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Keeping network correct consistently over time. 

-- Network Consistency

Network changes

• control applications, 

• changes in traffic load, 

• system upgrades, 

• …
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What is Correctness?

• firewall traversal, 

• access control, 

• balanced load, 

• loop freedom,

• …

1. Correctness at every step

2. Customizable properties

3. With efficient update installation



Problem Statement

1. Consistency at every step

2. Customizable consistency properties 

3. Efficient updates installation
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Is it possible to efficiently ensures 
customizable correctness properties 

as the network evolves?
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Ideally given arbitrary invariants, a sequence with minimized 
overhead is produced
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Controller

Stream of Updates

No loop, no black hole,
Resource isolation,

No suboptimal routing,
... 

Magic engine



Our design: Customizable Consistency Generator

Key insight:
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Our design: Customizable Consistency Generator

Challenges: 

• Greedy algorithm may get stuck

✴ identify the scope of cases that 
guarantees no deadlock

✴ For other cases, a more heavyweight 
update technique as a fallback, triggered 
rarely in practice

• Distributed nature of networks 
(uncertainty)

✴ compact uncertain forwarding graph

✴ verification optimization
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Network Uncertainty

The “uncertainty” of an observation point tasked with instilling 
updates in knowing the current network state.

May deviate network behavior away from desired properties.
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Uncertainty-aware Modeling Basis: VeriFlow
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VeriFlow
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Uncertainty-aware Modeling Basis: VeriFlow
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VeriFlow

Generate 
Forwarding

Graphs

Generate 
Equivalence

Classes
Run QueriesUpdates

Equivalence class: Packets 
experiencing the same 
forwarding actions throughout 
the network.

Forwarding graphs:



Uncertainty-aware Modeling

Naively, represent every possible network state O(2^n)

Uncertain graph: represent all possible combinations
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When to change “uncertain” to “certain”?

How to verify the network under “uncertainty”?

The model captures 
packets’ view of the 
network, assuming 
controller initiates changes.



Consistency under Uncertainty

Enforcing consistency with max parallelism
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heuristically
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Waypoint Properties: flows are 
required to traverse a set of waypoints

• connectivity,

• waypointing, 

• access control, 

• service chaining, …

Theorem: Segment independent 
properties is guaranteed by the 
heuristic.



Consistency under Uncertainty
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Even with FB triggered, CCG achieves better efficiency 
than using FB alone.



System Structure
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Evaluation

Can CCG verify network invariants in real time? 

Can CCG achieve performance gain during network 
transitions with its algorithm for maximizing the parallelism of 
applying updates?

• Segment-independent Policies 

• Non-segment-independent Policies 

• Emulations

• Testbed experiments
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Speed Analysis
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Uncertain-100
Uncertain-1000

Uncertain-10000
VeriFlow

Simulated network: BGP RIBs and update trace from 
RouteViews injected into 172-router AS 1755 topology,

checking reachability invariant

15X less memory overhead (540MB vs. 9GB)



Emulation: Segment-independent Policies

• Local (4ms)

• Wide area (100ms)

Measure: path completion time
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NOX (Shortest path & load balancing)

CCG

Mininet

…… ……

…

Controller-switch delay = network delay + processing delay



Emulation: Segment-independent Policies 
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Emulation: Non-segment-independent Policies 

Traces from a enterprise network with 200+ layer-3 devices. 

One day, one snapshot per hour, 24 transitions, 4ms delay.

• New rules were added first, then old rules deleted. 

Rules overlapped with longest prefix match, not segment-independent.
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Fallbacks happened rarely.

Overhead close to Immediate Update, with no transient connectivity violations.
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Conclusion

Uncertainty problem with network control

Uncertainty-aware network model

GCC, a system that 

• enforces customizable network consistency properties with 

• heuristically optimized efficiency. 

Ongoing work:

• Study the generality of segment independency

• Test with more data traces, and compare against the original 
implementation of Dionysus

• Handle changes initiated from the network. 
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