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Abstract— In this work we are interested in the stability and
L2-gain of hybrid systems with linear flow dynamics, periodic
time-triggered jumps and nonlinear possibly set-valued jump
maps. This class of hybrid systems includes various interesting
applications such as periodic event-triggered control. In this
paper we also show that sampled-data systems with arbitrarily
switching controllers can be captured in this framework by
requiring the jump map to be set-valued. We provide novel
conditions for the internal stability and L2-gain analysis of
these systems adopting a lifting-based approach. In particular,
we establish that the internal stability and contractivity in
terms of an L2-gain smaller than 1 are equivalent to the
internal stability and contractivity of a particular discrete-
time set-valued nonlinear system. Despite earlier works in this
direction, these novel characterisations are the first necessary
and sufficient conditions for the stability and the contractivity of
this class of hybrid systems. The results are illustrated through
multiple new examples.

I. INTRODUCTION

In this paper we will study hybrid systems [1] of the form

d

dt

[
ξ
τ

]
=

[
Aξ +Bw

1

]
, when τ ∈ [0, h] (1a)[

ξ+

τ+

]
∈ φ(ξ)× {0}, when τ = h (1b)

z = Cξ +Dw. (1c)

The states of this hybrid system consist of ξ ∈ Rnξ and
a timer variable τ ∈ R≥0. The variable w ∈ Rnw denotes
the disturbance input and z the performance output. More-
over, A, B, C, D are constant real matrices of appropriate
dimensions, h ∈ R>0 is a positive timer threshold, and
φ : Rnξ ⇒ Rnξ denotes an arbitrary nonlinear possibly
set-valued map with φ(0) = {0}. Note that φ(0) = {0}
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guarantees that the set {
[
ξ
τ

]
| ξ = 0 and τ ∈ [0, h]} is an

equilibrium set of (1) in absence of disturbances (w = 0).

Interpreting the dynamics of (1) indicates that (1) has
periodic time-triggered jump conditions, i.e., jumps take
place at times kh, k ∈ N (when τ(0) = h), according to a
nonlinear jump map as given by (1b). In between the jumps
the system flows according to the differential equation in
(1a). This class of systems is of relevance in various appli-
cations and includes the closed-loop systems arising from
periodic event-triggered control (PETC) for linear systems
[2], networked control with constant transmission intervals
and a shared networked requiring network protocols [3], [4],
reset control systems [5], [6], [7], [8], [9] with periodically
verified reset conditions, and sampled-data saturated controls
[10], see [11], [12]. Furthermore, in this paper we will show
that also sampled-data systems with arbitrarily switching
controllers can be captured in this framework by allowing
the jump map to be set-valued. In fact, the previously
mentioned applications all had single-valued and piecewise
affine (PWA) jump maps φ. Given this broad collection
of relevant applications fitting the description (1), it is of
interest to study the stability and L2-gain analysis from
disturbances w to output z for this class of systems. This
paper recounts the main results of [11] and illustrates their
application through multiple, novel examples, including the
mentioned arbitrarily switching sampled-data control sys-
tems. Moreover, extensions are presented with respect to
[11] to accommodate the study of set-valued dynamics. The
study of set-valued dynamics is not only motivated by new
applications such as the arbitrarily switching sampled-data
controllers that directly require models as in (1) with set-
valued φ. Set-valued functions φ become also important
when robust stability and robust L2-gain statements are
desired, which often require regularization of discontinuous
jump maps, as, for instance, appear in the applications of
PETC, networked control systems and reset control systems.
This regularisation is then needed to obtain outer semi-
continuity properties of the jump maps, which are needed
for providing robust stability and performance properties, see
[13] and Remark III.1 below for more details.

