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ABSTRACT
The successful operations of modern power grids are highly
dependent on a reliable and efficient underlying communi-
cation network. Researchers and utilities have started to
explore the opportunities and challenges of applying the
emerging software-defined networking (SDN) technology to
enhance efficiency and resilience of the Smart Grid. This
trend calls for a simulation-based platform that provides suf-
ficient flexibility and controllability for evaluating network
application designs, and facilitating the transitions from in-
house research ideas to real productions. In this paper, we
present DSSnet, a hybrid testing platform that combines a
power distribution system simulator with an SDN emulator
to support high fidelity analysis of communication network
applications and their impacts on the power systems. Our
contributions lay in the design of a virtual time system with
the tight controllability on the execution of the emulation
system, i.e., pausing and resuming any specified container
processes in the perception of their own virtual clocks, with
little overhead scaling to 500 emulated hosts with an aver-
age of 70 ms overhead; and also lay in the efficient synchro-
nization of the two sub-systems based on the virtual time.
We evaluate the system performance of DSSnet, and also
demonstrate the usability through a case study by evaluat-
ing a load shifting algorithm.

Keywords
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Software-Defined Networking; Smart Grid; Microgrid

1. INTRODUCTION
Today’s utilities increasingly adopt modern communica-

tion network technologies to realize their Smart Grid ini-
tiatives. For example, the growing development of “smart
microgrid”, a core component of the future integrated smart
gird, is highly dependent on the successful operation of the
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underlying communication networks. A microgrid focuses
on the power distribution system that can operate indepen-
dently or in conjunction with the traditional main power
grid. The microgrid approach focuses on creating a plan for
local energy delivery that meets the exact needs of the con-
stituents being served, and introduces huge economic and
environmental benefits to our society. For example, the IIT
campus microgrid [3] has achieved a 6.58% reduction in an-
nual CO2 emission (saving 3,457,818 kg), and a unit price
of 7 cents per kilowatt-hour, while the average price in the
U.S. is 10.43 cents per kilowatt-hour in 2015 [2].

To build a resilient and secure networking environment for
microgrids and other smart grid applications, we and other
researchers envision a software-defined networking (SDN)
enabled network infrastructure for the critical power con-
trol systems [11,15,17,22,25]. Figure 1 depicts our design of
the next-generation IIT campus microgrid. SDN offers the
global network visibility, which would enable detailed vir-
tualization and facilitates network and traffic management.
With direct and centralized network control integrated with
the existing grid control application, we now allow more in-
telligent utility applications to blossom, such as system-wide
configuration verification and context-aware detection sys-
tems.

Figure 1: A Multi-Layered SDN-enabled Microgrid Design

However, incorporation of new technologies in such critical
control systems is very challenging, because of strong real-
time requirements, continuous system availability and many
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resource-constrained legacy devices. Therefore, a testing
platform targeting such cyber-physical systems is strongly
needed for the research community to evaluate the new net-
work technologies and their impact on the power grid sys-
tems, before the real deployment. In this paper we present
Distribution System Solver Network (DSSnet), a hybrid
simulation-emulation testbed incorporating an electrical power
distribution system simulator and an SDN-based communi-
cation network emulator, with the following features. First,
DSSnet enables the modeling of a modern power distribu-
tion system and simulates the Intelligent Electrical Devices
(IEDs) that make it up. Second, DSSnet enables high fi-
delity analysis by allowing real networking applications to
run in the network emulator and interact with the power
simulator. Third, DDSnet provides flexible and direct net-
work programmability by supporting real SDN switch and
controller software, an inherent advantage by adopting Mininet
[19].

A key challenge is synchronizing the execution of the power
simulator and the container-based emulator. This is because
all the processes in the emulator execute real programs and
use the system clock to advance experiments, while the sim-
ulator executes models to advance experiments with respect
to its simulation virtual clock. To address this issue, we
refine a prior virtual time system [26] and develop a new
capability to enable pausing and unpausing the emulation
container processes by modifying the Linux kernel. Our un-
derlying design shows how the challenge of synchronizing
time and events between the two systems is possible using
virtual time, while ensuring high fidelity. We perform ex-
tensive evaluation of the system, including system overhead
and experiment fidelity in terms of network flow throughput
and latency. In addition, we demonstrate the usability of
DSSnet with a case study on analyzing the effectiveness of
a load shifting algorithm and evaluating the power system
impact under a denial-of-service attack.

In the remainder of the paper, Section 2 presents the re-
lated work and shows the differences of DSSnet with those
existing tools. Section 3 describes the system design and
how it addresses the synchronization challenges across two
systems. Section 4 presents the component-level implemen-
tation. Section 5 evaluates the system performance. Section
6 demonstrate a load shifting application that illustrates the
features and benefits of DSSnet. Finally, Section 7 concludes
the paper with future works.

2. MOTIVATION AND RELATED WORK

2.1 Combining Power with Communication
The power grid is composed of power generation, trans-

mission, distribution and loads. Traditionally, power is gen-
erated in mass quantities from hydro, coal, nuclear, and gas
sources. The power is then transmitted at high voltages to
distribution systems where the power is distributed to res-
idential and commercial consumers. As the power grid is
moving towards a smarter grid, the efficient energy man-
agement is increasingly dependent on the underlying com-
munication network supporting reliable information transfer
among the various entities in the grid.

