Towards Correct Network Virtualization

Soudeh Ghorbani

Brighten Godfrey

UIUC

Virtualization

Hypervisor

x86

Soudeh Ghorbani and Brighten Godfrey HotSDN 2014

Virtualization Firewall Load-Router balance Apr Apr Apr App App App L2 bridge VM VM VM Hypervisor **Network Virtualization** x86 **Physical Network**

Soudeh Ghorbani and Brighten Godfrey

Virtualization Load-Firewall Router balance Apr Apr Apr App App App L2 bridge VM VM VM Hypervisor **Network Virtualization** x86 Diagram inspired by Teemu Koponen's NSDI 2014 talk on "Network Virtualization in Multi-tenant Datacenters". **Physical Network**

Soudeh Ghorbani and Brighten Godfrey

Is the physical implementation a faithful reproduction of the virtual network?

Soudeh Ghorbani and Brighten Godfrey

Policy: permit an external server to talk to an internal client if and only if the client has sent a request to the server.

Soudeh Ghorbani and Brighten Godfrey

Policy: permit an external server to talk to an internal client if and only if the client has sent a request to the server.

Soudeh Ghorbani and Brighten Godfrey

Policy: permit an external server to talk to an internal client if and only if the client has sent a request to the server.

Soudeh Ghorbani and Brighten Godfrey

Policy: permit an external server to talk to an internal client if and only if the client has sent a request to the server.

Soudeh Ghorbani and Brighten Godfrey

Policy: permit an external server to talk to an internal client if and only if the client has sent a request to the server.

Soudeh Ghorbani and Brighten Godfrey

Firewall Switch

Prio rity	Flow	Action
10	srcip=130.126.*.*	Send to controller, fwd(1)
0	*	Send to controller

Firewall Switch

Prio ritv	Flow	Action	
10	srcip=130.126.*.*	Send to controller, fwd(1)	
0	*	Send to controller	

Firewall Switch

Prio rity	Flow	Action
10	srcip=130.126.*.*	Send to controller, fwd(1)
0	*	Send to controller


```
switch(msg.getType()) {
    case PACKET_IN:
        if ( internal.contains(msg.srcMAC()) ) {
            whitelisted[msg.dstMAC()][msg.srcMACA()] = true;
        }else {
            if (whitelisted[msg.srcMAC()][msg.dstMAC()]){
                whitelist(sw, msg);
            }else{
                blacklist(sw, msg);
            }
        }
    }
}
```


Soudeh Ghorbani and Brighten Godfrey

Soudeh Ghorbani and Brighten Godfrey

Soudeh Ghorbani and Brighten Godfrey

Soudeh Ghorbani and Brighten Godfrey

Network virtualization: What could go wrong?

Арр	Virtualization technique	Incorrect-behavior
Stateful firewall	One-to-many mapping	Blacklisting the legitimate hosts
NAT	One-to-many mapping	Dropping requested packets
Load-balancer	One-to-many mapping	Overloading some servers and leaving some underutilized
Firewall & router	Many-to-one mapping	Blacklisting the legitimate hosts

Soudeh Ghorbani and Brighten Godfrey HotSDN 2014

Related work

- Incorrect behavior caused by moving, observed in:
 - 1. "LIME: Transparent, Live Migration of a Software-Defined Network", Soudeh Ghorbani, Cole Schlesinger, Matthew Monaco, Eric Keller, Matthew Caesar, Jennifer Rexford, David Walker, under submission.
 - 2. "OpenNF: Enabling Innovation in Network Function Control", Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl, Junaid Khalid, Sourav Das, Aditya Akella, SIGCOMM 2014.
- These existing solutions are:
 - Only a short-term fix while virtual network is being moved.
 - Infeasible when incorrect behavior is permanent rather than transient.

Root-cause of the incorrect behavior

Soudeh Ghorbani and Brighten Godfrey

Firewall

Root-cause: forwarding decision has some dependency on the **history**, the sequence of previous 'send' and 'receive' events.