Earlier works, see, e.g., [2], [10], [1], [12] already studied
how to provide conditions that lead to upper bounds on
the L2-gain for hybrid systems of the form (1) with φ a
piecewise linear (PWL) or piecewise affine (PWA) map.
Using Riccati differential equations to construct suitable
Lyapunov functions, LMI-based conditions providing upper
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bounds on the L2-gain were derived. However, the existing
results only provided sufficient conditions and it is not clear
how far these conditions are from necessity. Inspired by this
question, we present in this paper a new perspective on the
problem using ideas from lifting as adopted in sampled-data
control of linear systems [14], [15], [16], [17], [18], [19].
The classical literature on sampled-data control, see, e.g.,
[14], [15], [16], [17], [18], [19] all required the linearity
of both plant and controller. Obviously, for systems of the
form (1) the linearity property does not hold when φ is
nonlinear. In this paper we review and illustrate the main
results of [11] with novel examples and new applications, in
additional to providing extensions towards set-valued maps
φ. We will show that the internal stability and contractivity
of the hybrid system (1) (in the sense of an L2 gain
smaller than 1) are equivalent to the internal stability and
contractivity of a specific discrete-time set-valued nonlinear
system. As such, to the best of our knowledge, the present
work and [11] are the first to show that lifting-like techniques
are also useable without linearity properties and still lead
to computationally friendly checks (in this case in terms
of semi-definite programming problems). This new method
provides much better bounds for the contractivity of (1) than
the earlier results in [2], [10], [1] and [12] due to the fact
that a necessary and sufficient condition is obtained in terms
of the `2-gain of a specific discrete-time system, instead of
only sufficient conditions. Through various new examples
and applications we will show how the results can be applied
in a numerically tractable manner.

II. PRELIMINARIES

For X,Y Hilbert spaces with inner products 〈·, ·〉X and
〈·, ·〉Y , respectively, a linear operator U : X → Y is called
isometric if 〈Ux1, Ux2〉Y = 〈x1, x2〉X for all x1, x2 ∈ X .
We denote by U∗ : Y → X the (Hilbert) adjoint operator that
satisfies 〈Ux, y〉Y = 〈x, U∗y〉X for all x ∈ X and all y ∈ Y .
Note that U being isometric is equivalent to U∗U = I . The
operator U is called an isomorphism if it is an invertible
mapping. The induced norm of U (provided it is finite) is
denoted by ‖U‖X,Y = supx∈X\{0}

‖Ux‖Y
‖x‖X . If the induced

norm is finite we say that U is a bounded linear operator.
If X = Y we write ‖U‖X and if X,Y are clear from the
context we use the notation ‖U‖.

To a Hilbert space X with inner product 〈·, ·〉X , we
can associate the Hilbert space `2(X) consisting of infi-
nite sequences x̃ = (x̃0, x̃1, x̃2, . . .) with x̃i ∈ X , i ∈
N, satisfying

∑∞
i=0 ‖x̃i‖2X < ∞, and the inner product

〈x̃, ỹ〉`2(X) =
∑∞
i=0〈x̃i, ỹi〉X . We denote `2(Rn) by `2

when n ∈ N≥1 is clear from the context. We also use the
notation `(X) to denote the set of all infinite sequences
x̃ = (x̃0, x̃1, x̃2, . . .) with x̃i ∈ X , i ∈ N. As usual, we
denote by Rn the standard n-dimensional Euclidean space
with inner product 〈x, y〉 = x>y and norm |x| =

√
x>x for

x, y ∈ Rn. Ln2 ([0,∞)) denotes the set of square-integrable
functions defined on R≥0 := [0,∞) and taking values in Rn

with L2-norm ‖x‖L2
=
√∫∞

0
|x(t)|2dt and inner product

〈x, y〉L2
=
∫∞

0
x>(t)y(t)dt for x, y ∈ Ln2 ([0,∞)). If n is

clear from the context we also write L2. We also use square-
integrable functions on subsets [a, b] of R≥0 and then we
write Ln2 ([a, b]) (or L2([a, b]) if n is clear from context)
with the inner product and norm defined analogously. The
set Ln2,e([0,∞)) consists of all locally square-integrable
functions, i.e., all functions x defined on R≥0, such that for
each bounded domain [a, b] ⊂ R≥0 the restriction x |[a,b] is
contained in Ln2 ([a, b]). We also will use the set of essentially
bounded functions defined on R≥0 or [a, b] ⊂ R≥0, which
are denoted by Ln∞([0,∞)) or Ln∞([a, b]) with the norm
given by the essential supremum denoted by ‖x‖L∞ for an
essentially bounded function x. A function β : R≥0 → R≥0

is called a K-function if it is continuous, strictly increasing
and β(0) = 0.