With distributed power generation—such as solar and wind
energy—and more storage technology, there is a need for
understanding the state of the power network in real time.
A challenge with the integration of such generation, is the

uncertainty and intermittency of the availability of power
generation. In order to combat this challenge, there needs
to be an infrastructure that allows for the monitoring and
control of the system state. To do this effectively, requires
a reliable and resilient communication network.

Researchers have developed systems to co-simulate the
power and network components of the smart grid [9, 10, 12,
14,16,20,23]. [21] surveys the existing technologies and mo-
tivations for co-simulation.

In [23], a system is proposed using OpenDSS to allow for
sending real-time signals to hardware integrating with sim-
ulation. Real time simulators are used for hardware-in-the-
loop simulations, allowing for simulation-emulation closer
to the real system [12]. This gives high fidelity, but requires
power equipment and often specific simulator hardware. Us-
ing a network emulator we make the system closer to that
of real hardware deployment, but without the cost or com-
plexity associated with real hardware.

In [20], the authors create a co-simulation between PSLF
and ns-2. They use a global event driven mechanism for
sending synchronization messages between the two simu-
lators. In simulation, events are sorted by time stamps,
typically in a priority queue. To enforce temporal order of
events, we take inspiration from the global event queue, and
adapt this strategy to integrate the network emulation with
the distributed power simulation in DSSnet.

EPOCHS [16] uses commercial power simulators to co-
simulate network and power systems through the use of
agents. This platform uses agents to effectively co-simulate
power and communication elements. The authors define
agents as having the properties of autonomy and interac-
tion. That they exhibit properties of mobility, intelligence,
adaptivity and communication. In DSSnet, our models run
real processes in the network emulation. This allows for us
to make use of agents to as entities that exist in both sys-
tems.

FNCS [10] is a federated approach for co-simulation of
power and electrical simulators by combining multiple power
simulators, both distribution and transmission and use ns-
3 as a communication simulator. In [9], the same authors
improve the synchronization between systems that we take
inspiration from in our implementation in Section 4. The
difference is that DSSnet is focused on network emulation
which has different synchronization challenges due to the in-
herent difference between the execution mechanisms in sim-
ulation and emulation.

There are two main features that set our design apart from
the existing tools. The first is that we are using a network
emulator rather than a simulator. The emulator allows for
higher fidelity by executing real networking programs. The
second is that our network emulator supports SDN-based
networks.

2.2 Software Defined Networking in Utility
Software defined networking (SDN) is an emerging net-

work technology that separates the data plane from the con-
trol plane. The benefit of this is the enhanced ability to have
a global view over the network and be able to program net-
work switches to provide functions that were previously too
laborious and impossible to do. SDN allows for complex
network functions to be created by adjusting network paths
and flows in real time — reactively and proactively. This
technology can help solve security issues and increase per-
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formance in many networks such as data centers, and even
in energy infrastructure. However SDN is not widely used
yet and does not solve all problems out of the box.

In [17], SDN is proposed to allow for scalable deployment
of utility applications. The authors show how SDN can
provide network functions to simplify publisher-subscriber
roles in intelligent electrical devices (IED) including in pha-
sor measurement unit networks.

In [11], the authors propose a system that combines an
SDN emulator with an off-the-shelf high voltage solver. The
difference between the system they propose and ours is that
we are focused on combining open source tools and that our
simulator is for low voltage distribution networks.

In [15], SDN is utilized to increase the performance of
SCADA networks. In our testbed we have also modeled
SCADA network elements, which can be used to explore
how cyber attacks can impact the power grid using different
communication models.

In [25] the authors analyze utility communication net-
works for situational awareness including during blackouts.
Through the use of a hybrid power and communication sys-
tem, situational awareness can be enhanced to increase the
resilience of the grid.

Additionally, there has been work to bring existing power
grid network protocols such as GOOSE and IEC 61850 into
SDN networks [22]. Our testbed can be used to emulate IEC
61850 based communication with the advantage of analyzing
the effects in the power simulator.

To summarize, our system is built on top of a network
emulator rather than the existing works of network simula-
tion for high fidelity analysis in the context of smart grid,
and the emulator we use supports SDN-enabled software
switches and protocols.

3. SYSTEM DESIGN
DSSnet integrates a distribution power system simulator,

OpenDSS [6], with a network emulator, Mininet [19], using
virtual time. The system has the following features:

• Power Flow Studies

• SDN-based Communication Network Modeling

• Smart Grid Control Applications

• Virtual-Time-Enabled Network Emulation

DSSnet is composed of five main components: the commu-
nication network emulator, the electrical power simulator, a
network coordinator for interfacing with the network and
the virtual time system, a power coordinator for interfac-
ing and controlling the simulator, and a virtual time system
which manages time and ensures synchronization in DSSnet.
Figure 2 depicts the architecture of DSSnet.