Soudeh Ghorbani and Brighten Godfrey

Who programs the network?

• The entities that can make or influence the forwarding decisions:

• Controller

- **Switch**: random forwarding like ECMP
- Data packet: indirectly through local state, e.g., idle-timers

Soudeh Ghorbani and Brighten Godfrey

Who programs the network?

• The entities that can make or influence the forwarding decisions:

Controller

- **Switch**: random forwarding like ECMP
- Data packet: indirectly through local state, e.g., idle-timers

Soudeh Ghorbani and Brighten Godfrey

Correctness conditions:

1. Per-packet/flow consistency: prevents loops, black-holes,...

Consensus Routing [NSDI'08], Consistent Updates [SIGCOMM'12]

2. Congestion freedom

zUpdates [SIGCOMM'13], SWAN [SIGCOMM'13], On Consistent Updates in Software-Defined Networks [HotNets'13]

- **None** of these conditions were violated in our examples!
- black-holes,...

Consensus Routing [NSDI'08], Consistent Updates [SIGCOMM'12]

2. Congestion freedom *zUpdates* [SIGCOMM'13], SWAN [SIGCOMM'13], On Consistent Updates in Software-Defined Networks [HotNets'13]

2. Congestion freedom *zUpdates* [SIGCOMM'13], SWAN [SIGCOMM'13], On Consistent Updates in Software-Defined Networks [HotNets'13]

Soudeh Ghorbani and Brighten Godfrey HotSDN 2014

None of these conditions were violated in our examples!

"Correctness is what users want."

Leslie Lamport

25

[SIGCOMM'12]

Techniques designed to preserve those correctness conditions could **break the otherwise correct behavior**.

On Consistent Updates in Software-Defined Networks [HotNets'13]

Soudeh Ghorbani and Brighten Godfrey

None of these conditions were violated in our examples!

"Correctness is what users want."

Leslie Lamport

25

[SIGCOMM'12]

C

Techniques designed to preserve those correctness conditions could **break the otherwise correct behavior**.

<u>An Consistant IIndatas in Softwara-Dafinad</u>

We need **new definitions of correctness** and **new techniques** to achieve those.

Soudeh Ghorbani and Brighten Godfrey HotSDN 2014

Soudeh Ghorbani and Brighten Godfrey H

Soudeh Ghorbani and Brighten Godfrey He

Soudeh Ghorbani and Brighten Godfrey Ho

A mapping of a logical network L to a physical network P is said to be end-to-end correct iff Pr_L[E] ≈ Pr_P[E] where E is the partially ordered set of `send' and `receive' events.

- A mapping of a logical network L to a physical network P is said to be end-to-end correct iff Pr_L[E] ≈ Pr_P[E] where E is the partially ordered set of `send' and `receive' events.
- Key features:
 - distinguishes between events that happen always, sometimes, and never.

- A mapping of a logical network L to a physical network P is said to be end-to-end correct iff Pr_L[E] ≈ Pr_P[E] where E is the partially ordered set of `send' and `receive' events.
- Key features:
 - distinguishes between events that happen always, sometimes, and never.
 - permissive of the differences in packet loss or timing that do not affect correctness.

- A mapping of a logical network L to a physical network P is said to be end-to-end correct iff Pr_L[E] ≈ Pr_P[E] where E is the partially ordered set of `send' and `receive' events.
- Key features:
 - distinguishes between events that happen always, sometimes, and never.
 - permissive of the differences in packet loss or timing that do not affect correctness.
 - permissive of the legitimate differences in orderings of events.

So far:

We identified the **problem:** incorrect application-level behavior under the existing virtualization techniques.

We identified its **rootcause:** dependence on the history.

We developed an analytical **framework** to reason about the problem.

Research Vision:

Developing a general **algorithm.**

Proving its correctness.

Developing a correct virtualization **System.**

Soudeh Ghorbani and Brighten Godfrey

Thanks! Questions?

Soudeh Ghorbani and Brighten Godfrey