
Dynamic VM Dependability Monitoring Using
Hypervisor Probes

Zachary J. Estrada, Cuong Pham, Fei Deng,
Zbigniew Kalbarczyk, Ravishankar K. Iyer

University of Illinois at Urbana-Champaign, USA
{zestrad2, pham9, feideng2, kalbarcz, rkiyer}@illinois.edu

Lok Yan
Air Force Research Laboratory

Rome, NY, USA
lok.yan@us.af.mil

Abstract—Many current VM monitoring approaches require
guest OS modifications and are also unable to perform application
level monitoring, reducing their value in a cloud setting. This
paper introduces hprobes, a framework that allows one to
dynamically monitor applications and operating systems inside
a VM. The hprobe framework does not require any changes
to the guest OS, which avoids the tight coupling of monitoring
with its target. Furthermore, the monitors can be customized and
enabled/disabled while the VM is running. To demonstrate the
usefulness of this framework, we present three sample detectors:
an emergency detector for a security vulnerability, an application
watchdog, and an infinite-loop detector. We test our detectors on
real applications and demonstrate that those detectors achieve an
acceptable level of performance overhead with a high degree of
flexibility.

Keywords—Computer Security, Reliability, Fault diagnosis, Vir-
tual machine monitors, Platform virtualization

I. INTRODUCTION

Failures and attacks demand a response beyond what
current virtual machine (VM) monitoring solutions offer. These
monitoring systems often require guest Operating System (OS)
modifications, cannot be modified at runtime, and cannot
monitor the execution of user programs. This lack of flexibility
and high implementation complexity make many monitoring
systems unsuitable for use in most environments. In this paper,
we seek an approach to remedy those issues in a dynamic VM
monitoring framework using hypervisor probes or “hprobes.”

The primary motivation for VM monitoring is quite simple:
VMs are everywhere. Whether in enterprise computing, or
as the key building block in a cloud, most environments
employ VMs to some extent. Furthermore, cloud providers
are investigating stripped down guest OSes that provide the
minimum functionality to run an application [1], [2]. As a
result of reduced guest OS functionality, these “library OS”
environments are heavily impaired in their ability to perform
OS-level monitoring. As a hypervisor is used in these stripped
down OSes, flexible hypervisor-based VM monitoring can take
the place of traditional guest OS functionality.

Virtual machines provide strong isolation that can be used
to enhance reliability and security monitoring [3], [4], [5], [6].
Previous VM monitoring systems require setup and configu-
ration as part of the boot process or modification of guest OS
internals. In either case, the effect on the guest is the same: a
VM reboot is necessary to adapt the system. Operationally, this
is undesirable for a number of reasons, e.g. due to increased

downtime (discussed further in Section II). By using a dynamic
monitoring system that requires no guest OS modifications or
reboots, we can allow for users to respond to new threats and
failure modes quickly and effectively.

Monitoring systems can generally be split into two classes:
those that perform passive monitoring and those that perform
active monitoring [7]. Passive monitoring systems are polling-
based systems that periodically inspect the system’s state.
These systems are vulnerable to transient attacks that occur be-
tween monitoring checks [6]. Furthermore, constantly polling a
system can be a source of unnecessary performance overhead.
Active monitoring systems overcome these weaknesses since
they are triggered only when events of interest occur. However,
it is essential to ensure that an active monitoring system’s event
generation mechanism cannot be circumvented.

One class of active monitoring systems is a hook based
system, where the monitor places hooks inside the target
application or OS [8]. A hook is a mechanism used to generate
an event when the target executes a particular instruction.
When the target’s execution reaches the hook, control is
transfered to the monitoring system where it can record the
event and/or inspect the system’s state. Once the monitor has
finished processing the event, it returns control to the target
system and execution continues until the next event. Hook
based techniques are robust against failures and attacks inside
the target when the monitoring system is properly isolated from
the target system.

We find dynamic hook-based systems attractive for de-
pendability monitoring as they can be easily adapted: once
the hook delivery mechanism is functional, implementing a
new monitor involves adding a hook location and deciding
how to process the event. In this case, dynamic refers to
the ability to add and remove hooks without disrupting the
control flow of the target. This is particularly important in
real-world use, where monitoring needs to be configured for
multiple applications and operational environments. In addition
to supporting a variety of environments, monitoring must also
be responsive to changes in those environments.

In this paper, we present the hprobe framework, a dynamic
hook-based VM reliability and security monitoring solution.
The key contributions of the hprobe framework are that it:
is loosely coupled from the target VM, can inspect both
the OS and user applications, and it supports runtime inser-
tion/removal of hooks. All of these aspects result in a VM
monitoring solution that is suitable for running on an actual



Target
Monitor

Hook e

Notification N

Response R

Behavior B

Fig. 1. Hook-based monitoring. A hook triggers based on event e and control
is transferred to the monitor through notification N . The monitor processes e
with a behavior B and returns control to the target with a response R.

production system. We have built a prototype implementation
using Hardware-Assisted Virtualization that is integrated with
the KVM hypervisor [9]. From our experiments, the overhead
for an individual probe (the time between hook invocation
and when control is returned to the VM) is 2.6 µs on a
modern server-class CPU. To demonstrate monitoring using
the hprobe framework, we have constructed an emergency
security vulnerability detector, a heartbeat detector, and an
infinite loop detector. While our prototype framework shares
some similarities and builds on previous monitoring systems
(Section VII), these detectors could not have been implemented
on any existing platform. All of these detectors were tested
using real applications and exhibit low overhead (≤ 5%).

II. DESIGN

A. Hook-Based Monitoring

An illustration of a hook-based monitoring system adapted
from the formal model presented in Lares [8] is shown in
Fig. 1. Hook based monitoring involves a monitor takes control
of the target after the target reaches a hook. In the case
of hypervisor-based VM monitoring, the target is a virtual
machine and the monitor can run in either the hypervisor [10],
in a separate security VM [8], or in the same VM [11].
Regardless of the separation mechanism used, one must ensure
that the monitor is resilient to tampering from within the
target VM and the monitor has access to all relevant state of
that VM (e.g., hardware, memory, etc...). Furthermore, a VM
monitoring system should be able to trigger on the execution
of any instruction, be it in the guest OS or in an application.

If a monitoring system can capture all relevant events, it
also follows that the monitoring system should be dynamic.
This is important in the fast-changing landscape of IT security
and reliability. As new vulnerabilities and bugs are discovered,
one will inevitably need to account for them. The value of a
static monitoring system decreases drastically over time unless
periodic software updates are issued. However, in many VM
monitoring solutions [3], [6], [8], [11], such software updates
would require a hypervisor reboot or at the very least a guest
OS reboot. These reboots result in system downtime whenever
the monitor needs to be adapted. In many production systems,

this additional downtime is unacceptable, particularly when
the schedule is unpredictable (e.g., security vulnerabilities).
Dynamic monitors can also provide performance improvement
over statically configured monitoring: one can monitor only
event of interest vs. a general class of events (e.g., a single
system call vs. all system calls). Furthermore, it is possible
to construct dynamic detectors that change during execution
(e.g., a hook can be used to add or remove other hooks).
Static monitoring systems also present a subtle design flaw:
a configuration change in the monitoring system can affect the
control flow of the target system (e.g., by requiring a restart).

In line with dynamism and loose coupling with the target
system, the detector must also be simple in its implementation.
If a system is overly complex and difficult to extend, the value
of that system is drastically reduced as much effort needs to be
expended to use that system. In fact, such a system will simply
not be used. DNSSEC1 and SELinux2 can serve as instructive
examples: while they provide valuable security features (e.g.,
authentication and access control), both of these systems were
released around the year 2000 and to this day are still disabled
in many environments. Furthermore, a simpler implementation
should yield a smaller attack surface [12].