Consider the discrete-time system of the form(
ξk+1

rk

)
∈ ψ(ξk, vk) (2)

with disturbance input vk ∈ V , performance output rk ∈ R,
and state ξk ∈ Rnξ at discrete time k ∈ N, where V and R
are Hilbert spaces, and ψ : Rnξ×V ⇒ Rnξ×R a set-valued
mapping.

Definition II.1 The discrete-time system (2) is said to have
an `2-gain from v to r smaller than γ if there exist a γ0 ∈
[0, γ) and a K-function β such that, for any v ∈ `2(V ) and
any initial state ξ0 ∈ Rnξ , the corresponding solutions to (2)
satisfy

‖r‖`2(R) ≤ β(|ξ0|) + γ0‖v‖`2(V ). (3)

Sometimes we also use the terminology γ-contractivity if
this property holds. Moreover, 1-contractivity is also called
contractivity.

Definition II.2 The discrete-time system (2) is said to be
internally stable if there is a K-function β such that, for any
v ∈ `2(V ) and any initial state ξ0 ∈ Rnξ , the corresponding
solutions ξ to (2) satisfy

‖ξ‖`2 ≤ β(max(|ξ0|, ‖v‖`2(V ))). (4)

Note that since ‖ξ‖`∞ ≤ ‖ξ‖`2 and ‖ξ‖`2 < ∞ implies
limk→∞ ξk = 0, we also have global attractivity and Lya-
punov stability properties of the origin when the discrete-
time system is internally stable.

III. APPLICATIONS OF MODELLING FRAMEWORK

Several applications fit the hybrid system models (1), see
[11], [12]. We will demonstrate here shortly how PETC
applications fit the models (1) and show also how sampled-
data systems with arbitrarily switching controllers can be
modelled as in (1).

A. Periodic Event-Triggered Control Systems

ETC is a control strategy that is designed to reduce the
amount of computation and communication in a control sys-
tem by updating and communicating sensor and actuator data
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only as needed to guarantee certain stability or performance
properties, see, e.g., [20] for a recent overview. The ETC
strategy that we consider in this paper combines ideas from
periodic sampled-data control and ETC, leading to so-called
periodic event-triggered control (PETC) systems [2]. In
PETC, the event-triggering condition is verified periodically
in time instead of continuously as in standard ETC, see, e.g.,
[21], [22], [23]. As such, at every sampling time it is decided
whether or not new measurements and control signals need
to be transmitted and updated, respectively.

We assume the plant to be given by

d

dt
xp = Apxp +Bpuu+Bpww, (5)

which will be controlled using a PETC strategy specified by

u(t) = Kx̂p(t), for t ∈ R≥0, (6)

where x̂p ∈ Rnp is a left-continuous signal given for t ∈
(tk, tk+1], k ∈ N, by

x̂p(t) =

{
xp(tk), when ξ(tk)>Qξ(tk) > 0,

x̂p(tk), when ξ(tk)>Qξ(tk) ≤ 0,
(7)

where ξ := [x>p x̂>p ]> and tk = kh, k ∈ N, are the sampling
times with h > 0 the sampling period, see Fig. 1. Note
that x̂p can be interpreted as the most recently received
measurement of the state xp available at the controller.
Whether or not x̂p(tk) is transmitted at time tk is determined
as follows: If at time tk it holds that ξ>(tk)Qξ(tk) >
0, the state information xp(tk) is sent at time tk to the
controller and x̂p and u are updated accordingly. However,
if ξ>(tk)Qξ(tk) ≤ 0, the current state information is not
transmitted and x̂p and u keep the same value for (at least)
another sampling interval. In [2] it was shown that such
quadratic event-triggering conditions form a relevant class
of event generators, as many popular versions can be written
in this form. For instance, the event-triggering condition
proposed in [21] is given by ‖x̂p(tk)−xp(tk)‖ > ρ‖xp(tk)‖
with ρ > 0 a positive constant, which can obviously be
written in the quadratic form in (7). The complete closed-
loop PETC system can be written as the hybrid system (1),
by combining (5), (6) and (7), leading to A =

