Scalable Data Analytics Pipeline for Validation of Real-Time Attack Detection

Eric Badger, Phuong Cao, Alex Withers, Adam Slagell, Zbigniew Kalbarczyk, Ravi Iyer University of Illinois Urbana-Champaign

Overview

- Introduction/Motivation
- Challenges
- Attack Detection: AttackTagger

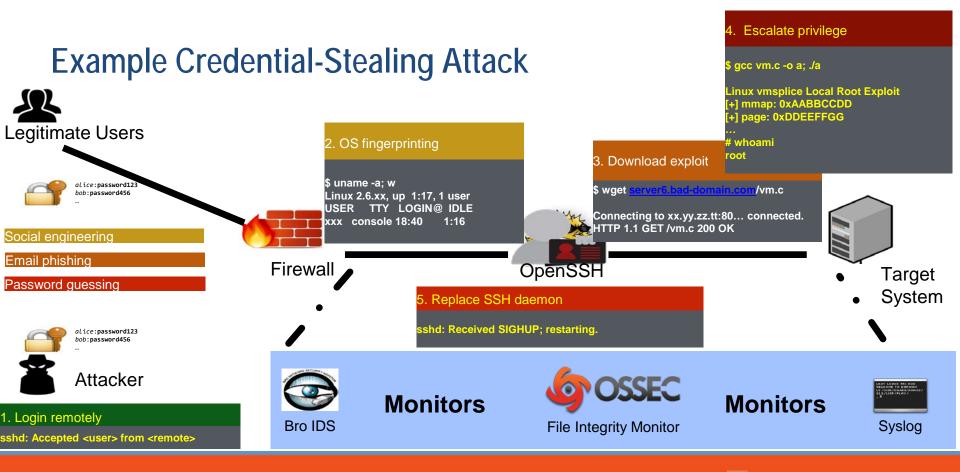
ILLINOIS

2

- Validation of AttackTagger
- Future Work/Conclusion

Research Problems

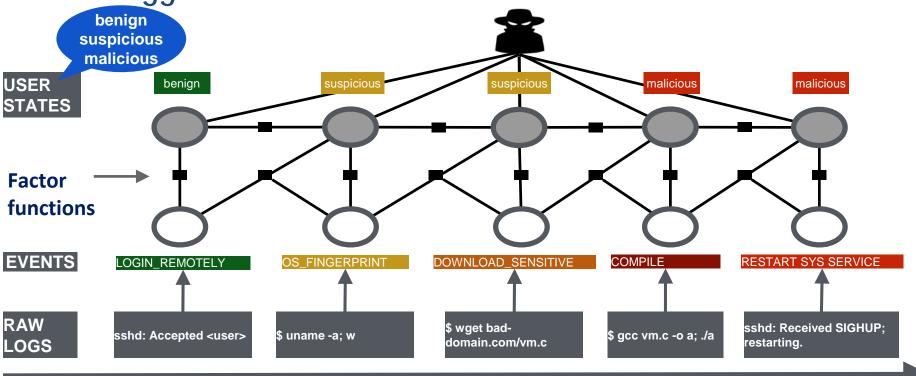
- How can we detect attacks before system misuse? High-accuracy, real-time attack detection tools
- How do we validate that our attack detection tools works on realworld data?
- How do we transition attack detection tools from theory to practice?


Attack Type: Credential-Stealing Attacks

- Definition: An attack where the attacker enters the system with legitimate credentials (e.g. username/password)
 Attacker becomes an insider
- 26% (32/124) of incidents at NCSA over a 5-year period were credential-stealing attacks
- 28% (9/32) of these attacks weren't detected by NCSA monitors

[1] Sharma, A.; Kalbarczyk, Z.; Barlow, J.; Iyer, R., "Analysis of security data from a large computing organization," in *Dependable Systems & Networks (DSN), 2011* IEEE/IFIP 41st International Conference on

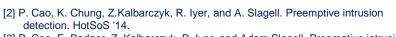
LINOIS



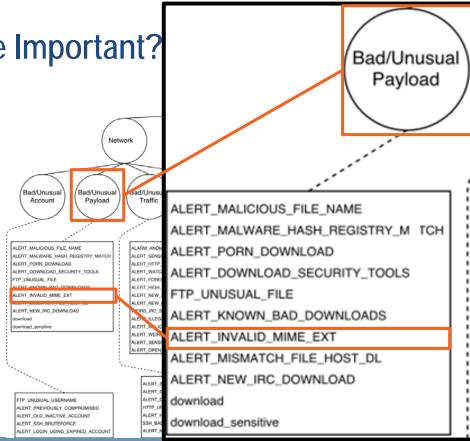
ECE ILLINOIS

5

Detecting Attacks Using Factor Graphs: AttackTagger



time


ECE ILLINOIS

How Do I Know What Events Are Important?

 We identified over 100 important events related to credential-stealing attacks

[3] P. Cao, E. Badger, Z. Kalbarczyk, R. Iyer, and Adam Slagell. Preemptive intrusion detection: theoretical framework and real-world measurements. HotSoS '15.