B. Design Principles

In light of the observation made in the previous section, we
set the following design principles for a dynamic VM active
monitoring system:

1) Protection: Monitoring should be impervious to at-
tacks (e.g., hook circumvention) inside the VM. The
authors of Lares [8] outline a formal model with po-
tential attacks and security requirements for a hook-
based monitoring system. Those requirements using
the notation in Fig. 1 are: the notification N should
only be triggered on legitimate events, the state of
the target should not change during monitoring, an
attacker cannot modify the behavior B of the monitor,
and the response R cannot be avoided by the target.

2) Simplicity: The monitoring system should be simple
to implement and extend. In order to ease adoption
and support cloud environments, it should not require
any modification of the guest OS.

3) Dynamism: The monitoring system should be
loosely coupled with the target. The target itself
should be protected from changes in the monitoring
system: reconfiguration can be expected to affect
execution time, but it should not disrupt the control
flow of the target (e.g., require a reboot or application
restart). Furthermore, it should be possible to insert
the hooks into both the target OS and its applications.

4) Performance: The monitoring system should have
acceptable overhead for use in a production system.

We use these requirements as a guide to design a hook-
based hypervisor monitoring framework that we call hypervi-
sor probes or hprobes. The hypervisor provides a convenient
interface for isolating monitoring from the VM while main-
taining full access to the target VM. The proposed framework

1https://tools.ietf.org/html/rfc2535
2https://www.nsa.gov/public info/press room/2001/se-linux.shtml



allows one to insert and remove hooks into arbitrary locations
inside the guest’s memory (i.e., both the guest OS and user
applications) at runtime. To demonstrate the effectiveness of
our framework, we build a prototype and three monitors. Two
of the monitors implement reliability techniques, and the third
illustrates the simplicity of using hprobes to rapidly produce
a monitor that protects against a security vulnerability.

III. BACKGROUND

This section gives the required background information
necessary to understand the implementation details for the
hprobe prototype presented in Section IV.

A. Debugging with int3

The x86 architecture offers multiple methods for inserting
breakpoints, which are used in our prototype framework. We
focus on the int3 instruction as it is flexible and is not
limited in the number of breakpoints that can be set. The
int3 instruction is a single byte opcode (0xcc) that raises
a breakpoint exception (#BP). A debugger uses OS provided
functionality (e.g., a system call like ptrace() [13] in Linux)
to control and inspect the process being debugged. In order to
insert a breakpoint, a debugger overwrites the instruction at
the desired location with int3, and then saves the original
instruction. When the breakpoint is hit and the #BP exception
is generated, the OS catches the exception and notifies the
debugger. At this point, the debugger has control of the process
and can inspect the process’s memory or control its execution,
e.g., by single-stepping over subsequent instructions. More
details can be found in Chapter 17 of the Intel Software
Developer’s Manual [14].

B. Hardware-Assisted Virtualization in x86

Extensions to the original x86 instruction set allow for a
simpler and potentially more secure hypervisor when com-
pared to software-only techniques [15]. We give a summary
of Intel’s Hardware-Assisted Virtualization (HAV) virtual ma-
chine extensions (VMX) to the x86 instruction set. See Chapter
23 of the Intel Software Developer’s Manual [14] for a more
detailed introduction to VMX (more commonly referred to as
VT-x or “Vanderpool Technology”).

All major Operating Systems executing on the x86 platform
run in protected mode or long mode, and effectively use two
privilege levels: ring 0 (“system”) and ring 3 (“user”). The
OS runs in ring 0 and the user applications run in the less-
privileged ring 3. Similarly, Intel VT-x uses two modes of
operation: root mode and non-root mode, which are layered
below ring 0 and ring 3. The hypervisor executes in root
mode and the virtual machines (VMs) execute in non-root
mode (often referred to as guest mode). The hypervisor runs
a virtual machine (VM) by executing a VM Entry (via the
vmlaunch instruction). When the VM is executing in non-root
mode and certain operations are performed (e.g., a privileged
instruction is executed), control is transferred to the hypervisor
(the CPU transitions to root mode) via a VM Exit event.
This allows a guest mode OS to run in privilege ring 0
and is an implementation of the “trap-and-emulate” style
of virtualization [16]. VT-x introduced the Virtual Machine
Control Structure (VMCS) that is used to manage each virtual

KVM Hypervisor 

VM 

Event Forwarder 

Host Linux kernel 

Hprobe 

Kernel agent 

Hprobe 

user agent 

Host System 

Helper APIs 

Set/Remove 
probes 

Insert/Remove probes 
Set single step 

 

Probe Probe Probe 

ioctl(…) 
Detector 1 

Detector 2 

Detector n 

Status 

Checker 

Fig. 2. Hprobes integrated with the KVM hypervisor. The Event Forwarder
has been added to KVM and communicates with a separate kernel agent
through Helper APIs. Detectors can either be implemented as kernel modules
in the Host OS or in user space by communicating with the kernel agent
through ioctl functions.

CPU (vCPU) of a VM. A hypercall is a request (similar to a
system call in an OS) that can be issued by a VM so that the
hypervisor can perform an operation on its behalf.

In addition to virtualizing the CPU, one also needs to be
concerned with the virtualization of the Memory Management
Unit (MMU). Virtual memory is the cornerstone of process
isolation in every modern OS, and therefore is a necessary
feature for VMs. Earlier implementations of x86 hypervisors
used Shadow Page Tables, which are data structures that
contain mappings from guest virtual addresses to host physical
addresses. Shadow Page Tables use a costly VM Exit synchro-
nization technique to match the shadow structures with the
hardware page tables. To avoid this overhead, CPU vendors
added a feature, Second-Level Address Translation (SLAT)
or Two-Dimensional Paging, to their virtualization extensions.
This technology is called Extended Page Tables (EPT) in the
Intel Architecture and Nested Page Tables (NPT) in AMD.
With EPT, the hardware uses a second set of page tables
to translate from guest physical addresses to host physical
addresses. Handling this translation in hardware eliminates the
majority of VM Exits used to synchronize guest page tables.
Therefore, EPT provides performance benefits in most cases,
but results in very costly TLB misses as an additional set of
page tables must be traversed [17]. See Chapter 28 of the Intel
Software’s Developer Manual [14] for more details.

While the remainder of this paper and the prototype im-
plementation use Intel VT-x, the discussion and concepts map
very well to AMD’s AMD-V (see Chapter 15 of the AMD
Software Developer’s Manual [18]).

IV. PROTOTYPE IMPLEMENTATION

A. Integration with KVM

The hprobe prototype was inspired by the Linux kernel
profiling feature kprobes [19], which has been used for real-
time system analysis [20]. The operating principle behind our
prototype is to use VM Exits to trap the VM’s execution and
transfer control to monitoring functionality in the hypervisor.
This implementation leverages Hardware-Assisted Virtualiza-
tion (HAV), and the prototype framework is built on the KVM
hypervisor [9]. The prototype’s architecture is shown in Fig. 2.
The modifications to KVM itself make up the Event Forwarder,
which is a set of callbacks inserted into KVM’s VM Exit
handlers. The Event Forwarder communicates with a separate



VM Hypervisor
probe hit

(int3)
probefunc()

Reset inst.

single
step

execute
inst.

trap rewrite
int3

resume...

Step 1

Step 2

Step 3

Fig. 3. A probe hit in the hprobe protoype. Right-facing arrows are VM
Exits and left-facing arrows are VM Entries. When int3 is executed, the
hypervisor takes control. The hypervisor optionally executes a probe handler
(probefunc()) and places the CPU into single-step mode. It then executes
the original instruction and does a VM Entry to resume the VM. After the
guest executes the original instruction, it traps back into the hypervisor and
the hypervisor will write the int3 before allowing the VM to continue as
usual.

hprobe kernel agent using Helper APIs. The hprobe kernel
agent is a loadable kernel module that is the workhorse of the
framework. The kernel agent provides an interface to detectors
for inserting and removing probes. This interface is accessible
by kernel modules through a kernel API in the host OS (which
is also the hypervisor since KVM itself is a kernel module) or
by user programs via an ioctl interface.