3.1 System Design Architecture

3.1.1 Network Emulator
The network emulator in DSSnet contains software switches

that emulate the function of real SDN switches. In DSSnet,
the hosts represent IEDs in a power network, and each host
has its own virtual network ports. Hosts in the emulation
have their own namespaces [19] and can run real processes
to model IEDs. Any element in the power network that has
a communication requirement can be modeled in the emula-
tion, including SCADA elements such as sensors and phasor

measurement units (PMU), and even relays and generators.
Load management devices are presented in both systems,
such as smart loads and smart meters.

Another benefit to having each model run its own pro-
cess(es) is that not all network processes need to be present
in the simulator. In the network, some hosts interact with
the simulator indirectly through other models, such as data
collection and storage systems, state estimation applications,
voltage and frequency adjustment controllers.

There are drawbacks to using emulation. With each host
running its own processes and having their own virtual net-
work adapter, the system becomes more complex, making
debugging a challenge. Most importantly, emulation cannot
scale to sizes as large as thousands and hundreds of thou-
sands oh hosts like simulation can due to virtualizing hosts
which requires many resources. Our future work includes
the development of distributed emulation to achieve better
scalability, with reference to a prior work on the distributed
OpenVZ-based network emulator [28].

3.1.2 Power Simulator
DSSnet models define the power network through ele-

ments such as lines, transformers, relays, meters (sensors),
loads, capacitors, and generators. Each IEDs behavior in
the power simulator can be modeled in the network emu-
lator. However, not all power elements need to be repre-
sented in the network emulation, since some elements may
exist only in the power network. The power simulator be-
gins by initiating all of the power elements and creating an
element matrix representing how the elements affect each
other over time. The purpose of the power simulation is to
simulate the behavior of utility distribution systems. Func-
tions of the power simulator include power flow snapshot,
harmonic study, fault studies, load modeling, and solving
dynamic time step power flow [13].

In simulation, the amount of execution time required to
solve for the state at a given simulation time step depends on
the nature of the request. Typically, small time steps at the
level of microseconds may be required for protection studies,
while larger time steps at the level of milliseconds may be
required for power flow studies while load and generation
studies may be at large scales such as seconds, and minutes.

3.1.3 Network Coordinator
The network coordinator starts the network emulation,

and creates data structures to maintain a centralized view of
the network. The network topology and the IED models are
loaded through the coordinator to configure network proper-
ties. The role of the network coordinator is also to interface
with the communication network emulator for synchroniza-
tion between the communication and power systems. The
coordinator listens for synchronization event requests from
the hosts through the event queues. When the coordina-
tor receives a synchronization request, it interfaces with the
power coordinator and with the virtual time system to con-
trol DSSnet’s virtual clock.

3.1.4 Power Coordinator
The power coordinator interfaces with the power simu-

lator. The first task of the module is to initiate the power
simulator by setting up the circuit options and initially solv-
ing the circuit in a snapshot at time 0. The power coordi-
nator provides an API to modify and the extract values in
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Figure 2: DSSnet system architecture diagram. Note that the power simulator runs on a Windows machine and the network
emulator runs on a Linux machine.

the simulator. The simulator is able to accept synchroniza-
tion events from the network coordinator through the API
and return a response accordingly. A role of the module is
to advance the simulation’s clock to the time stamp of the
current event request and to solve the power flow at that
time. Additionally, some elements of the power grid may
be modeled in the power coordinator as a function of time,
such as loads and generation. These elements are not nec-
essarily represented in the communication network, but can
still operate on DSSnet’s virtual clock.

3.1.5 Virtual Time System
Unlike simulation, the emulation clock elapses with the

real wall clock. Therefore, pausing the emulation requires
more than just stopping the execution of the emulated en-
tities, but also pausing their clocks. Virtual time can be
used to achieve this goal [18, 26]. We choose to extend the
work of [27], in which Mininet is patched with virtual time
support. However, their motivation is different from ours.

In general, virtual time has at least two categories of ap-
plication. The first one is to slow down emulation so that
it appears to emulated entities that they have sufficient vir-
tual resources. Slowing down execution also alleviates the
problems caused by resource multiplexing. The work in [27]
and [26] fall into this category. Another usage of virtual time
is for emulation-simulation synchronization. In DSSnet, we
assign every container a private clock, instead of using the
global time provided by the Linux OS. The containers now
have the flexibility to slow down, speed up or stop its own
clock when synchronizing with the simulator.

However, the emulator needs to manage the consistency
across all containers. This is achieved by a centralized time-
keeper in [18], and by a two-layer consistency mechanism
in [26]. A more flexible virtual time system implemented
by [26] avoids this problem as emulation takes charge of
this responsibility. In practice, the emulator configuration
guarantees that all containers are running with one shared
virtual clock; Similarly, the container leverages the Linux
process hierarchy to guarantee that all the applications in-
side the container are using the same virtual clock. The
two-layer consistency approach is well-suited to this work
for pausing and resuming because:

1. All hosts should be paused or resumed when we stop
or restart the emulation.

2. All processes inside a container should be paused or
resumed when we stop or restart the emulation.

The first task is done by the network coordinator. The sec-
ond task is implemented based on the fact that processes
inside a container belong to the same process group.

