we now add a new separation of duty constraint (¢2,¢3) to give a new
pOliCy P2 = (PQ,SQ,BQ) where P2 = Pl, Sg = Sl U {(tg,tg)}, and Bg = Bl. The
resiliency of w; coming with py is now computed to be 47.89 % at an average
computation time of 0.109s. In other words, the computation time has reduced
by 0.001s but with a loss of 3.27 % resiliency.

Now consider adding in turn some alternative separation of duty constraints
(ta,t5),(ts,t5) and (t1,t4) to p1 to give new policies p3, ps and ps respectively.
The resiliency values and average computation times are given in Table 2 where
+(t,t') denotes the addition of a separation of duty constraint to p;, whilst
—(u,t) denotes the removal of a user-task permission from p;. The addition of
(t2,t5) to p1 (ps3) results in no loss to resiliency but increases the average com-
putation time by 0.031s. Adding (¢3,¢5) to p1 (p4) results in no loss to resiliency
nor any reduction of average computation time. However, adding (1,t4) to p;
(ps) results in no loss to resiliency yet a reduction to the average computation
time of 0.047s.

6.2 Removing User Permissions

Similarly we now consider removing a user-task permission (ug4,t4) to give a new
policy pg = (FPs, Se, Bs) where Ps = Py \ {(u4,t4)}, S¢ = S1, and Bg = B;. The
resiliency of w; coming with pg is now computed to be 39.47% at an average
computation time of 0.047s. In other words, the computation time has reduced
by 0.063s but with a loss of 11.69 % resiliency.

We now consider removing in turn some alternative user-task permissions
(uq,ts5),(usz,ts) and (u1,t1) from p; to give new policies pr, ps and pg respectively.
The resiliency values and average computation times are given in Table2. The
removal of (uy4,t5) from p; (p7) results in no loss to resiliency but increases the
average computation time by 0.011s to 0.121s. Removing (us,t4) from p; (ps)
results in no loss to resiliency nor any reduction of average computation time.
However, removing (u1,¢1) from py (pg) results in no loss to resiliency yet reduces
the average computation time by 0.048s to 0.062s. These results indicate that
a selective addition of separation of duty constraints, or removal of user-task
permissions can reduce the resiliency computation time without any loss to the
actual resiliency value.

Impact of Policy Design on Workflow Resiliency Computation Time 255

Table 3. Average computation times and resiliency values when adding separation of
duty constraints or removing permissions from wg

wp | +s1 |+S2 |+S83 |—p1 |—p2 | —Ps3
Resiliency (%) 63.96 | 63.42 | 62.84 | 62.21 | 62.52 | 60.54 | 57.92
Computation (s) | 6.53| 4.28| 3.55| 3.29| 5.09| 3.83| 1.76

6.3 Calculating Dummy Constraints

With the aid of a larger workflow example, we provide a method of calculating
an optimal set of dummy security policy constraints that minimises resiliency
computation time without any reduction to the resiliency value. For clarity we
calculate two optimal sets, one of redundant separation of duty constraints that
can be added to the policy, and one of user-task permissions that can be removed.
Our method could easily be modified to calculate a single set of optimal dummy
constraints composed of separation and binding of duty constraints, and user-
task permissions.

We consider a single base workflow wp with 10 tasks and 5 users, coming
with a randomly selected security policy pp composed of 15 separation of duty
constraints, 0 binding of duty constraints, and permissions for each task of up to
4 users (29 permissions in total). We use a dynamic user availability model
such that each user has an availability for each task of between 0.8 and 1.0
(Table 5, Appendix A). The resiliency values and computation times of wp and
all forthcoming variations of it are analysed 50 times and the average values
taken. We also use the same computing platform and PRISM model checker set-
up as described in Sect.5.1. The resiliency of wg is calculated as 63.96 % with
an average computation time of 6.53s.