The execution of an hprobe based detector is illustrated
in Figs. 3 and Fig 4. A probe is added by rewriting the
instruction in memory at the target address with int3, saving
the original instruction, and adding the target address to a
doubly-linked list of active probes. This process happens at
runtime and requires no application or guest OS restart. As
explained in Section III-A, the int3 instruction generates
an exception when executed. With HAV properly configured,
this exception generates a VM Exit event, at which point the
hypervisor intervenes (Step 1). The hypervisor uses the Event
Forwarder to pass the exception to the hprobe kernel agent,
which traverses the list of active probes and verifies that the
int3 was generated by an hprobe. If so, the hprobe kernel
agent reports the event and optionally calls an hprobe handler
function that can be associated with the probe. If the exception
does not belong to an hprobe (e.g., it was generated by running
gdb or kprobes inside the VM), the int3 is passed back to
KVM to be handled as usual. Each hprobe handler performs
a user-defined monitoring function and runs in the Host OS.
When the handler returns (a deferred work mechanism can
also be used to support non-blocking probes, if desired), the
hypervisor replaces the int3 instruction with the original
opcode and put the CPU in single-step mode. Once the original
instruction executes, a single-step (#DB) exception is generated,
causing another VM Exit event [14] (Step 2). At this point,
the hprobe kernel agent rewrites the int3, performs a VM
Entry, and the VM resumes its execution (Step 3). This single-
step and instruction rewrite process ensures that the probe is
always caught. If one wishes to protect the probes from being
overwritten by the guest, the page containing the probe can
be write-protected. Although this prototype was implemented
using KVM, the concept will extend to any hypervisor that
can trap on similar exceptions. Note that instead of int3, we

...
pushl %eax
incl %eax
decl %ebx
...

Original
...
pushl %eax
int3
decl %ebx
...

Step 1
...
pushl %eax
incl %eax
decl %ebx
...

Step 2
...
pushl %eax
int3
decl %ebx
...

Step 3

Fig. 4. Assembly pseudocode demonstrating what an hprobe looks like in
the VM’s memory before adding a probe (left frame) and during a probe hit
(right three frames). The dashed box indicates the VM’s current instruction.

could use any other instruction that generates VM Exits (e.g.,
hypercall, illegal instruction, etc...). We chose int3 since it is
well supported and has a single-byte opcode.

B. Sample API

Pseudocode for adding and removing probes using
the Helper APIs in the prototype is shown below:
int HPROBE_add_probe(addr_info, vmid,

(*)probe_func(vcpu_type *VCPU));
int HPROBE_remove_probe(addr_info, vmid);

The addr_info structure contains the guest virtual address
of the probe location as well as any paging information needed
for user space probes (described in the next subsection), vmid
is a unique identifier for the target VM, and probe_func is
a function pointer to the (optional) probe handler that has an
argument containing the vCPU state.

C. Building Detectors

As mentioned in the previous section, hprobes can be
controlled via an ioctl interface or a kernel API. Both
interfaces distinguish between probes that are inserted into
guest kernel space and guest user space. That is because while
the OS always maps the kernel space pages at the same address
for all virtual address spaces, each user program has its own set
of pages. User space probes require the Page Directory Base
Address (from the CR3 register on x86) to translate a guest
virtual address into a guest physical address. Once we know
the guest physical address, we can overwrite the instruction
at that address and insert probes into the address space of
a particular process. However, the mapping of an OS-level
construct like a running process to hardware paging structures
is not readily available from the hypervisor due to the semantic
gap between the VM and the hypervisor. Therefore, we use
libVMI to obtain the value of the CR3 register corresponding
to the target process’s virtual address space [4]. This allows
us to translate the virtual address of a probe location (which
can be obtained from dynamic/static analysis, or by inspecting
the application’s symbol table) to a guest physical address that
can be used to add a probe.

If one wishes to insert a probe into a user application,
however, there exists another challenge. Unlike the guest OS,
the pages of a running application’s code may not be resident in
memory at all times. That is, during an application’s lifetime,
some of its code may reside on disk. When execution reaches
a page that is not resident, the OS will bring that page into
memory. This means that the hypervisor may not be able to
insert probes directly into all locations of the program at all
times (i.e., it would have to wait for the OS to bring certain



pages into memory). This situation arises particularly during
application startup. In this case, the OS uses a demand paging
mechanism in which the pages belonging to the application
reside on disk until the application attempts to access one
of those pages. Therefore, if the page containing the target
location for a probe has not yet been accessed, a translation for
guest physical address to guest virtual address will not exist.
In order to support probes for user programs, this situation
must be resolved so that the hprobe framework can guarantee
that once a probe has been added through the APIs, it will get
called on the next invocation of the instruction at the probe’s
desired location.

One approach to solving the problem of having target code
paged out is to wait until the OS naturally brings the necessary
page into memory. As mentioned in Section III-B, recent
versions of x86 Hardware Assisted Virtualzation (HAV) use
two-dimensional page tables, and do not require VM Exits for
all page table updates. Therefore, in order to trap a page table
update when using EPT, one must remove access permissions
from EPT entries to induce an EPT_VIOLATION VM Exit
event. In this case, we remove write permissions from the guest
physical page corresponding to the guest page table entry that
refers to the guest virtual page for the intended probe location.
We remind the reader that in this case the page itself is not
yet present in the guest OS, and therefore a translation from
guest virtual address to guest physical address does not exist
in the guest OS paging structures. When an EPT_violation
corresponding to our protected guest page table entry occurs
(indicating that the page containing the probe location is now
in memory), we put the CPU into single-step mode. After
the instruction writing to the guest page table executes, we
can insert the probe by performing the usual translations and
traversing the guest paging structures. This process of using
page protection to insert probes into non-resident locations is
described in Fig. 5. Note that we could improve performance
slightly by avoiding the single-step and decoding the trapped
instruction that caused the EPT_VIOLATION. In practice, how-
ever, this paged-out situation only occurs once during the
lifetime of the program (unless a page is swapped out, in which
case disk latency would dominate VM Exit latency) and the
performance gain would be negligible.

Often times when monitoring, it is necessary to not only be
aware of events in the VM (e.g., an instruction at a particular
address was executed), but also the state of the VM (e.g.,
registers, flags, etc...). When inserting an hprobe from within
the hypervisor (i.e., using a kernel module in the Host OS), the
hprobe kernel agent passes a pointer to a structure containing
vCPU state to the hprobe handler. These privileged probe
handlers can use this structure to decode additional information
or possibly modify the state of the VM to mitigate a failure
or vulnerability.

D. Discussion

Our use of int3 to generate an exception utilizes hardware
enforcement of event generation: there is no dependence on
any functionality inside the guest OS. This allows the hprobe
hooking mechanism to be used on any guest OS supported by
the hypervisor. Since the majority of the work is done outside
of the hypervisor modifications (i.e., all of the heavy lifting is

Translate GVA to GPA

Translation
present?Add probe

Set write
protect on
Guest PTE

Single-step
Guest

PTE write

Yes No

EPT violation on
PTE write attempt

PTE written after instruction executes

Fig. 5. How a user space probe is added. A guest virtual address (GVA) for
the probe’s location must be translated into a guest physical address (GPA).
If the translation fails because the page is not present, we write protect the
EPT page containing the guest page table entry (PTE) for that GVA. When
the guest OS attempts to update the guest page table, the hprobe kernel agent
is notified via an EPT_violation and sets single step mode. After the
single-step, the translation succeeds, and the probe is added.

done inside of the kernel agent), the system can be ported to
other hypervisors that support trapping on int3.

When reflecting on the requirements set forth in Section II,
we observe that the hprobe framework satisfies those require-
ments:

1) Protection: By using an out-of-VM approach that is
enforced by HAV, our hooks cannot be circumvented.
Furthermore, we can use memory protection in the
hypervisor to prevent probes from being modified (or
hide them by read protecting them).