3.2 Synchronization
A key challenge in DSSnet is the synchronization between

connecting the emulated communication network and the
simulated power system. The root cause is that two differ-
ent clock systems are used to advance experiments. Ordi-
nary virtual-machine-based network emulators use the sys-
tem clock, and a simulator often uses its own virtual clock.
This difference would lead to causality errors as shown in
the following example.
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Figure 3: The execution of DSSnet is shown with respect
to the wall clock. The network emulation runs concurrently
with the power simulation, and is not paused which allows
for synchronization errors to occur, when requests arrive be-
fore the responses are sent, e.g., R1 occurs after E2. The
shaded box highlights the location of the error.

In Figure 3, there are three cross-system events (Ei), each
with a response (Ri). E1 occurs before E2, however, E2 may
require information from R1. Since the response occurs after
the second event, the global causality is violated, and thus
reduces experiment fidelity. An example of E1 is a request
to retrieve power flow values while E2 sets the value of a
discharging battery based on the value returned previously.
Since the reply R1 occurs after E2 this can introduce an
error. Furthermore, such errors can be accumulated if the
simulation keeps out of synchronization with the emulation.

Network 
Emulation

Power 
Simulation

Synchronization Event  

Wall Clock
Time t0

Time

DSSnet
Perceived Time

tE_2

tS_1

tS’_1 tS’_2

tE_3tE_1

tS_2

tEi    emulation time (wall clock time)

tE_1 tE_2 tE_3

tSi    execution time of simulation (wall clock time)

tS’i   time simulator returns after synchronization event

Figure 4: The execution of DSSnet is shown with respect
to its own perceived time, i.e., the sum of the emulation
execution time (can be dilated or not dilated) and the virtual
time elapsed in simulation. The network emulation is paused
to allow for the simulation to catch up to the emulation—
this also ensures synchronization errors in the early example
do not occur.

To address this issue, we develop a virtual time system
in Mininet with the new capability to pause the emulator
without advancing the emulation virtual clock, while the
simulator is running. We adopt this idea, since the exper-
iment advancement in DSSnet by design is driven by the
emulation. Before the coordinators permit the simulator to
advance over a time interval [a,b), we first ensure that all
processes in the emulator have advanced their own clocks to
at least time b, to ensure that all input traffic that arrives
at the simulator with timestamps in [a,b) are obtained first.

Figure 4 shows the execution of the DSSnet. The total
execution time (equation 1) is the total time the emulation
is running plus the sum of the time spent executing the sim-
ulation. DSSnet’s clock (equation 2) is equal to the total
time of the emulation plus the sum of the returned simula-
tion virtual times. In this illustrative scenario, we do not
include factors like synchronization overhead, parallel exe-
cution based on simulation and (possibly) emulation looka-
head, and time dilation effect in emulation virtual time, for
simplicity.

T imewall clock =
∑

tE i +
∑

tS i (1)

T imeDSSnet =
∑

tE i +
∑

tS′ i (2)

ret =
tS′ i

tS i
(3)

where ret’s value range is

• (1,∞) if the power simulation takes longer time to ex-
ecute than the real time; Thus, emulation virtual time
is essential for synchronizing the two systems

• (0,1] if the power simulation takes less or equal time
to execute than the real time, i.e., with real-time sim-
ulation capability

• 0 if the power simulation time is not considered by
the emulation; for instance, recomputing voltage and
current change along power lines at nearly light speed.

Synchronization events occur when either system influ-
ences the other. One optimization is to divide the global
queue into two queues, because synchronization events can
be created in two ways: Non-Blocking Events and Blocking
Events. For each type of event, we design a queue sorted
by time stamps to organize the requests. The non-blocking
event queue contains premeditated synchronization events
and events that do not require a response to the communi-
cation network. For example, the non-blocking event queue
can be used to pass messages to the simulation to sample
the power flows with meters at periodic intervals. Other ex-
amples are power events such as line faults that occur at a
specific time.The IEDs are able to influence the power simu-
lation by sending a synchronization event message using the
blocking queue. Examples of these classes of synchroniza-
tion events are that PMUs requesting values from the power
simulation and controllable loads changing power values or
turning on or off.

By using the non-blocking event queue, we can speed up
the overall execution time. In other words, we do not need
to pause the emulation for non-blocking events (E1 and E3

in Figure 5). However, if a blocking synchronization event
(E2 in Figure 5) occurs before the response R1, then the
emulation is paused at t2, i.e., the time stamp of E2. The
emulation is resumed at t4, when response R2 is returned.
In this work, we demonstrate the advantage of having a
non-blocking queue with sample events. How to classify
the events is not a focus for this paper. In addition, the
container-based emulation system introduces opportunities
for offering real application specific lookaheads to improve
the parallelism performance, which we will explore as our
future work.
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Figure 5: E1, and E3 are non-blocking synchronization
events and E2 is a blocking synchronization event from an
IED. The network emulation is not paused unless an event
in the blocking queue occurs, i.e., the one that requires a
response to the communication network. The shaded box
represents the portion of the experiment that is running in
parallel.

4. IMPLEMENTATION
DSSnet combines Mininet, an SDN emulator, and OpenDSS,

an electrical power distribution system solver simulator. This
section presents implementation details with our algorithmic
contributions.