ILLINOIS

ECE ILLINOIS

AttackTagger Dataset

- Manually extracted data Raw logs Human-written incident reports
- Ideal data
 - No noise
 - Perfect monitors
 - No randomness

[3] P. Cao, E. Badger, Z. Kalbarczyk, R. Iyer, and Adam Slagell. Preemptive intrusion detection: theoretical framework and real-world measurements. HotSoS '15.

Raw logs

11:00:57 sshd: Failed password for root 23:08:26 sshd: Failed password for root 23:08:30 sshd: Failed password for nobody 23:08:38 sshd: Failed password for <user> 23:08:42 sshd: Failed password for root

Manual Extraction

The security team received ssh suspicious alerts from <machine> for the user <user>. There were also some Bro alerts from the machine <machine>. From the Bro sshd logs the user ran the following commands:

wget <xx.yy.zz.tt>/abs.c -O a.c

uname -a

unset HISTFILE

gcc a.c -o a;

Human-written incident reports

following READ_HOST_CONFIGURATION ALERT_DISABLE_LOGGING ALERT_DOWNLOAD_SENSITIVE ALERT_COMPILE_CODE

[3] P. Cao, E. Badger, Z. Kalbarczyk, R. Iyer, and Adam Slagell. Preemptive intrusion detection: theoretical framework and real-world measurements. HotSoS '15.

ECE ILLINOIS

AttackTagger Results

- 74.2% (46/62) malicious users correctly detected as malicious
- 1.52% (19/1,253) benign users incorrectly detected as malicious

Name	$\Box TP$	TN	FP	FN
AttackTagger	74.2	98.5	1.5	25.8
Rule Classifier	9.8	96.0	4.0	90.2
Decision Tree	21.0	100.00	0.00	79.0
Support Vector Machine	27.4	100.00	0.00	72.6

[3] P. Cao, E. Badger, Z. Kalbarczyk, R. Iyer, and Adam Slagell. Preemptive intrusion detection: theoretical framework and real-world measurements. HotSoS '15.

ILLINOIS

10

ECE ILLINOIS

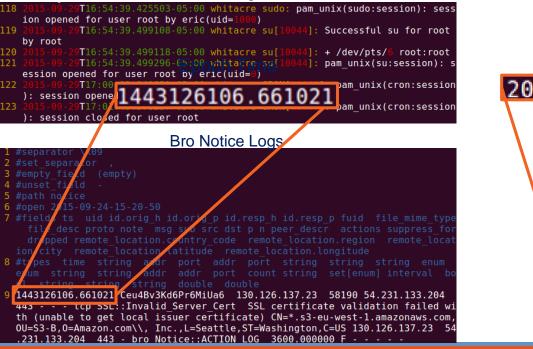
How to Extract Important Events

Network Monitors

Anything that logs activity between hosts Example: Bro

Host Monitors

Anything that logs activity on the host Example: OSSEC



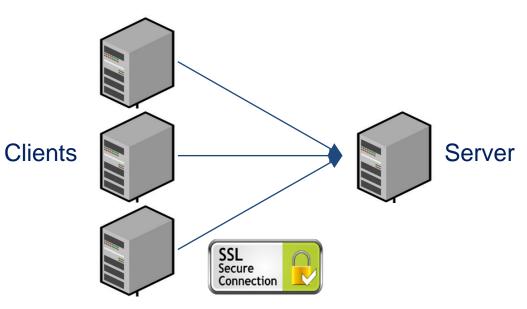
Log Normalization

ECE ILLINOIS

Auth Logs

OSSEC Logs

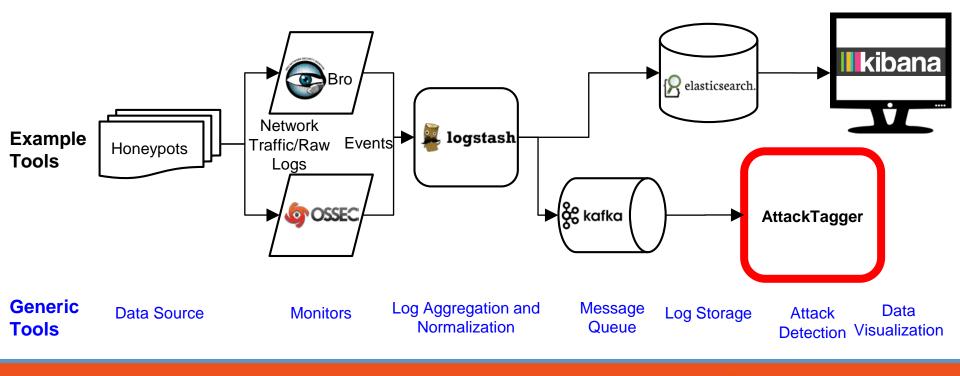
- - [16:02:07] [16:02:07] File properties checks... [16:02:07] Files checked: 142 [16:02:07] Suspect files: 2 [16:02:07] [16:02:07] Rootkit checks... [16:02:07] Rootkits checked : 380 [16:02:07] Possible rootkits: 0 Snoopy Logs 41 2015-09-29T08:00:06.252345-05:00 whitacre 🚀oopy[32190]: [username:root t ty username:(none) uid:0 sid:26590 tty:(pone) cwd:/root filename:/bin/una me]: uname -r 2015-09-29T08:00:06.254930-05:00 whitere snoopy[32194]: [username:root t ty username:(none) uid:0 sid:26590 🍂 (none) cwd:/root filename:/bin/gre pl: arep ^-4143 2015-09-29T08:00:06.257580-05:00 whitacre snoopy[32197]: [username:root t ty username:(none) uid:0 sid:26590 tty:(none) cwd:/root filename:/bin/egr ep]: egrep (^|[^\])[][?*{}]