2) Simplicity: Modifications to introduce the Event For-
warder and Helper APIs to KVM add only 117
source-lines-of-code (SLOC) and the kernel agent
is 703 SLOC. The simple API allows monitors to
be developed quickly and most detectors can be
based on a common template (e.g., build one detector
by reusing a majority of the code from a previous
one). As an anecdotal example, most of the example
detectors presented in Section V required only two
hours of programming to be fully functional. Hprobes
can be used on an unmodified guest OS.

3) Dynamism: Our API allows for the insertion and
removal of probes at runtime without disrupting the
control flow of the target VM. Furthermore, unique to
hook-based VM monitoring systems, we support ap-
plication level monitoring through user space probes.

4) Performance: While we require multiple VM Exits,
we find that for our test applications and use cases,
the performance is acceptable and worth the value
added in the previous two dimensions. See Section VI
for analysis and details.

This protoype satisfies the protection requirements adapted
from Lares [8] in Section II-B. The notification N is only
delivered if events occur legitimately (spurious int3s are
ignored by the kernel agent). The context information of the
event (the VM’s state at event e) cannot be modified during
hprobe processing since the hypervisor is in control. The
security application (e.g., a probefunc()) runs inside the



hypervisor and therefore, its behavior B cannot be altered by
the VM. Additionally, the effects of any response R from the
hypervisor are enforced since the hypervisor has full control
over the target VM. Since hprobes configure VM Exits to occur
on int3, one could imagine a Denial-of-Service (DOS) attack
based on causing VM Exits using spurious int3 instructions.
We note that hprobes do not present a new DOS threat and that
if an attacker were interested in such an attack, he or she can
perform it using existing functionality (e.g., using the vmcall
instruction).

While using the hprobe framework does require modifi-
cations to the hypervisor, these modifications are small and
robust across multiple versions of KVM and the Linux kernel.
During the course of this project, we used the diff-match-patch
libraries3 to migrate the Event Forwarder and Helper APIs be-
tween KVM versions. We have tested hprobes on OpenSUSE
11.2, CENTOS7, Gentoo with kernel version 3.18.7, Ubuntu
12.04, and Ubuntu 14.04. The hprobe kernel agent is written
to be version agnostic (e.g., with #ifdef macros for kernel
version specific constructs like unlocked_ioctl).

E. Limitations

This prototype is useful for a large class of monitoring use
cases, however it does have a few limitations. Namely,

1) Hprobes only trigger on instruction execution. If
one is interested in monitoring data access events
(e.g., trigger every time a particular address is read
from/written to), hprobes do not provide a clean way
to do so. One would need to place a probe at every
instruction that modifies the data (potentially every
instruction that modifies any data if addresses are
affected by user input). More cleanly, one could use
an hprobe at the beginning and end of a critical
section to turn on and off page protection for data
relevant to that critical section, capturing the events
in a manner similar to livewire [3], but with the
flexibility of hprobes. We are considering this in
future work.

2) Hprobes leverage VM Exits, resulting in non-optimal
performance. This tradeoff is worth the simpler, more
robust implementation with its trust rooted in HAV.

3) Probes cannot be fully hidden from the VM. Even
with clever EPT tricks to hide the existence of a probe
when reading from its location, a timing side channel
would still exist since an attacker could observe that
the probed instruction takes longer than expected to
complete.

V. DETECTORS

In this section, we present sample reliability and security
detectors built upon the hprobe prototype framework. These
detectors are unique to the hprobe framework and cannot be
implemented on any other current VM monitoring system.

A. Emergency Exploit Detector

Most systems operators fear zero-day vulnerabilities as
there is little that can be done about them until the vendor/-
maintainer of the software releases a fix. Furthermore, even

3https://pypi.python.org/pypi/diff-match-patch/

after a vulnerability is made public, a patch takes time to
be developed and must be put through a QA cycle. This can
further be exacerbated in environments with high availability
concerns and stringent change control requirements: even if a
patch is available, many times it is not possible to restart the
system or service until a regular maintenance window. This
leaves operators with a difficult decision: risk damage from
restarting a system with a new patch or risk damage from
running an unpatched system.

Consider the CVE-2008-0600 vulnerability that was re-
sulted in a local root exploit through the vmsplice() system
call [21], [22]. This example represents a highly dangerous
buffer overflow since a successful exploit allows one to arbi-
trarily execute code in ring 0 using a program that is publicly
available on the Internet. Since this exploit involves the base
kernel code (i.e., not a loadable module), patching it would
require installing a new kernel followed by a system reboot (or
without a reboot using techniques discussed in Section VII). As
discussed earlier, in many operational cases a system reboot
or OS patch can only be conducted during a predetermined
maintenance window. Furthermore, many organizations would
be hesitant to run a fresh kernel image on production systems
without having gone through a proper testing cycle first.

The vmsplice() system call is used to perform a zero-
copy map of user memory into a pipe. At a high level,
the CVE-2008-0600 vmsplice() constructs specially crafted
compound page structures in userspace. A compound page
is a structure that allows one to treat a set of pages as a
single data structure. Every compound page structure has a
pointer to a destructor function that handles the cleanup of
those underlying pages. The exploit works by using an integer
overflow to corrupt the kernel stack such that it references the
compound page structures crafted in userspace. Before calling
vmsplice(), the exploit closes the pipe, so that when the
system call runs it deallocates the pages, resulting in calling
the compound pages’ destructor function. The destructor is
set to privilege escalation shellcode that allows an attacker to
hijack the system.

The CVE-2008-0600 exploit hinges on an integer overflow
in one of the system call arguments - a pointer to a struct
iovec that contains the member iov_len, which is set to
ULONG_MAX by the exploit. Since Linux uses registers to hold
the system call number as well as arguments for system
calls [23], we could use classical system call monitoring/-
tracing tools to detect this exploit [24], [25]. We can watch
whenever a system call is invoked and check for the correct
system call number and parse arguments to detect an integer
overflow attempt. However, since hprobes are dynamic, we
can set a probe to trigger only on the sys_vmsplice()
function (that is called after the system call assembly linkage).
This ensures that only the execution path of the vmsplice()
system call is inspected as opposed to all system calls (as in
traditional system call tracing). At this point in the system
call invocation, the function just uses the regular compiler
function calling convention (in most instances of the Linux
kernel, the gcc convention) and the arguments are on the stack.
Either way, we can use hprobes to obtain these arguments.
Pseudocode describing how the detector is implemented is
shown in Fig. 6. Essentially, one needs to ensure that iov_len
will not cause overflow. Depending on the environment, the



1: procedure VMSPLICE HANDLER(vcpu)
2: if 32-bit guest then
3: arg offset = 8 . 2nd arg on stack 32bit
4: max ← ULONG MAX 32 - PAGE SIZE
5: else
6: arg offset = 16 . 2nd arg on stack 64bit
7: max ← ULONG MAX 64 - PAGE SIZE
8: end if
9: . The read function checks for a valid address

10: iov pointer ← read guest(vcpu.esp+arg offset)
11: iov len ← read guest virt(iov pointer)

12: if iov len ≥ max then
13: HANDLE EXPLOIT ATTEMPT(vcpu)
14: end if
15: end procedure

Fig. 6. Pseudocode for an hprobe based CVE-2008-0600 Detector. This
handler will is executed when the vmsplice() system call is used.
The overflow occurs when a struct member in the second argument is
ULONG MAX. The code protects against the integer overflow by ensuring
that if a ULONG MAX argument that would cause an overflow is used, the
exploit is caught.

operator can choose how to handle the detected exploit. One
could send an alert, simply modify iov_len to a benign value
that causes vmsplice() to fail, or take a more drastic action
(such as killing the process or VM) if desired.