4.1 Network Coordinator
The network coordinator is implemented as a python pro-

gram running on the Linux machine. The network coordi-
nator is responsible for (1) initializing the experiment with
inputs like network topology and IED configuration, and (2)
interfacing with the processes running on Mininet, the vir-
tual time system, and the power coordinator, using named
pipes. The network coordinator listens on a named pipe for
synchronization calls, and also opens a connection to the
power coordinator using ZeroMQ library [7] for python. It
sends synchronization event requests and handles the reply
from the power simulator.

4.2 Power Coordinator
The power coordinator is implemented as a python pro-

gram running on the Windows machine. It directly con-
trols OpenDSS through the provided COM port. Because
the IED agents may exist in both the power and network
systems, the power coordinator maintains a mapping be-
tween OpenDSS elements and Mininet hosts for the associ-
ated IEDs. The power coordinator listens on a TCP/IP port
for a request from the network coordinator. After receiving
the request, the message is parsed and handled according to
user defined functions. The user has the ability to interface
with the provided APIs, such as set_time and solve, but
also can implement direct commands or query custom val-
ues from OpenDSS, such as PMU value requests, and setting
load values. Part of the request specifies if a reply is required
to the network coordinator and if so, the power coordinator
sends a reply based on the user-defined handler.

4.3 Virtual Time System for Network Emula-
tion

We extended a prior work on virtual-time-enabled Mininet
[27], and implement the emulation pausing and resuming
capability. To do that, we develop two routines freeze and
unfreeze in the Linux kernel.

4.3.1 Freeze/Unfreeze Interface
The virtual file system provides an interface between the

kernel and the user space. Since virtual time is a per-process
property, it is more efficient to create a /proc file entry for
the associated processes rather than adding system calls.
The virtual time interface consists of two extra file entries
under /proc/$pid.

• /proc/$pid/dilation A process $pid can enable and
disable virtual time, as well as change a new time
dilation factor (TDF). To support fractional dilation
values, a TDF of x is stored in this entry as 1000x,
since floating point numbers are rarely supported in
the Linux kernel.

• /proc/$pid/freeze We can freeze and unfreeze a pro-
cess $pid according to the written boolean value. A
value 1 freezes the entire process group and a value 0
resumes all the processes in this group.

We make a distinction between regular processes and virtual-
time enabled processes. In other words, the /proc/$pid/freeze
entry is only valid only if /proc/$pid/dilation already has
a non-zero value. The emulator can enable a container with
virtual time by writing 1000 to the dilation proc file en-
try. This will turn on the freeze/unfreeze capability with-
out unnecessarily modifying the clock speed. In this work,
we use a process calling system call unshare() with flag
CLONE_NEWTIME to enable virtual time. This design is mo-
tivated and tailored to be compatible with Mininet’s pro-
gramming interface.

We also develop a user space utility program freeze_all_proc.
This program can freeze and unfreeze multiple hosts in par-
allel. In particular, it spawns one pthread for every network
host to write its freeze entry in the Proc system. Since the
network coordinator always pauses or resumes all hosts, this
optimization significantly reduces the running overhead in
large-scale network settings.

4.3.2 Freeze/Unfreeze Implementation
To track virtual time using the OS software clock, we add

several new fields into the process descriptor task_struct.

• dilation represents the time dilation factor of a time-
dilated process. We also use dilation as a flag to
indicate whether a process virtual-time-enabled or not.

• physical_start_ns represents the starting time that
a process detaches from the system clock and begins
to use the virtual time, in nanoseconds.

• physical_past_ns represents the amount of elapsed
physical time since the last time inquiry, in nanosec-
onds.

• freeze_start_ns represents the starting time that a
process or a process group is frozen. It is always zero
for a non-frozen process.

• freeze_past_ns represents the cumulative time, in nanosec-
onds, that a running process or a process group re-
mains in the frozen state.

Algorithm 1 shows the procedure to enable, disable and
update virtual time. The for-loop (line 33) cascades the
update TDF operation to all child processes. The algorithm
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Algorithm 1 Set Time Dilation Factor

1: function Init Virtual Time(tsk, tdf)
2: if tdf > 0 then
3: __getnstimeofday(ts)
4: now ←timespec_to_ns(ts)
5: tsk.virtual start ns← now
6: tsk.physical start ns← now
7: tsk.dilation← tdf
8: end if
9: end function

10:
11: function Cleanup Virtual Time(tsk)
12: tsk.dilation← 0
13: tsk.physical start ns← 0
14: tsk.physical past ns← 0
15: tsk.freeze start ns← 0
16: tsk.freeze past ns← 0
17: end function
18:
19: function Set Dilation(tsk, new tdf)
20: old tdf ← tsk.dilation
21: vsn← tsk.virtual start ns
22: if new tdf = old tdf then
23: return 0
24: else if old tdf = 0 then
25: Init Virtual Time(tsk, new tdf)
26: else if new tdf = 0 then
27: Cleanup Virtual Time(tsk)
28: else if new tdf > 0 then
29: Old Dilation Timekeeping(tsk, new tdf)
30: else
31: return -EINVAL

32: end if
33: for all child of tsk do
34: Set Dilation(child)
35: end for
36: end function

to freeze/unfreeze processes is shown in Algorithm 2, and
is implemented in the Linux kernel. After stopping a group
of processes, we record the current time for calculating the
process frozen duration once we unfreeze the process. Note
that sending SIGCONT to all processes is behind the time
keeping function. The reason is that if we resume the process
group first, an unfrozen process may be scheduled to run,
and possibly query time before we complete populating the
freeze_past_ns within the entire container.