[
Ap BpuK
0 0

]
,

B =
[
Bpw

0

]
, and φ a PWL map as in

φ(ξ) =

{
{J1ξ}, when ξ>Qξ > 0

{J2ξ}, when ξ>Qξ ≤ 0
(8)

with J1 =
[
Inp 0
Inp 0

]
and J2 = Inξ . Clearly, in addition

to the static state-feedback controllers (6) discussed here,
also dynamic output-feedback PETC and output-based event-
triggering conditions can be easily modeled in the framework
of (1), see [2].

Remark III.1 For the PETC applications mentioned above,
but also for networked and reset control applications, see
[11], the function φ is given by (8), which is a discontinuous
map not satisfying outer semi-continuity properties in the

Plant

Controller

u

xp

x̂p

periodic
event-triggering
condition

Fig. 1. Schematic representation of an event-triggered control system.

sense that the graph of the map is closed. For studying
general robust stability and robust L2-gain properties of
(1), it is shown in [13], [24] that outer semi-continuity of
the jump map plays a crucial role. By using Krasovskii
regularisations of the jump map outer semi-continuity is
obtained, which modifies the map (8) to the outer semi-
continuous map

φ(ξ) =


{J1ξ}, when ξ>Qξ > 0

{J1ξ, J2ξ}, when ξ>Qξ = 0

{J2ξ}, when ξ>Qξ < 0.

(9)

Note that now φ(ξ) contains multiple values for certain
ξ. Hence, in order to establish robust versions of internal
stability and contractivity, it is useful to work with the map
(9) instead of the one in (8), see [13], [24] for further details.
Hence, as already indicated in the introduction, this provides
a further motivation for extending the results of [11] towards
set-values mappings φ. Note that for the PETC application
the use of the regularised map in (9) indicates that when
ξ>Qξ = 0 two situations can happen as either the state
transmission and control update take place or not.

B. Sampled-data systems with switching controllers

The study of switching (linear) systems under arbitrary
switching has received ample attention both in continuous-
time and discrete-time settings, see, e.g., [25], [26], [27].
Also L2- and `2-gains of continuous-time and discrete-
time switched linear systems, respectively, under arbitrary
switching were studied, see, e.g., [28]. However, the L2-
gain analysis of a continuous-time linear system under
switching sampled-data linear controllers was, to the best
of the authors’ knowledge, not addressed before. To study
and formalise this problem we will focus here for simplicity
on sampled-data static state-feedback control, although the
extension to discrete-time output-based dynamic controllers
is straightforward.

Therefore, we consider the plant as in (5) and assume that
this plant for a given performance output z when the system
is controlled by the feedback law

u(t) = Kσkxp(tk), when t ∈ (tk, tk+1] (10)

for some σk ∈ M := {1, 2, . . . ,M} with tk = kh, k ∈
N. Hence, σk indicates which controller gain is activated at
time tk, k ∈ N, and this “control mode” can switch in an
arbitrary fashion. Hence, by introducing the state variable
ξ := [x>p u>]> we can capture this setup in the framework
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of (1) by taking A =
[
Ap Bpu
0 0

]
, B =

[
Bpw

0

]
, and φ a set-

valued map as in

φ(ξ) = {J1ξ, J2ξ, . . . , JMξ} (11)

with Ji :=
[
I 0
Ki 0

]
, i ∈ M. Hence, an L2-gain analysis

of a continuous-linear system under switching sampled-data
linear controllers boils down to an L2-gain analysis of a
hybrid system in the form (1).