The emergency detector works by checking the arguments
of a system call for a potential integer overflow. This differs
in functionality from the upstream patch,4 which checks if the
memory region (specified by the struct iovec argument) is
accessible to the user program. One could write a probe han-
dler that performs a similar function by checking if all of the
region referred to by the struct iovec pointer + iov_len
is in the appropriate range (e.g., by walking the page tables
belonging to that process). However, a temporary measure to
protect against an attack should be as lightweight and simple as
possible to avoid unpredictable side effects. One major benefit
of using an hprobe handler is that developing this detector
does not require a deep understanding of the vulnerability: the
developer of the emergency detector only needs to understand
that there is an integer overflow in an argument. This is far
simpler than developing and maintaining a patch for a core
kernel function (a system call), especially when reasoning
about the risk of running a home-patched kernel (a process
that would void most enterprise support agreements).

Our solution uses a monitoring system that resides outside
of the VM and relies on a hardware-enforced int3 event. A
would-be attacker cannot circumvent this event without hav-
ing first compromised the hypervisor or having modified the
guest’s kernel code. This could be done with a code injection
attack that causes a different sys_vmsplice() system call
handler to be invoked. However, it is unlikely that an attacker
who already has the privileges necessary for code injection into
the kernel would have anything to gain by exploiting a local
privilege escalation vulnerability. While this detector cannot
defeat an attacker that has previously obtained root access,
its ease of rapid deployment sufficiently mitigates this risk.

4https://gitorious.org/kernel-linux/linux-stable/commit/
af395d8632d0524be27d8774a1607e68bdb4dd7f

Since no reboot is required and the detector can be used in
a “read-only” monitoring mode (only reporting the attack vs.
taking an action), the risk of using this detector on a running
production system is minimal. To test the CVE-2008-0600
detector, we used a CENTOS5 VM (the exploit was discovered
while the source-equivalent Red Hat Enterprise Linux 5.0 OS
was in production) and the publicly available exploit. As an
unprivileged user, we ran an exploit script on the unpatched
OS and were able to obtain root access. With the monitor in
place, all attempts to obtain root access using the exploit code
were detected.

B. Application Heartbeat Detector

One of the most basic reliability techniques used to monitor
computing system liveness is a heartbeat detector. In that class
of detector, a periodic signal is sent to an external monitor to
indicate that the system is functioning properly. A heartbeat
serves as an illustrative example for how an hprobe-based
reliability detector can be implemented. Using hprobes, we
can construct a monitor that directly measures the application’s
execution. That is, since probes are triggered by application
execution itself, they can be viewed as a mechanism for direct
validation that the application is functioning correctly. Many
applications execute a repetitive code block that is periodically
reentered (e.g., a Monte Carlo simulation that runs with a
main loop, or an http server that constantly listens for new
connections). If one profiles the application, it is possible to
determine a period (in units of time or using a counter like the
number of instructions) at which this code block is reentered.
During correct operation of the application, one can expect
that the code block will be executed at the profiled interval.

The hprobe-based application heartbeat detector is built
on the principle described in the previous paragraph and
illustrated in Fig 7. This test detector is a kernel module that
is installed in the Host OS (i.e., one of the detectors on the
left side of Fig. 2). An hprobe is inserted at the start of the
code block that is expected to be periodically reentered. When
the hprobe is inserted, a delayed workqueue5 is scheduled
for the timeout corresponding to the reentry period for the
code block. When the timeout expires, the workqueue function
is executed and declares failure (if the user desires a more
aggressive watchdog style detector, it is possible to have the
hprobe handler perform an action such as restart the application
or VM). During correct operation (i.e., when the hprobe is hit),
the workqueue is canceled and a new workqueue is scheduled
for the same interval, starting a new timeout period. This
continues until the application finishes or the user no longer
desires to monitor it and removes the hprobe. If having an
hprobe hit on every iteration of the main loop is too costly, one
can ensure that the probe active for an acceptable time interval
and it can be added/removed until desirable performance is
achieved (the detection latency would still be low as a tight
loop would have a small timeout value).

We use the open-source Path Integral Quantum Monte
Carlo (pi-qmc) simulator [26] as a test application.6 This
application represents a long-running scientific program that
can take many hours or days to complete. As is typical with

5http://www.makelinux.net/ldd3/chp-7-sect-6
6available at: http://phys-tools.github.com/pi-qmc/



EApp

Detector

A
dd

Pr
ob

e Probe
H

it

Probe
H

it

reset timer reset timer timer expires

Fig. 7. Application Heartbeat Detector. A probe is inserted in a critical
periodic section of the application (e.g., the main loop). During normal
execution, a timer is continuously reset. In the presence of a failure (such
as an I/O hang), the timer expires and failure is declared.

scientific computing applications, pi-qmc has a large main
loop. Since Monte Carlo simulation involves repeated sampling
and therefore repeated execution of the same functions, we
only need to run the main loop a handful of times to determine
the time per iteration. After determining the expected duration
of each iteration, we set the heartbeat to timeout to the twice
the expected value, set the detector to a statement at the end
of the main loop, and injected hangs (e.g., SIGSTOP) and
crashed the application (e.g., SIGKILL). All crashes (including
VM crashes since the timer executes in the hypervisor) were
detected.

C. Infinite Loop Detector

Infinite loops are a common failure that can cause process
hangs. When considering proper execution of a loop in a
program (that is not the main loop), the number of instructions
executed in a given block of code usually falls into a fixed
range, with the upper bound being the worst case execution
time (WCET) [27]. Determining the WCET is a well studied
problem in real-time systems, and solving it is beyond the
scope of our work. Similarly, if one can identify a block of
code or function that is executed repeatedly, the number of
times that block is executed before the end is reached should
also fall into a fixed range. One can use an automated system
to infer loop invariants and bound the number of times the
loop should execute [28].

Given a block of code and the WCET (either in units of
time or the number of executions of that block of code), one
can build a detector using a pair of hprobes. When one knows
the wall clock time, one can insert one probe at the inside the
block and another probe after the block. At the first probe,
a timer is started (using the same technique as the heartbeat
detector in Section V-B). If the timer expires before the second
probe (at the end) is reached, the detector reports a failure.
If there is concern that the hypervisor or guest OS is over-
provisioned and significant time sharing is taking place, one
can use architectural invariants [5], [6] to only count the time
when the application under consideration is being executed
by monitoring context switch events using the CR3 register.
For the case where a bound on the number of executions of
the block of code is known, one can place one probe at the
beginning of the loop and one immediately after the loop. If
the probe inside the loop is executed more times than expected
without the block being exited, then the detector can report

for(i=0; i<N; i++) {

...

}
//after loop

1st Probe
(counter)

2nd Probe
(reset)

Fig. 8. Probe locations for the infinite loop detector (ILD). The ILD has two
modes of operation, both utilizing the same set of probes. In the first mode,
failure is declared when the loop executes more times than a set threshold. The
second mode of operation tracks the register state. If more than a specified
set of registers remains static for N iterations, failure is declared.

failure (i.e., a range violation [29]). Depending on the needs
of the user, the detector can either reset its state or remove
itself when the exit probe is hit.

In addition to using the WCET, one can also observe the
state of the system to detect an infinite loop [30]. When
using KVM, the register state of the VM is saved in KVM
data structures to be reloaded upon the next VM entry. As
mentioned in Section IV-C, probes inserted by a kernel module
in the host OS pass a structure describing the vCPU that
generated the int3 exception. This structure contains another
structure with architecture specific information, including the
register state at the time of the VM Exit. The detector can
check this state at every loop iteration. If the registers remain
constant across a large number of iterations, this static state
can be attributed to an infinite loop in many applications.

In order to test the infinite loop detector, we used the
same example as presented in Jolt [30]. That example is a
bug found in a development branch of the Exuberant Ctags
source code indexer.7 In that bug, a string parsing loop would
get stuck due to two variable names being transposed in the
source code. The example input for the ctags indexer used
in Jolt is the python scientific computing package numpy.8
Specifically, the _import_tools.py file contains comments
that are formatted in such a way that the bug is activated.
In the fixed version of the code the loop executes only one
iteration each of the twelve times it is entered, meaning a
small threshold could also be used. Regardless of whether the
threshold or register change method is used, this loop was
easily detected in all experiments since it executes at a rate of
thousands of times per second.