Separations of Duty. A test program has been implemented which, given a base
workflow, e.g. wp, calculates monotonically all possible separation of duty con-
straint combinations that can be added to the workflow security policy. All combi-
nations include only constraints not already included in the base workflow’s secu-
rity policy. In the case of wp, the maximum number of constraints is 45 meaning
up to 30 can be added. All possible combinations of between 1 and 30 constraints
are therefore computed. For each of these a PRISM definition file is automati-
cally generated and analysed by the PRISM model checker. Results are logged for
resiliency value, computation time and the set of constraints added to wp.

The average results of this analysis step are given in Table 3 where the val-
ues given for +s; indicate the average resiliency and computation time for
separation of duty constraints added to wg. Similarly, values for —p; indicate
the average resiliency and computation time for 7 user-task permissions removed
from wp. For clarity we only show the impact on computation time of up to
3 additional separation of duty constraints and the removal of up to 3 permis-
sions. In general, adding arbitrary separation of duty constraints in a monotonic
fashion is shown to reduce the resiliency computation time but this comes with
a reduction in resiliency.

256 J.C. Mace et al.

—e— Resiliency : 63.96% —e— Resiliency : 63.96%

)
=)

Avg. computation time (s)
'S
Avg. computation time (s

{(ts, ta)}
{(t2,t3), (t2,15)}

{(t1,t3), (t3,ta), (3, ts)} {(us, t1), (uz, 2), (u1,t5)}
0 1 2 3 0 1 2 3

{(us, t1), (uz,t5)}

Number of additional constraints Number of permissions removed

Fig. 6. Impact to resiliency computation Fig. 7. Impact to resiliency computation
time of adding dummy constraints to wg time of removing permissions from wg

Finding a set of dummy constraints that reduces computation time without
reducing resiliency value is found from performing an automatic double sort on
the results, first by resiliency value (largest to smallest) and then by time (small-
est to largest). The set of dummy constraints that does not change resiliency yet
gives the lowest computation time for each i additional constraints is shown in
Fig. 6. For example, adding the constraint (¢3,4) has on average the minimum
computation time for one change, that of 2.58s. Notice for three additional con-
straints, adding {(¢1,t3), (¢3,t4), (t3,ts)} achieves the minimal computation time
of 1.52s, thus reducing the original computation time for wg by 5.01s without
lowering its resiliency value.

User-Task Permissions. Similarly to adding separation of duty constraints,
the results in Table 3 show in general removing arbitrary user-task permissions in
a monotonic fashion reduces the resiliency computation time but with a reduc-
tion in resiliency. The set of removable permissions shown to give the lowest
computation time for each ¢ permissions removed is given in Fig. 7. For exam-
ple, removing the permission (us,ts) has on average the minimum computa-
tion time for one change, that of 3.44s. Notice for three permissions, removing
{(us,t1), (us,t2), (u1,ts5)} achieves the minimal computation time of 0.63 s, thus
reducing the original computation time by 5.90 s without lowering the resiliency
value.

7 Conclusion

We have shown that the way a workflow security policy is designed has a clear
impact on the time required to compute the workflow resiliency, which might
need to be done at runtime before the execution of each task, in order to ensure
that the user-task assignment is suitable. Our results rely on a systematic encod-
ing of a workflow as a probabilistic model and use the ability of the model checker
PRISM to efficiently compute resiliency.

Impact of Policy Design on Workflow Resiliency Computation Time 257

We consider this process to be useful in two settings, firstly the workflow
design process allowing domain and security experts to assess how resiliency com-
putation time would be impacted following restrictive and unrestrictive changes
to the security policy. Secondly, we have proposed an approach adding dummy
or artificial security constraints, in order to reduce the computation time. The
gain in time can be significant, for instance in our experiment reducing the com-
putation time from 6.53s to 0.63s.