IV. STABILITY AND CONTRACTIVITY NOTIONS

The objective of the paper is to study the L2-gain and
internal stability of the system (1). We focus here on L2-gain
smaller than 1, called contractivity, but note that by proper
scaling of C and D matrices in (1), one can determine if the
L2-gain is smaller than any value γ ∈ R>0.

Definition IV.1 The hybrid system (1) is said to have an
L2-gain from w to z smaller than γ (or the system is γ-
contractive) if there exist a γ0 ∈ [0, γ) and a K-function β
such that, for any w ∈ L2 and any initial condition given
by ξ(0) = ξ0 and τ(0) = h, the corresponding solutions to
(1) satisfy ‖z‖L2

≤ β(|ξ0|)+γ0‖w‖L2
. The system is called

contractive, if it is 1-contractive.

Definition IV.2 The hybrid system (1) is said to be inter-
nally stable if there exists a K-function β such that, for
any w ∈ L2 and any initial condition given by ξ(0) = ξ0
and τ(0) = h, the corresponding solutions to (1) satisfy
‖ξ‖L2

≤ β(max(|ξ0|, ‖w‖L2
)).

Note that the requirement ‖ξ‖L2 ≤ β(max(|ξ0|, ‖w‖L2))
in the definition of internal stability is rather natural here as
we assume L2-disturbances and investigate L2-gains. Indeed,
analogous to Definition IV.1 in which a bound is imposed on
the L2-norm of the output z (expressed in terms of a bound
on |ξ0| and ‖w‖L2), we require in Definition IV.2 that the
norm of the state trajectory ξ is confined by more flexible
(nonlinear) bounds in terms of on |ξ0| and ‖w‖L2

.
Below we will establish that this definition of internal

stability implies also global attractivity of the origin (i.e.,
limt→∞ ξ(t) = 0 for all w ∈ L2, ξ(0) = ξ0 and τ(0) = h)
and also Lyapunov stability of the origin as we will have
‖ξ‖L∞ ≤ β′(max(|ξ0|, ‖w‖L2

)) for some K-function β′, see
Proposition V.1 below.

V. INTERNAL STABILITY AND L2-GAIN ANALYSIS

In this section we will analyze the L2-gain and the internal
stability of (1) using ideas from lifting [14], [15], [16], [17],
[18], [19].

A. Lifting

To study contractivity, we introduce the lifting operator
W : L2,e[0,∞) → `(K) with K = L2[0, h] given for w ∈
L2,e[0,∞) by W (w) = w̃ = (w̃0, w̃1, w̃2, . . .) with

w̃k(s) = w(kh+ s) for s ∈ [0, h] (12)

for k ∈ N. Obviously, W is a linear isomorphism mapping
L2,e[0,∞) into `(K) and, moreover, W is isometric as a

mapping from L2[0,∞) to `2(K). Using this lifting operator,
we can rewrite the model in (1) as

ξk+1 = Âξ+
k + B̂w̃k (13a)

ξ+
k ∈ φ(ξk) (13b)

z̃k = Ĉξ+
k + D̂w̃k (13c)

in which ξ0 is given and ξk = ξ(kh−) = lims↑kh ξ(s),
k ∈ N≥1, and ξ+

k = ξ(kh+) = lims↓kh ξ(s) = ξ(kh)
(assuming that ξ is continuous from the right) for k ∈ N,
and w̃ = (w̃0, w̃1, w̃2, . . .) = W (w) ∈ `2(K) and z̃ =
(z̃0, z̃1, z̃2, . . .) = W (z) ∈ `(K). Here we assume in line
with Definition IV.1 that τ(0) = h in (1). Moreover,

Â : Rnξ → Rnξ B̂ : K → Rnξ

Ĉ : Rnξ → K D̂ : K → K

are given for x ∈ Rnξ and ω ∈ K by

Âx = eAhx (14a)

B̂ω =

∫ h

0

eA(h−s)Bω(s)ds (14b)

(Ĉx)(θ) = CeAθξ (14c)

(D̂ω)(θ) =

∫ θ

0

CeA(θ−s)Bω(s)ds+Dω(θ), (14d)

where θ ∈ [0, h].
By determining the trajectories of (1) explicitly, comparing

them to the expressions (14) and exploiting that W is an
isometric isomorphism, it is not hard to see that (13) is
contractive if and only if (1) is contractive. Moreover, by
extending a result in [11], we have the following proposition.