VI. PERFORMANCE

A. Methodology

All of our microbenchmarks and detector performance
evaluations were conducted on a Dell PowerEdge R720 server
with dual-socket Intel Xeon E5-2660 “Sandy Bridge” 2.20GHz
CPUs (3.0 GHz turbo boost). To obtain runtime measurements,
we have added an extra hypercall to KVM that starts and
stops a timer inside the host OS. This allows us to obtain
measurements independent of VM clock jitter. To ensure
consistency among measurements, the test VMs were rebooted
between each sample.

7http://ctags.sourceforge.net/
8http://www.numpy.org



B. Microbenchmarks

We perform microbenchmarks that estimate the latency of
a single hprobe, which is the time from when the VM executes
int3 until the VM is resumed (Steps 1–3 in Fig. 3). We run
these microbenchmarks without a probe handler function to
determine the lower bound of hprobe-based detector overhead.
Since the round-trip latency of an individual VM Exit on Sandy
Bridge CPUs has been estimated to take roughly 290ns [31]
and our hypercall measurement scheme induces additional VM
Exits, it would be difficult to accurately measure the individual
probe latency. Instead, we obtain a mean round-trip latency
by repeatedly executing a probed function a large number
of times (one million) and dividing by the total time taken
for those executions. This helps remove jitter due to timer
inaccuracies as well as the actual latency of the hypercall
measurement system itself. For the test probe function we have
added a no-op kernel module to the Guest OS that creates a
dummy noop device with an ioctl that calls a noop_func()
kernel function that performs no useful work (return 0).
First, we insert an hprobe at the noop_func()’s location. Our
microbenchmarking application starts by issuing a hypercall
to start the timer and then an ioctl against the noop device.
When the noop module in the guest OS receives the ioctl,
it calls noop_func() one million times. Afterwards, another
hypercall is issued from the benchmarking application to read
the timer value.

For the microbenchmarking experiment, we used a 32bit
Ubuntu 14.04 guest and measured 1000 samples. The mean
latency (across samples) was found to be 2.6 µs. In addi-
tion to the Sandy Bridge CPU, we have also included data
for an older generation 2.66GHz Xeon E5430 “Harpertown”
processor (running the same kernel, KVM version, and VM
image), which had a mean latency of 4.1 µs. The distribution
of latencies for these experiments is shown in Fig. 9. The
remainder of benchmarks presented use the Sandy Bridge E5-
2660. The hprobe prototype requires multiple VM Exits per
probe hit. However, in many practical cases the flexibility of
dynamic monitoring and lower maintenance due to a simple
implementation outweigh this cost. This flexibility can increase
performance in many practical cases by allowing one to add
and remove probes throughout the VM’s lifetime, as will
be demonstrated later. Furthermore, CPU manufacturers are
constantly working to reduce the impact of VM Exits, as Intel’s
VT-x saw an 80% reduction in VM Exit latency over its first
six years [31].

C. Detector performance

In addition to microbenchmarking individual probes, we
measure the overhead of the example hprobe-based detectors
presented in Section V. All measurements in this section were
obtained using the hypercall-based timer.

1) Emergency Exploit Detector: Our integer overflow de-
tector that protects against the CVE-2008-0600 vmsplice()
vulnerability is extremely lightweight. Unless vmsplice() is
used, the overhead of the detector is zero since the probe
will not be executed. The vmsplice() system call is rare
(at least in open source repositories that we searched), so this
zero overhead is overwhelmingly the common case. Keeping
in mind that security vulnerabilities are often found in “cold”

Xeon E5430 (2007) Xeon E5-2660 (2012)
2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
 (
µ
s)

Hprobe Single Probe Latency

Fig. 9. Single probe latency (parentheses are the CPU’s release year). The E5-
2660’s larger range can be attributed to “Turbo Boost,” where the clock scales
from 2.2 to 3.0GHz. The shaded area is the quartile range (25th percentile
to 75th percentile), whiskers are minimum/maximum, center is the mean, and
notches in the middle are the 95% confidence interval of the mean.

regions of code [32], we believe this low-overhead to extend
beyond our simple example. One application that does use
vmsplice() is Checkpoint/Restart in Userspace (CRIU),9.
CRIU uses vmsplice() to capture the state of open file
descriptors referring to pipes. We used the Folding@Home
molecular dynamics simulator[33] and the pi-qmc Monte Carlo
simulator from earlier as test programs. We ran these ap-
plications in a 64-bit Ubuntu 14.04 VM. At each sample,
we allowed the application to warm up (load input data
and start the main simulation) and then checkpointed it. The
timing hypercalls were inserted into CRIU to measure how
long it takes to dump the application. This was repeated
100 times for each case with and without the detector and
the results are tabulated in Table I. From the table, we can
see that there is a slight difference in the mean checkpoint
time (roughly 3.3% for F@H and 1.7% for pi-qmc) and
that the variance in the experiment with the detector active
is higher for the Folding@Home case. When checkpointing
Folding@Home, sys_vmsplice() was called 28 times, and
11 times for pi-qmc. We can attribute this to negative cache
effects of the context switch when activating probes. We also
measured another class of “Naı̈ve” detector that probes the
system_call() function (the entry point for all system calls)
during the checkpoint as opposed to sys_vmsplice(). In the
case where we probe on all system calls, we can see that there
is a significant performance penalty (and the number of probe
invocations increases to ∼ 3000). We remind the reader that the
detector only probes sys_vmsplice(), meaning the overhead
incurred is only when taking a checkpoint.

2) Application Heartbeat Detector: We the pi-qmc simu-
lator from Section V-B to measure the performance overhead
of the application watchdog detector. The pi-qmc simulator
allows configuration of its internal sampling and we utilize
this feature to vary the length of the main loop. In order to
determine how the detector impacts performance we measure

9http://www.criu.org/



TABLE I. CVE-2008-0600 DETECTOR W/CRIU

Application Runtime (s) 95% CI (s) overhead (%)

F@H Normal 0.221 0.00922 0
F@H w/Detector 0.228 0.0122 3.30
F@H w/Naı̈ve Detector 0.253 0.00851 14.4
pi-qmc Normal 0.137 0.00635 0
pi-qmc w/Detector 0.140 0.00736 1.73
pi-qmc w/Naı̈ve Detector 0.152 0.00513 11.1

1x 2x 3x 4x 5x 6x 7x 8x 9x
Internal Sample Loop Size

24000

26000

28000

30000

32000

34000

T
im

e
 (

m
se

c)

PI-QMC Main Loop Runtime
No Detector
With Detector

Fig. 10. Benchmarking of the application watchdog detector. The horizontal
axis indicates the scaling of an internal loop in the target pi-qmc program.
The vertical axis shows a distribution of the completion time for each iteration
of the main loop. The boxplot characteristics are the same as in Fig. 9.

the total runtime of each iteration of the main loop when the
probe is inserted and run the program for 15 minutes. The
results of our experiments are shown in Fig. 10.

From Fig. 10, we show that the detector does not affect
performance in a statistically significant way. This is due to the
fact that pi-qmc, like many scientific computing applications,
does a large amount of work in each iteration of its main
loop. However, by setting the threshold of the detector to
a conservative value (like twice the mean runtime), one can
achieve fault detection in a far more acceptable timeframe
than other methods like manual inspection. Furthermore, this
detector goes beyond checking if the process is still running -
it can detect any fault that causes a main loop iteration to halt
(disk I/O hang, network outage when using MPI, software bug
that does not lead to a crash, etc...).