5. SYSTEM EVALUATION

5.1 Virtual Time System Overhead in Network
Emulation

As described in Section 3, the synchronization between
the power simulator and the network emulator requires us
to freeze and unfreeze all emulated hosts. These operations
bring overhead to synchronization. The overhead is not tol-
erable when the scale of the networking system grows to hun-
dreds of emulated hosts on a single physical machine, which
is quite common in practice [19]. Note that the overhead
to freeze/unfreeze processes does not affect the emulation
temporal fidelity, which is evaluated in the next section.

Algorithm 2 Freeze and Unfreeze Process

1: function Freeze(tsk)
2: kill_pgrp(task_pgrp(tsk), SIGSTOP, 1)

3: __getnstimeofday(&ts) /∗ timespec ts ∗/
4: now ← timespec_to_ns(ts)
5: tsk.freeze start ns← now
6: end function
7:
8: function Populate Frozen Time(tsk)
9: for all child of tsk do

10: child.freeze past nsec← tsk.freeze past nsec
11: Populate Frozen Time(child)
12: end for
13: end function
14:
15: function Unfreeze(tsk)
16: __getnstimeofday(&ts) /∗ timespec ts ∗/
17: now ← timespec_to_ns(ts)
18: tsk.freeze past ns+ = now − tsk.freeze start ns
19: tsk.freeze start ns← 0
20: Populate Frozen Time(tsk)
21: kill_pgrp(task_pgrp(tsk), SIGCONT, 1)

22: end function

We measured the overhead of our pthread-based imple-
mentation by repetitively freezing and unfreezing emulated
hosts. We varied the number of hosts as 10, 50, 100, 250,
500 in Mininet. For each setting, we repeated the freezing
and unfreezing operations for 1000 times, and computed the
overhead as the duration from the moment the coordinator
issues a freezing/unfreezing operation to the moment that
all hosts are actually frozen/unfrozen. We added the over-
head of freezing operation and the overhead of the associated
unfreezing operation, and plotted the CDF of the emulation
overhead in Figure 6.

We observe that more than 90% of the operations take
less than 100 milliseconds in the 500-host case. For all other
cases, more than 80% of the operations consume less than
50 milliseconds. We also observe the average overhead time
grows linearly as the number of hosts increases in Figure 7.
The error bars indicate the standard deviations of the over-
head time, which are caused by the uncertainty of delivering
and handling the pending SIGSTOP and SIGCONT signals.

5.2 Accuracy Evaluation
End-to-end throughput and latency are two important

network flow characteristics. In this section, we use these
two metrics to evaluate the communication network fidelity.
We created two emulated hosts connected via an Open vSwitch
in Mininet. The links are set to 800 Mbps bandwidth and
10 µs latency. iperf [4] was used to measure the through-
put, and ping [5] was used to measure the round-trip-time
(RTT) between the two hosts.

5.2.1 End-to-end Flow Throughput
We used iperf to transfer data over a TCP connection

for 30 seconds for throughput testing. In the first run, we
advanced the experiments without freezing the hosts. In
the second run, we froze the emulation for 1 second, and
repeated the operation every 1 second for 64 times during
the data transmission. We coupled the two experimental
results and reported the average throughputs between the
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Figure 7: Average Network Emulation Overhead

11th second and the 30th second in Figure 8. The error bars
represent the 99% confidence interval of the throughputs.

We observed that the average throughputs of the “inter-
rupted” emulation matches well with the baseline results.
However, pausing emulation introduces around 11% – 18%
deviation. Several sources lead to this deviation. First, while
we explicitly generate SIGSTOP and SIGCONT signals to the
containers, those signals are only in the pending state. The
actual deliveries depend on the OS scheduler, and the deliv-
eries usually occur when exiting from the interrupt handling.
Second, the actual freezing duration depends on the accu-
racy of the sleep system call. Sleeping for one second has a
derivation about 5.027 milliseconds on the testing machine,
Dell XPS 8700 with Intel Core i7-4790 3.60 GHZ processor.
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Figure 8: TCP Flow Throughput Comparison, 800 Mbps
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5.2.2 End-to-end Flow Latency
To evaluate the end-to-end flow latency, we issued 1000

pings with and without freezing the emulator. We skipped
the first ping in the results to exclude the effect of ARP
and the switch rule installation from the SDN controller.
Figure 9 plots the CDF of the round trip time (RTT) for
both sets of ping experiment. We observed the two lines
are well matched in the case of 10 µs link delay, and pausing
the emulator does not affect the distribution of RTT. About
80% ping packets are received around 0.2 ms.
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Figure 9: Ping Round-Trip-Time Comparison, 800 Mbps
Bandwidth and 10 µs Link Latency

When we increased the link latency to 1 millisecond, the
observed RTTs in the freezing emulation case were around 1
ms slower than the non-freezing case. One solution is to re-
program the hrtimer, but if the target kernel only supports
low resolution timers, we need to search in the complicated
time-wheel structure, otherwise we can search in a red-black
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tree. Another approach is to explore the emulation looka-
head to increase the synchronization window size, and thus
reduce the synchronization frequency between the two sys-
tems. We will leave those enhancements as our future work.