Proposition V.1 The following statements hold:
• The hybrid system (1) is internally stable if and only if

the discrete-time system (13) is internally stable.
• The hybrid system (1) is contractive if and only if the

discrete-time system (13) is contractive.
• Furthermore, in case (1) is internally stable, it also

holds that limt→∞ ξ(t) = 0 and there exists a K-
function β′ such that ‖ξ‖L∞ ≤ β′(max(|ξ0|, ‖w‖L2

))
for all w ∈ L2, ξ(0) = ξ0 and τ(0) = h.

B. Main result

The following result is an extension of the main result of
[11]. The proof can be obtained based on the proofs in [11].
Note that a necessary condition for (1) and its lifted version
(13) to be contractive is that the induced gain ‖D̂‖K < 1.

Theorem V.2 Consider system (1) and its lifted version (13)
with ‖D̂‖K < 1. Define the discrete-time nonlinear system(

ξ̄k+1

rk

)
∈
(
Ad
Cd

)
φ(ξ̄k) +

(
Bd
0

)
vk (15)

with Ad, Bd and Cd real matrices of appropriate dimensions
satisfying

Ad = Â+ B̂D̂∗(I − D̂D̂∗)−1Ĉ (16a)
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BdB
>
d = B̄B̄∗ = B̂(I − D̂∗D̂)−1B̂∗ and

C>d Cd = C̄∗C̄ = Ĉ∗(I − D̂D̂∗)−1Ĉ. (16b)

The system (1) is internally stable and contractive if and only
if the system (15) is internally stable and contractive.

Remark V.3 To explicitly compute the discrete-time system
(15) provided in Theorem V.2 we need to determine the
operators B̂D̂∗(I − D̂D̂∗)−1Ĉ, B̂(I − D̂∗D̂)−1B̂∗, and
Ĉ∗(I − D̂D̂∗)−1Ĉ to obtain the triple (Ad, Bd, Cd) in (15).
These matrices can be computed explicitly based on the
procedures in [29] under the assumption that ‖D̂‖K < 1.
The condition ‖D̂‖K < 1 can be tested using Lemma 3.2
in [29] or Theorem 13.5.1 in [14]. See [11], where also
an alternative test is given, and the complete procedure is
described.

C. Main results translated for applications

In this subsection we will show how the main result as
formulated in Theorem V.2 translates for the applications
mentioned explicitly in Section III.

1) PETC applications: As shown in Section III, for the
PETC applications the nonlinear mapping φ in the hybrid
system (1) is piecewise linear as in (8) or, in case additional
robustness properties are required (see Remark III.1), as in
(9). As a consequence, the system (15) translates into a PWL
system (using (9) and, for convenience of notation, writing
ξ instead of ξ̄) given by

(
ξk+1

rk

)
∈



{(
A1ξk +Bdvk

C1ξk

)}
if ξ>k Qξk > 0{(

A1ξk +Bdvk
C1ξk

)
,

(
A2ξk +Bdvk

C2ξk

)}
if ξ>k Qξk = 0{(

A2ξk +Bdvk
C2ξk

)}
if ξ>k Qξk ≤ 0

(17)

for k ∈ N, with Ai = AdJi, and Ci = CdJi, i = 1, 2.
Hence, to study the internal stability and contractivity of (1)
we have to determine the internal stability and contractivity
of the (set-valued) discrete-time PWL linear system (17).
Due to the PWL structure this analysis can be done by
combining ideas from dissipativity theory [30], [31] and
piecewise quadratic Lyapunov/storage functions [32], [33],
which leads to (sufficient) LMI-based conditions for testing
stability and contractivity.