3) Infinite Loop Detector: In order to measure the per-
formance overhead of our infinite loop detector, we use a
patched version of the ctags application from Section V-C.
We ran ctags on the complete numpy source tree 60 times
and obtained the mean completion time and 95% confidence
interval. The results are tabulated in Table II. There are two
implementations of the detector used in these experiments, the
“Naı̈ve” detector and the “Smart” detector. The Naı̈ve detector
is the same detector as presented in Section V-C and the Smart
detector has probes that dynamically add/remove themselves
(i.e., the loop exit probe is only added after the loop is entered).
When starting the application, the code segment containing the
target function was paged out to disk (a clean boot for each
sample). The rows in Table II with “Page fix” refer to the
runs where we needed to use the EPT mechanism presented
in Section IV-C. We also forced the application to page in the
target code block at startup, represented by the “No Page Fix”

TABLE II. CTAGS ON NUMPY SOURCE TREE

Application Runtime (s) 95% CI (s) % overhead

Normal 1.13 0.0325 N/A
Naı̈ve ILD - Page Fix 1.26 0.0229 11.5
Naı̈ve ILD - No Page fix 1.26 0.0265 11.8
Smart ILD - Page Fix 1.14 0.0267 1.15
Smart ILD - No Page Fix 1.15 0.0215 1.9

samples. From Table II we can see that the performance impact
of our solution to deal with paged-out user space application
code is not statistically significant (compare the “Page Fix”
rows of the same detector to the “No page fix” rows). However,
using dynamic probes yields large performance gains. In the
Naı̈ve approach, the overall overhead is roughly 11.5% for
this input data. With the Naı̈ve detector, the first and second
probe get executed 2585 and 54308, respectively. This is due
to the fact that in many cases, the loop is skipped over, but
the instruction immediately after the loop (i.e., what the second
probe replaces) always gets executed. In the Smart approach,
the first and second probe both get executed 2585 times (in
correct operation on this input data, the loop has only one
iteration), yielding a nominal difference between the Smart
implementations and the base case without probes. If this loop
had instead a high number of internal iterations, then one
could use a similar dynamic probe approach, but retain the
exit probe and remove the internal probe, adding it periodically
or using a timeout mechanism. Note that the capability behind
the “Smart” approach is unique to the dynamism in the hprobe
framework.

VII. RELATED WORK

The research community has produced a variety of tech-
niques for hook-based virtual machine monitoring. Of partic-
ular note are the Lares [8] and SIM [11] approaches. Lares
uses a memory-protected trampoline inserted by a driver in
the guest VM. That trampoline issues a hypercall to notify a
separate security VM that an event of interest has occurred.
This approach requires modification to the guest OS (albeit in
a trusted manner), so runtime adding and removing of hooks
is not possible. Furthermore, a guest OS driver and trampoline
is needed for every OS and version of OS supported by
the monitoring infrastructure. The Secure In-VM Monitoring
(SIM) approach uses a clever configuration of HAV that
prevents VM Exits when switching to a protected page inside
the VM that performs monitoring. Since SIM does not incur
VM Exits, it achieves low overhead. However, this method
involves adding special entry and exit gates to the guest OS
and hooks are placed in specific kernel locations. In contrast
to both of these approaches, hprobes do not require any
modification of the guest OS and can be added at runtime
to arbitrary locations inside guests. Note that neither work
mentions the removal of hooks, which the hprobe framework
supports. In addition to platforms built on top of open-source
technology, similar dynamic monitoring solutions also exist
in proprietary systems. For example, there are vprobes for
VMware R© ESXi [34]. Since the hooking concepts are similar,
one could build the same high-level functionality found in
vprobes using the hprobe framework.

In our prototype, the mean latency for a single hprobe
was 2.6 µs (4.1 µs for a CPU from the same timeframe as



the related systems). This fits between the single-hook latency
of Lares (28 µs) and SIM (0.4 µs). While the raw overhead
of a probe hit may appear relatively high, it is important to
remember that probe events are rare and even our application
benchmarks (Section VI) intentionally exercised the probes
beyond what may be typical. The dynamism of our framework
allows us to remove probes that are no longer needed at
runtime. It is difficult to achieve a similar flexibility with
techniques that have hooks statically inserted into the guest
OS. In those systems, in order to support the bare minimum
flexibility of application-specific monitoring one would either
have to maintain a set of guest OS kernels or use a scheme
that modifies a running kernel from within the guest.

Our hooking mechanism is enforced by the hardware since
it is supported by the VM Exit mechanism. As mentioned
in Section IV-D, the prototype’s use of int3 with the VMCS
exception bitmap configured accordingly can be viewed as a
system rooted in hardware architectural invariants [5], [6]. In
this case, the invariant is that a properly functioning virtual
machine will generate VM Exits on privileged operations (an
assumption that is essential for a “trap-and-emulate” VMM).
To protect our hooks, we can use Intel’s Extended Page Tables
(EPT) or AMD’s Nested Page Tables (NPT) and write protect
the pages that contain active probes. This write protection
satisfies the security requirement where hooks cannot be
evaded by actors inside the VM and only incurs a performance
impact when pages containing probes are written to (a rare
event for code in memory). The hprobes framework does place
the hypervisor at the root of trust, but well known techniques
exist for signing hypervisor code (one should extend the
trusted computing base to include the hprobe kernel agent as
well) [35], [36], [37].

Previous researchers have utilized int3 for VMs in xen-
probes [38], which provides a guest OS kernel debugging
interface for Xen VMs. In this work, we focus on reliability
and security monitoring as opposed to debugging and provide
concrete example detectors. Additionally, xenprobes can use
an Out-of-line Execution Area (OEA) to execute the replaced
instruction (vs. always executing in place with a single step like
the hprobe prototype does). The OEA provides a performance
boost, but it results in a more complex code base and carries
the need to create and maintain a separate memory region
for this area. The OEA requires an OS driver to allocate and
configure the OEA at guest OS boot, and the number of OEAs
are statically allocated at boot, placing a hard upper bound
on the number of supported probes (which is acceptable for
debugging, but not for dependability monitoring). In terms of
code complexity, our approach is simpler (less than 1000 lines
of code vs 4000 lines of code).

Ksplice [39], a rebootless kernel patching mechanism, can
be used in a similar fashion as the vmsplice() emergency
detector. The 4.0 version of the Linux kernel is also scheduled
to incorporate a rebootless patching feature [40]. Ksplice
allows for live kernel patching by replacing a function call
with a jump to a new patched version of that function.
The planned Linux 4.0 feature will use ftrace10 to switch
to a new version of the function after some safety checks.
While these techniques can be useful for patches that have

10http://elinux.org/Ftrace

TABLE III. HOOK-BASED VM MONITORING SYSTEMS

Name Userspace hooks Latency Dynamic Modifications

xenprobes No 48µs Yes Hypervisor/Guest OS
Lares No 28µs No Hypervisor/Guest OS
SIM No 0.40µs No Hypervisor/Guest OS
hprobes Yes 2.6µs Yes Hypervisor

been properly tested and worked through a QA cycle, many
operators would be uneasy with an untested patch on a live
OS. This can be particularly worrisome with data structure
consistency concerns [41]. When considering newly reported
vulnerabilities, hprobe’s simple interface allows one to quickly
deploy an out-of-band monitor to detect the vulnerability
without modifying the control flow of a running kernel. This
temporary monitoring could even be used to provide a stopgap
measure while a rebootless patch is in QA testing: one could
use the monitor immediately after a vulnerability is announced
and until the patch is vetted and safe to use. A technique
like this would drastically reduce the vulnerable window and
alleviate pressure to perform risky maintenance outside of
critical windows. It should be noted that while our example
focused on a kernel vulnerability, this emergency detector
technique can be extended to a user space program.