6. CASE STUDY: LOAD SHIFTING
DSSnet is designed to be used for smart grid applications

that affect both the power grid and the communication net-
work. We now present a case study of analyzing the load
shifting problem using DSSnet.

6.1 Load Shifting Problem
We consider a class of loads called“shiftable loads”. Shiftable

loads are power consuming elements including Hybrid Power
Electric Vehicles (HPEV)s, appliances such as dishwashers,
pool pumps, Heating and Air Conditioning (HVAC), water
heaters, refrigerators, etc. Some of them are preemptive,
such as car, pool, HVAC, and others are non-preemptive,
such as washing machine, dryer. The demand pattern can
be represented with a peak during the day, near 4 pm and an
absolute minimum near 4 am [1]. This load shifting problem
is surveyed in [24], and a mix integer linear programming al-
gorithm proposed in [8] where the authors considered more
constraints on non-preemptive loads. For simplicity we only
look at preemptive ones and ignore possible local minima
and maxima costs over time. In this case study, we use a
novel greedy polynomial time approximate algorithm pro-
posed as follows.

6.1.1 Problem Formulation
Given the following definitions

NL : number of loads

NTS : number of time slots

Li : ith load

TSj : jth time slot

Si : start time of ith load

Fi : finish time of ith load

ci : rated power (cost) of ith load

hi : number of time slots required

Pij : power consumed by ith load at time slot j

Vj : maximum power at jth time slot

Qi : scheduled or full time steps eligible for ith load

fj : forecasted price at jth time slot

The problem is to minimize the total cost of power

Costtotal =

NTS∑
j=1

NL∑
i=1

Pij ∗ fj (4)

The following constraints must be satisfied for load re-
quirements.

• Consumption Constraint declares that loads only con-
sume power and do not produce power:

∀(i, j) : Pij ≥ 0 (5)

Algorithm 3 Greedy Load Shifting Scheduler

1: Let L be the set of all loads
2: Let TS be the set of all time slots
3: function Schedule(Li)
4: for TSj ∈ TS do /∗ O(NTS) ∗/
5: if TSj .sched[Li.id] is TRUE then
6: Continue
7: else if Li.power > TSj .volume then
8: Continue
9: else if TSj .time ∈ [Si, Fi) then

10: TSj .sched[Li.id]← TRUE
11: TSj .volume = TSj .volume− Li.power
12: Break
13: end if
14: end for
15: Recalculate Schedulabilities(L, TS)
16: Build Heap(L) /∗ O(NL) ∗/
17: end function

• Temporal Power Constraint declares that every load
must consume its full power between its start and end
time: 

∀i :
∑Fi

Si
Pij = hi ∗ ci

∀i :
∑Si

j=1 Pij = 0

∀i :
∑TSNTS

j=Fi
Pij = 0

(6)

• Volume Constraint declares that the maximum amount
of power available at each time slot cannot be ex-
ceeded:

∀j : Vj ≥
NL∑
i=1

Pij (7)

6.1.2 Scheduling Algorithm
In order to schedule the loads, we define the schedualabil-

ity factor p in equation 8:

pi =
hi

Fi − Si −Qi
(8)

It is the ratio of the number of time periods are required
for a load over the number of time slots are available for
that load. We maintain all load items in a heap based on
this value, and sort time slots by price. We select the load at
the top of the heap (the hardest load to schedule), and check
if we can add it to the first time slot. Algorithm 3 shows the
steps within each iteration. After successful scheduling, we
update all load elements schedulability p. The ‘slots avail-
able’ property of the load is decremented by 1, if the new
volume of the time slot is smaller than the rated power of the
load, and if Qi has increased. Next we recreate the heap.
If any load has a p value less than 1 then the algorithm
fails. However, for sufficiently large number of time slots
and volumes, this is unlikely. Algorithm 3 will be iterated
maximally NTS ∗NL times, because each element only has
less than NTS time slots. For-loop search takes maximum
O(NTS) time. Rebuilding the heap after each successful
schedule is O(NL). The total running time of our algorithm
is thus O((NTS +NL) ∗NTSNL).

139



671

646 645 632 633 634

675692

680652

684611

650

Figure 10: 13-Bus Distribution System

6.2 Experiment Setup
The data to be used for this algorithm consists of loads,

prices, and time slots. The load data was modeled from
the average daily charge for Electric Vehicles(EVs), and the
start time and end time were modeled from the distribution
of when people return to their homes in the evening. Other
loads were considered that have a shorter duration and vary-
ing start time to model appliances. In total, 130 load cat-
egories were created, each representing 10 loads. The price
used is from real ComEd historic hourly data [1]. The price
points between the hours were calculated linearly.

We started our day at the forecasted maximum demand
and ran for 6 hours. The time slots were each 5-minute long
and spanned a total of 6 hours, generating 72 time slots. The
load and time slot data generated represent a time period
from 6 pm to 12 am, where people are returning home and
plugging in their cars and using appliances. The start times
and end times for each load falls within this window.