2) Sampled-data system with arbitrarily switching con-
trollers: For the control of the continuous-time linear sys-
tem under arbitrarily switching sampled-data controllers as
discussed in Section III, the map φ in the hybrid system (1)
is set-valued as in (11). With this map φ, the system (15)
translates into a discrete-time switching linear system (for
convenience of notation we write ξ instead of ξ̄) given by

ξk+1 = Aσkξk +Bdvk (18a)
rk = Cσkξk, (18b)

where σk ∈ M = {1, 2, . . . ,M} denotes the mode at
discrete time k ∈ N, and Ai = AdJi, and Ci = CdJi,
i ∈M.

Due to Theorem V.2 the internal stability and the con-
tractivity of a continuous-time linear system under arbitrarily
switching sampled-data controllers are equivalent to ‖D̂‖K <
1 and the internal stability and contractivity of (18) under
arbitrary switching. The latter can be guaranteed by finding
a mode-dependent quadratic Lyapunov function V (ξ, σ) =
ξ>Pσξ [27] that satisfies a dissipation inequality [30], [31]
of the type

V (ξk+1, σk+1)− V (ξk, σk) ≤
− εξ>k ξk − r>k rk + γ0v

>
k vk, k ∈ N (19)

for some γ0 ∈ [0, 1) and ε > 0. This dissipation inequality
is guaranteed to hold for some γ0 ∈ [0, 1) and some ε > 0,
if the LMI conditions (note the strictness in the inequalities)[

A>i PjAi − Pi + C>i Ci A>i PjBd
B>d PjAi B>d PjBd − I

]
≺ 0, i, j ∈M

and

Pi � 0, i ∈M

are feasible. Hence, if these LMIs are satisfied it is guar-
anteed that (18) is internally stable and contractive, which
together with ‖D̂‖K < 1, implies then the internal stability
and the contractivity of (1) with φ as in (11).

VI. NUMERICAL EXAMPLES

In this section, we illustrate the presented theory for
the PETC and switching sampled-data control applications
discussed in Section III. In both examples, the plant (5) is
given by

d

dt
xp =

[
1 2
−2 1

]
xp +

[
0
1

]
u+

[
1
1

]
w (20)

which is open-loop unstable.

A. PETC application

In this example, the plant (20) will be controlled using
a PETC strategy specified by (6), (7), in which K =
[−0.45 − 3.25]. At sampling times tk = kh, k ∈ N, we
will transmit the state xp(tk) to the controller and update the
control action when ‖Kx̂p(tk)−Kxp(tk)‖ > ρ‖Kx̂p(tk)‖.
When ‖Kx̂p(tk) −Kxp(tk)‖ = ρ‖Kx̂p(tk)‖ it is arbitrary
if a transmission occurs or not, see Remark III.1. This PETC
setup corresponds to

Q =
[

(1− ρ2)K>K −K>K

−K>K K>K

]
(21)

in the set-valued function φ given in (9) for (1).
To study the internal stability and the L2-gain of (1) we

have to determine the contractivity of the discrete-time PWL
linear system (17) for various scaled values of C and D
(next to checking ‖D̂‖K < 1). We will perform such an
analysis based on the method discussed in Subsection V-
C.1 using dissipation inequalities similar to (19) (including
S-procedure relaxations where possible) based on the PWQ
Lyapunov/storage functions of the form

V (ξk, σk) = ξ>k Pσkξk (22)
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Fig. 2. Upper bound of the L2-gain as a function of the triggering
parameter ρ with h = 0.19 fixed. The solid (blue) line is based on [2],
while the dashed (red) line uses the new results presented in this paper.

using the partition of Rnξ in the regions

Ωi :=
{
ξ∈ Rnξ

∣∣ ξ>Xiξ ≥ 0
}
, i ∈ {1, . . . , N} (23)

with Xi, i ∈ {1, . . . , N}, symmetric matrices such that
∪Ni=1Ωi = Rnξ and Ωi ∩ Ωj is of zero measure for all
i, j ∈ {1, . . . , N}, i 6= j. In addition, {ξ ∈ Rnξ | ξ>Qξ ≤
0} =