Our experimental results are based on a synthetic workflow, and although it
is inspired by real workflows, nothing guarantees that the same efficiency can be
gained for all workflows. Hence, we believe our main contribution is the method-
ology to encode a workflow and to automatically assess its resiliency, based on
one of the major probabilistic model-checkers. In the end, the trade-off between
resiliency and efficiency can only be resolved by the workflow designer/executer,
and we believe that our approach can be helpful in that direction.

In terms of future work we aim to introduce more complex security con-
straints including cardinality, restricting the number of times a user can be
assigned a specific task, to assess their impact on resiliency computation time. We
also plan to consider more complex workflows, for instance including loops and
choice tasks. These features tend to introduce another level of non-determinism
in the execution of the workflow itself, and present as such some challenging
aspects in their analysis.

A Probabilities for User Availability

Table 4. User probabilistic availabilities used to compute resiliency for running exam-
ple workflow w; in Sects. 4, 6.1 and 6.2

t1 ta t3 ta ls

u1 | 0.9568 | 0.8338 | 0.7206 | 0.7231 | 0.7099
uz | 0.8565 | 0.9210 | 0.8016 | 0.8091 | 0.9460
us | 0.8263 | 0.8617 | 0.7705 | 0.7192 | 0.7117
uq | 0.7238 | 0.8999 | 0.9486 | 0.8413 | 0.8063

Table 5. User probabilistic availabilities used to compute resiliency when assessing
policy changes (Sect. 5) and for the base workflow wgp (Sect. 6.3)

t1 t2 t3 ta ts te t7 ts to t1o

11{0.9297/0.9996 | 0.8506 | 0.87370.9057|0.8365|0.9514|0.8555 | 0.9665 | 0.9875
u2 | 0.83810.8883/0.8231|0.8726|0.80990.9732]0.9852 | 0.8506|0.9825 | 0.8089
u3[0.9653/0.9246|0.8429/0.9491 |0.9597 1 0.8394 | 0.8560 | 0.9585 |0.8304 | 0.8330
14{0.9263/0.9691 1 0.8241]0.99320.9868|0.9792/0.9162|0.9339 | 0.9868 | 0.8049
us10.972410.8817/0.9401|0.82610.93390.8432|0.9329 | 0.8682|0.8231 | 0.8842

258

J.C. Mace et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Workflow handbook 1997. chapter The Workflow Reference Model, pp. 243-293.

John Wiley and Sons Inc, New York (1997)

. Armando, A., Ponta, S.E.: Model checking authorization requirements in business

processes. Comput. Secur. 40, 1-22 (2014)

Ayed, S., Cuppens-Boulahia, N., Cuppens, F.: Deploying security policy in intra
and inter workflow management systems. In: International Conference on Avail-
ability, Reliability and Security (ARES 2009), pp. 58-65, March 2009

. Bakkali, H.E.: Enhancing workflow systems resiliency by using delegation and pri-

ority concepts. J. Digital Inf. Manage. 11(4), 267-276 (2013)

Basin, D., Burri, S.J., Karjoth, G.: Obstruction-free authorization enforcement:
aligning security with business objectives. In: Proceedings of the 2011 IEEE 24th
Computer Security Foundations Symposium (CSF 2011), pp. 99-113. IEEE Com-
puter Society, Washington (2011)

Basin, D., Burri, S.J., Karjoth, G.: Optimal workflow-aware authorizations. In:
Proceedings of SACMAT 2012, pp. 93-102. ACM, New York (2012)

. Basu, A., Kumar, A.: Research commentary: workflow management issues in e-

business. Info. Sys. Res. 13(1), 1-14 (2002)

Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Trans. Inf. Syst. Secur.
2(1), 65-104 (1999)

Botha, R., Eloff, J.H.P.: Separation of duties for access control enforcement in
workflow environments. IBM Sys. J. 40(3), 666-682 (2001)

Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Commun. ACM 55(9), 69-77 (2012)
Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimisation in service-based systems. IEEE Trans.
Softw. Eng. 37(3), 387409 (2011)