In this experiment, base loads were arranged according
to the specifications of the IEEE 13 bus reference circuit.
Shiftable loads replaced the loads connected to buses 611,
652, 680, and 675 in Figure 10. The base load is a linear
decreasing value, power equals to 5313− 3

20
∗ t with a small

amount of noise (±20kW) added and where t means time in
seconds since 6:00 pm. At bus 650, we measured the power
entering the distribution system.

Figure 10 depicts the simulated power network. The com-
munication network has one SDN switch at each bus, con-
nected along the power lines. All the links in the commu-
nication network are 10 Mb/s links. The coordinator starts
Mininet, the load models, and the power application sched-
uler on the hosts.

The load shifting algorithm runs as a real-time scheduler
residing as a power application host in DSSnet. The sched-
uler is connected to the switch at the substation, which com-
municates in real time with the loads—hosts in DSSnet—
through TCP/IP communication. The performance is eval-
uated by measuring the state variables within the power
simulator. The impact on the power grid are determined by
monitoring the power flow into the distribution network at
bus 650.

In this setup, the power application scheduler acts as the
server and the loads act as clients. The server will send load
updates on or off and the loads will then send the updated
value as a synchronization event. During a synchronization
event, the power coordinator updates the load variable in
the simulator, advances the simulators clock to the time of
the emulation and solves the power flow problem. The sim-
ulator also samples a monitor at the infinite bus 650 and
exports the data in a log file. Because there is no return
value injected from the power simulator back to the emu-
lator, these events are sent as non-blocking resulting in a
faster overall run time. Both the loads and scheduler are
modeled as real processes. To the best of our knowledge,
DSSnet is the only smart grid testbed that allows for this
kind of interaction between processes.

The importance of using DSSnet to evaluate the smart
grid application is to see the effect on the power grid when
the communication network experiences changes. What sets
DSSnet apart from related works is that in DSSnet, real at-
tack mechanisms can be used rather than just simulating the
effects. In this case study, we consider a denial of service at-
tack (DoS). We present a DoS attack at t=7:30, in which
the power application server goes offline. The DoS attack
can be accomplished by flooding the server with TCP re-
quests and denying any other hosts the ability to connect.
Because the load models require communication from the
load scheduling server, if the communication is down, they
revert back to the default schedule. In this experiment, all
communication is blocked from the loads to the scheduler
after 90 minutes to emulate a DoS attack.

6.3 Experimental Results
Figure 11 shows the three cases of the load shifting al-

gorithm: the distribution network total power consumption
during the experiment window, with and without the load
scheduling algorithm, and the load shifting algorithm under
the DoS attack.

In this scenario, the utility has a different objective than
the consumers. From the utilities point of view, the objec-
tive is to flatten the load curve by reducing the peak load.
This can be accomplished by providing an artificial market
to the consumer. The consumer on the other hand, desires
to minimize the cost. In this market, price is forecasted to
plan the load shifting. The price listed is the consumer price
paid for power. The utilities desired total power is shown in
Figure 11.

In each case, the total amount of power in the time window
6:00 pm –12:00 am is the same. The cost of power is calcu-
lated using the amount of power used in the 5-minute time
slot windows. The hourly quantities are summarized in Fig-
ure 11. With the load scheduling algorithm, the total con-
sumer cost of power in the distribution network is $666.01,
while without the algorithm the total cost is $713.66. When
the load shifting algorithm experiences a DoS attack, the to-
tal cost is $688.57. Even when the communication network
is under attack, the overall cost has been lowered, due to
partial load shifting.

Only when the load scheduling algorithm is used, does the
utility see its objective met. When the DoS attack occurs,
the total power from 7:30 – 9:00 pm exceeds the utility’s
goal. This prompts motivation to research mitigation tech-
niques using SDN.

140



6:00-7:00pm 7:00-8:00pm 8:00-9:00pm 9:00-10:00pm 10:00-11:00pm 11:00-12:00am Total Cost
Avg Price (cents/kWh) 3.15 2.9 2.75 2.3 1.9 1.4 2.40(Avg)

Load Shifting (USD) 158.62 130.57 115.27 112.65 91.41 57.51 666.01
No Load Shifting (USD) 217.15 177.34 143.98 86.85 55.95 32.39 713.66

DoS Attack (USD) 158.62 161.85 153.56 114.26 67.89 32.39 688.57
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Figure 11: Normal Power Consumption, Power Consumption with Load Shifting Algorithm, Power Consumption with DoS
attack, Desired Utility Price. With the load shifting algorithm the power consumption is below the utilities desired limit.

7. CONCLUSION AND FUTURE WORK
We present DSSnet, a testing platform that combines an

electrical power system simulator and an SDN-based net-
work emulator. DDSnet can be used to model and simu-
late power flows, communication networks, and smart grid
control application, and to evaluate the effect of network
applications on the smart grid. Our future work includes
exploring means to extract emulation lookahead to improve
the performance of this hybrid system, as well as develop-
ing the distributed version of the testbed for large-scale ex-
periments. We also plan to investigate several novel SDN
applications for microgrid security and resilience, such as
network-wide configuration verification, and context-aware
intrusion detection.
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