⋃N1

i=1 Ωi and {ξ ∈ Rnξ | ξ>Qξ ≥ 0} =
⋃N
i=N1+1 Ωi

for some N1 < N should hold. The value of σk in (22) to
be used at time k in state ξk is given by

σk=

{
min{j | ξk ∈ Ωj} if ξ>k Qξk 6= 0,

N1 if ξ>k Qξk = 0, ξk+1 = A1ξk + Bdvk, rk = C1ξk,

N1 + 1 if ξ>k Qξk = 0, ξk+1 = A2ξk + Bdvk, rk = C2ξk,

where we assume that {ξ ∈ Rnξ | ξ>Qξ = 0} = ΩN1
∩

ΩN1+1. The value of σk when ξ>k Qξk = 0 complies with
the dynamics chosen at time k in (17). This method leads
to LMIs using various S-procedure relaxations. Due to space
limitations the detailed expressions for the LMIs are omitted.

For the example here, we take N1 = 1 and N = 4 and
use a partition inspired by [7], [34]. This results in Fig. 2
and Fig. 3. In fact, also the upper bounds on the L2-gain
of (1) corresponding to the sufficient conditions obtained
in the earlier works [2], [10] are provided. In Fig. 2 we
observe that the new conditions lead to significantly better
bounds than the existing ones as we built upon necessary
and sufficient conditions using the discrete-time PWL system
(17) obtained via lifting. In fact, it can be shown that the
methodology of [2], [10] is equivalent to a conservative test
for contractivity of the discrete-time PWL system (17) using
quadratic Lyapunov/storage functions. Based on our new
lifting-based techniques more insights are obtained due to
the fact that we have necessary and sufficient conditions,
which, in addition, allow the use of more versatile Lyapunov
functions such as the PWQ ones as in (22) and additional
S-procedure relaxations in the formulation of the LMIs that
could not be used in [2], [10].

B. Sampled-data system with arbitrarily switching con-
trollers

In this example, we will consider the control of the
system (20) in a sampled-data fashion using two arbitrarily
switched state-feedback controllers as in (10), in which K1 =

0
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Fig. 3. Upper bound of the L2-gain as a function of the sampling interval
h and triggering parameter ρ.
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Fig. 4. Upper bound of the L2-gain as a function of the sampling interval
h using both a common and a mode-dependent Lyapunov function.

[−0.45 − 3.25] and K2 = [−2.28 − 4.74]. Following the
procedure and LMIs given in Section V-C.2 the results as in
Fig. 4 are obtained for various values of the sampling period
h based on a mode-dependent quadratic Lyapunov function.
For comparison we also plotted the results that would be
obtained by the direct application/generalisation of the results
in [2], [10], [1] based on τ -dependent common quadratic
Lyapunov/storage functions of the form V (ξ) = ξ>P (τ)ξ
for (1). Again, we observe a clear improvement provided by
the new results compared to these existing ones.

VII. CONCLUSIONS

In this work we studied the internal stability and the
L2-gain of hybrid systems that have linear flow dynamics,
periodic time-triggered jumps and arbitrary nonlinear jump
maps. This class of hybrid systems is relevant for various
applications including PETC, control over communication
networks with quadratic protocols such as the TOD proto-
col, continuous-time linear systems controlled by arbitrarily
switching sampled-data control laws and many more. We
have established novel necessary and sufficient conditions
for both the internal stability and the contractivity (in the
sense of L2-gains) for these dynamical systems in terms of
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the internal stability and the contractivity (now in the sense of
`2-gains) of an appropriate discrete-time nonlinear (possibly
set-valued) system. These conditions are the first that are both
necessary and sufficient. These new insights were obtained
by adopting a lifting-based perspective for the problem, like
in [11], and lead to numerically tractable methods to study
the internal stability and the L2-gain of the studied hybrid
systems class, in spite of the fact that linearity, which is an
assumption usually needed in the lifting literature, does not
hold.
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