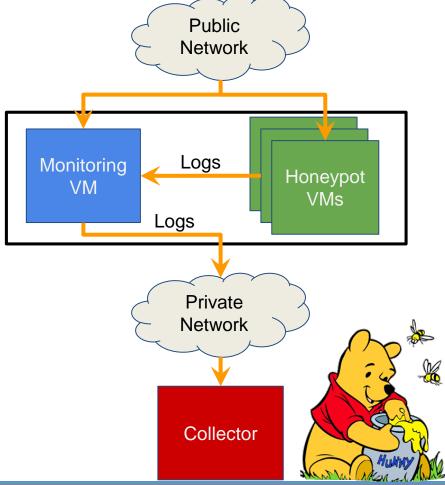

Log Normalization

						Extra	Received
	Timestamp,	IP Add	dress:User, E	vent		Info,	Timestamp
209	1443457145. 3	717,143.219.	0.11:root,A	LERT_FAILED_	PASSWORD,	NaN,NaN,1	1443461619.4
210	1443457147. 0	510,143.219.	0.11:root,A	LERT_FAILED	_PASSWORD,	NaN,NaN,1	1443461619.49
		505,143.219.					
212	1443457661. 520	469,143.219.	0.11:root,r	ead_host_cor	nfiguratio	n,NaN,Nal	N,1443461619
213	1443457662. 19.536	963,143.219.	0.11:ubuntu	,ALERT_GET_L	_OGGEDIN_U	SERS,NaN,	NaN,1443461
214	1443461754.	305,:,ALERT_	INTERNAL_AD	DRESS_SCAN,	NaN,NaN,14	43461764	. 436

ECE ILLINOIS

Log Aggregation


- Multiple clients, single server
- Encryption is necessary Thwart MITM attacks


Data Pipeline Design

ECE ILLINOIS

We Need Data! Honeypots at NCSA

- NCSA server running several VMs Honeypot VMs Monitoring VM
- Collector (NCSA server) Normalize, aggregate, queue, detect
- Honeypots are low-risk

INOIS

16

ECE ILLINOIS

Preliminary Honeypot Results

- 3 SSH Bruteforce attacks in first 3 days
- Downloaded and ran "/tmp/squid64"
- Attackers beat my monitors! (Well, sort of...)

Pushed the malware

Immediate file deletion

Where Are We Now?

- Honeypots are online Mining attack data
- Creating targeted attacks
- Upgrading AttackTagger factor functions
- Pipeline performance evaluation underway

Validating AttackTagger in a Real-world Environment

- Compare with theoretical AttackTagger results
- Compare and contrast AttackTagger with different attack detection models

ILLINOIS

19

- e.g. Rule-classifier, Bayesian Networks
- Benchmark throughput of events Can AttackTagger work in real-time?

Future Work

- Validate AttackTagger using honeypots/pipeline
- Transition entire pipeline into practice at NCSA
- Add additional monitors to data pipeline

Administrator-generated events/profiles Keystroke data (e.g. iSSHD)

Improve stream-processing of AttackTagger

LLINOIS

20

Conclusion

- Demonstrated attack detection using factor graphs (AttackTagger) 74.2% true positive
- Designed and implemented data pipeline for real-world validation of attack detection tools

Questions?

Citations

- [1] Sharma, A.; Kalbarczyk, Z.; Barlow, J.; Iyer, R., "Analysis of security data from a large computing organization," in Dependable Systems & Networks (DSN), 2011 IEEE/IFIP 41st International Conference on
- Phuong Cao, Key-whan Chung, Zbigniew Kalbarczyk, Ravishankar Iyer, and Adam J. Slagell. 2014. Preemptive intrusion detection. In *Proceedings of the 2014 Symposium and Bootcamp on the Science of Security* (HotSoS '14). ACM, New York, NY, USA, , Article 21, 2 pages. DOI=10.1145/2600176.2600197 http://doi.acm.org/10.1145/2600176.2600197
- [3] Phuong Cao, Eric Badger, Zbigniew Kalbarczyk, Ravishankar Iyer, and Adam Slagell. 2015. Preemptive intrusion detection: theoretical framework and real-world measurements. In *Proceedings of the 2015 Symposium and Bootcamp on the Science of Security* (HotSoS '15). ACM, New York, NY, USA, , Article 5, 12 pages. DOI=10.1145/2746194.2746199 http://doi.acm.org/10.1145/2746194.2746199

The Honey Pot and The Honey Badger

ECE ILLINOIS