Crampton, J., Gutin, G., Yeo, A.: On the parameterized complexity and kernel-
ization of the workflow satisfiability problem. ACM Trans. Inf. Syst. Secur. 16(1),
4 (2013)

Crampton, J., Khambhammettu, H.: Delegation and satisfiability in workflow sys-
tems. In: Proceedings of the 13th ACM symposium on Access control models and
technologies, pp. 31-40. ACM (2008)

Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management:
From process modeling to workflow automation infrastructure. Distrib. Parallel
Databases 3(2), 119-153 (1995)

He, L., Huang, C., Duan, K., Li, K., Chen, H., Sun, J., Jarvis, S.A.: Modeling
and analyzing the impact of authorization on workflow executions. Future Gener.
Comput. Sys. 28(8), 1177-1193 (2012)

Herbert, L., Sharp, R.: Precise quantitative analysis of probabilistic business
process model and notation workflows. J. Comput. Inf. Sci. Eng. 13(1), 011007
(2013)

Hiden, H., Woodman, S., Watson, P., Cala, J.: Developing cloud applications using
the e-science central platform. Philos. Trans. R. Soc. A : Math. Phys. Eng. Sci.
371(1983), 20120085 (2013)

Howard, R.A.. Dynamic Programming and Markov Processes. MIT Press,
Cambridge (1960)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Impact of Policy Design on Workflow Resiliency Computation Time 259

Kohler, M., Liesegang, C., Schaad, A.: Classification model for access control con-
straints. In: IEEE International on Performance, Computing, and Communications
Conference (IPCCC 2007) pp. 410-417, April 2007

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585—591. Springer, Heidelberg (2011)

Lowalekar, M., Tiwari, R.K., Karlapalem, K.: Security policy satisfiability and fail-
ure resilience in workflows. In: Maty4s, V., Fischer-Hiibner, S., Cvréek, D., Svenda,
P. (eds.) The Future of Identity. IFIP AICT, vol. 298, pp. 197-210. Springer,
Heidelberg (2009)

Mace, J.C., Morisset, C., van Moorsel, A.: Quantitative workflow resiliency. In:
Kutylowski, M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712, pp. 344—
361. Springer, Heidelberg (2014)

Mace, J.C., Morisset, C., van Moorsel, A.: Impact of policy design on workflow
resiliency computation time. Technical report CS-TR-1469, School of Computing
Science, Newcastle University, UK, May 2015

Mace, J.C., Morisset, C., van Moorsel, A.: Modelling user availability in workflow
resiliency analysis. In: Proceedings of the 2015 Symposium and Bootcamp on the
Science of Security (HotSoS 2015), pp. 7:1-7:10. ACM, New York (2015)
Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of CODASPY 2012, pp. 169-180. ACM,
New York (2012)

Unertl, K.M., Johnson, K.B., Lorenzi, N.M.: Health information exchange technol-
ogy on the front lines of healthcare: workflow factors and patterns of use. J. Am.
Med. Inform. Assoc. 19(3), 392-400 (2012)

Wainer, J., Barthelmess, P., Kumar, A.: W-rbac - a workflow security model incor-
porating controlled overriding of constraints. Int. J. Coop. Inf. Sys. 12, 2003 (2003)
Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems.
ACM Trans. Inf. Syst. Secur. 13(4), 40:1-40:35 (2010)

	Impact of Policy Design on Workflow Resiliency Computation Time
	1 Introduction
	2 Related Work
	3 Workflow
	3.1 Workflow Definition
	3.2 Workflow Satisfiability Problem
	3.3 Workflow Resiliency

	4 Computing Workflow Resiliency at Runtime
	5 Empirical Assessment of Policy Changes
	5.1 Assessment Methodology
	5.2 Results

	6 Reducing Computation Time
	6.1 Adding Separations of Duty
	6.2 Removing User Permissions
	6.3 Calculating Dummy Constraints

	7 Conclusion
	A Probabilities for User Availability
	References