Table III compares the hprobe framework with a selection
of hook-based active VM monitoring systems. Our work
extends this past research in several key ways. As far as we
know, the hprobe framework is the first to perform application
level hook-based monitoring from the hypervisor, paving the
way for cloud-based monitoring-as-a-service (where a cloud
provider could give the user a set of probe-based detectors
to choose from). Our approach requires no modification of
the guest OS and detectors can be added/removed at runtime.
These features are indispensable in any system intended for
production use. We also demonstrated concrete detectors that
monitor against real failures and attacks, whereas most work in
this area focuses solely on hook implementation and discussion
of potential detectors. Our detectors could not have been
implemented using any of the previous systems as no other
framework supports user space execution hooks (livewire [3]
does offer page protection for user space integrity checking)
or the dynamism needed to monitor a single system call after
a vulnerability is announced.

VIII. CONCLUSIONS

The hprobe framework is characterized by its simplicity,
dynamism, and ability to perform application-level monitoring.
Our prototype for this framework uses Hardware-Assisted
Virtualization and satisfies protection requirements presented
in the literature [8]. We find that compared to past work,
the simplicity at which detectors can be implemented and
inserted/removed at runtime allows us to quickly develop
monitoring solutions. Based on our experience, this framework
is appropriate for use in real-world environments. From our
sample detectors, we see that the framework is suitable for
providing detection for bugs, random faults, and use as a
stopgap measure against vulnerabilities.

ACKNOWLEDGMENTS

The authors wish to thank Mika Latimer for help in
automated migration between kernel versions. This material is



based upon work supported in part by the National Science
Foundation under Grant No. CNS 10-18503 CISE, by the
Army Research Office under Award No. W911NF-13-1-0086,
by the National Security Agency under Award No. H98230-
14-C-0141, by the Air Force Research Laboratory and the
Air Force Office of Scientific Research under agreement No.
FA8750-11-2-0084, by the Department of Energy under Award
Number DE-OE0000097, by an IBM faculty award, and by
Infosys Corporation.

REFERENCES

[1] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt,
“Rethinking the library os from the top down,” ACM SIGPLAN Notices,
vol. 46, no. 3, pp. 291–304, 2011.

[2] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gaza-
gnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: Library
operating systems for the cloud,” in ACM SIGPLAN Notices, vol. 48,
no. 4. ACM, 2013, pp. 461–472.

[3] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection
based architecture for intrusion detection.” in NDSS, vol. 3, 2003, pp.
191–206.

[4] B. D. Payne, “Simplifying virtual machine introspection using libvmi,”
Sandia Report, 2012.

[5] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Ant-
farm: Tracking processes in a virtual machine environment.” in USENIX
Annual Technical Conference, General Track, 2006, pp. 1–14.

[6] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, and R. K. Iyer, “Reliability
and security monitoring of virtual machines using hardware architec-
tural invariants,” in Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. IEEE, 2014, pp.
13–24.

[7] M. Bishop, “A model of security monitoring,” in Fifth Annual Computer
Security Applications Conference. IEEE, 1989, pp. 46–52.

[8] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An archi-
tecture for secure active monitoring using virtualization,” in Security
and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008, pp.
233–247.

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in In Proc. of the Linux Symposium,
vol. 1, 2007, pp. 225–230.

[10] B. D. Payne, M. De Carbone, and W. Lee, “Secure and flexible
monitoring of virtual machines,” in Computer Security Applications
Conference, 2007. ACSAC 2007. Twenty-Third Annual. IEEE, 2007,
pp. 385–397.

[11] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitoring
using hardware virtualization,” in In Proc of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. New York,
NY, USA: ACM, 2009, pp. 477–487.

[12] P. K. Manadhata and J. M. Wing, “An attack surface metric,” Software
Engineering, IEEE Transactions on, vol. 37, no. 3, pp. 371–386, 2011.

[13] P. Padala, “Playing with ptrace, part1,” Linux Journal, no. 103, Nov.
2002. [Online]. Available: http://www.linuxjournal.com/article/6100

[14] Intel Corporation, Intel R© 64 and IA-32 Architectures Software Devel-
opers Manual Volume 3 (3A, 3B & 3C): System Programming Guide,
September 2014.

[15] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
virtualization technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[16] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” pp. 121–, 1973.

[17] N. Bhatia, “Performance evaluation of intel ept hardware assist,”
VMware, Inc, 2009.

[18] Advanced Micro Devices Inc, AMD64 Architecture Programmers Man-
ual Volume 2: System Programming, May 2013.

[19] R. Krishnakumar, “Kernel korner: kprobes-a kernel debugger,” Linux
Journal, vol. 2005, no. 133, p. 11, 2005.

[20] W. Feng, V. Vishwanath, J. Leigh, and M. Gardner, “High-fidelity
monitoring in virtual computing environments,” in Proceedings of the
International Conference on the Virtual Computing Initiative, 2007.

[21] NIST, “Vulnerability summary for cve-2008-0600,” Online,
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-0600,
USA, 2008.

[22] J. Corbet, “vmsplice(): the making of a local root exploit,” Online,
http://lwn.net/Articles/268783/, 2008.

[23] D. P. Bovet and M. Cesati, Understanding the Linux kernel. ” O’Reilly
Media, Inc.”, 2005.

[24] D. Spinellis, “Trace: A tool for logging operating system call trans-
actions,” ACM SIGOPS Operating Systems Review, vol. 28, no. 4, pp.
56–63, 1994.

[25] A. P. Kosoresow and S. A. Hofmeyr, “Intrusion detection via system
call traces,” IEEE software, vol. 14, no. 5, pp. 35–42, 1997.

[26] M. Gilbert and J. Shumway, “Probing quantum coherent states in bilayer
graphene,” Journal of computational electronics, vol. 8, no. 2, pp. 51–
59, 2009.

[27] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The worst-
case execution-time problemoverview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 7,
no. 3, p. 36, 2008.

[28] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1,
pp. 35–45, 2007.

[29] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. Iyer,
“Automated derivation of application-specific error detectors using dy-
namic analysis,” Dependable and Secure Computing, IEEE Transactions
on, vol. 8, no. 5, pp. 640–655, 2011.

[30] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard, “Detecting and
escaping infinite loops with jolt,” in ECOOP 2011–Object-Oriented
Programming. Springer, 2011, pp. 609–633.

[31] O. Agesen, J. Mattson, R. Rugina, and J. Sheldon, “Software techniques
for avoiding hardware virtualization exits.” in USENIX Annual Technical
Conference, 2012, pp. 373–385.

[32] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder, “High system-code
security with low overhead,” in 36th IEEE Symposium on Security and
Privacy, no. EPFL-CONF-205055, 2015.

[33] S. M. Larson, C. D. Snow, M. Shirts et al., “Folding@ home and
genome@ home: Using distributed computing to tackle previously
intractable problems in computational biology,” 2002.

[34] M. Carbone, A. Kataria, R. Rugina, and V. Thampi, “Vprobes: Deep
observability into the esxi hypervisor,” vmware Technical Journal,
vol. 14, no. 5, pp. 35–42, 2014.

[35] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM conference on Computer and communications
security. ACM, 2011, pp. 375–388.

[36] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi, Cpu transparent
protection of os kernel and hypervisor integrity with programmable
dram. ACM, 2013, vol. 41, no. 3.

[37] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
verifiable trusted path on commodity x86 computers,” in Security and
Privacy (SP), 2012 IEEE Symposium on. IEEE, 2012, pp. 616–630.

[38] N. A. Quynh and K. Suzaki, “Xenprobes, a lightweight user-space prob-
ing framework for xen virtual machine,” in USENIX Annual Technical
Conference Proceedings, 2007.

[39] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in Proceedings of the 4th ACM European conference on
Computer systems. ACM, 2009, pp. 187–198.

[40] S. J. Vaughan-Nichols, “No reboot patching comes to linux 4.0,” On-
line, http://www.zdnet.com/article/no-reboot-patching-comes-to-linux-
4-0/, 2015.

[41] J. Corbet, “A rough patch for live patching,” Online,
http://lwn.net/Articles/634649/, 2015.


