
Enforcing Customizable
Consistency Properties in

Software-Defined Networks

Wenxuan Zhou, Dong Jin, Jason Croft,
 Matthew Caesar, Brighten Godfrey

1

2

Keeping network correct consistently over time.

-- Network Consistency

Network changes

• control applications,

• changes in traffic load,

• system upgrades,

• …

3

What is Correctness?

• firewall traversal,

• access control,

• balanced load,

• loop freedom,

• …

1. Correctness at every step

2. Customizable properties

3. With efficient update installation

Problem Statement

1. Consistency at every step

2. Customizable consistency properties

3. Efficient updates installation

4

Is it possible to efficiently ensures
customizable correctness properties

as the network evolves?

Prior Work

Network
Verification

Dionysus Consistent
Updates

Fixed
Consistency

Property

Ideally given arbitrary invariants, a sequence with minimized
overhead is produced

6

Controller

Stream of Updates

No loop, no black hole,
Resource isolation,

No suboptimal routing,
...

Magic engine

Our design: Customizable Consistency Generator

Key insight:

7

CCG
Stream of Updates

Fail

Buffer of
pending updates

Network
Model

Verification
Engine

Confirmations
Pass

Controller

No loop/black hole,
Resource isolation,

No suboptimal routing,
No VLAN leak,

...

Synthesis Verification

Our design: Customizable Consistency Generator

Challenges:

• Greedy algorithm may get stuck

✴ identify the scope of cases that
guarantees no deadlock

✴ For other cases, a more heavyweight
update technique as a fallback, triggered
rarely in practice

• Distributed nature of networks
(uncertainty)

✴ compact uncertain forwarding graph

✴ verification optimization

8

CCG

Network
Model

Verification
Engine

Stream of Updates

Fail

Buffer of
pending updates

Confirmations
Pass

Network Uncertainty

The “uncertainty” of an observation point tasked with instilling
updates in knowing the current network state.

May deviate network behavior away from desired properties.

9

0$2"1$%#34$%.%
5-467-8%

#34$%.%

+'()!*%9%
#34$%/% +'()!*%:%

;",)#"44$#%

<,&)644%#34$%/%

!"#$%&'

Uncertainty-aware Modeling Basis: VeriFlow

10

VeriFlow

Controller

VeriFlow

Uncertainty-aware Modeling Basis: VeriFlow

11

VeriFlow

Generate
Forwarding

Graphs

Generate
Equivalence

Classes
Run QueriesUpdates

Equivalence class: Packets
experiencing the same
forwarding actions throughout
the network.

Forwarding graphs:

Uncertainty-aware Modeling

Naively, represent every possible network state O(2^n)

Uncertain graph: represent all possible combinations

12

When to change “uncertain” to “certain”?

How to verify the network under “uncertainty”?

The model captures
packets’ view of the
network, assuming
controller initiates changes.

Consistency under Uncertainty

Enforcing consistency with max parallelism

13

heuristically

CCG

Uncertainty
-aware
Model Verification

Engine

Stream of Updates

Fail

Buffer of pending
updates

Confirmations Pass

Waypoint Properties: flows are
required to traverse a set of waypoints

• connectivity,

• waypointing,

• access control,

• service chaining, …

Theorem: Segment independent
properties is guaranteed by the
heuristic.

Consistency under Uncertainty

14

CCG

Uncertainty-
aware

Network Model Verification
Engine

Stream of Updates

Fail

Buffer of pending
updates

Confirmations Pass

FallBack
Mechanism

Even with FB triggered, CCG achieves better efficiency
than using FB alone.

System Structure

15

Uncertainty-aware
Network Model

Verification
Engine

Controller

Fail

Pass

Buffer of
pending

Confirmations

No loop/black hole,
Resource isolation,

No suboptimal routing,
No VLAN leak,

...

Fallback
Mechanism

Stream of
UpdatesCCG

Evaluation

Can CCG verify network invariants in real time?

Can CCG achieve performance gain during network
transitions with its algorithm for maximizing the parallelism of
applying updates?

• Segment-independent Policies

• Non-segment-independent Policies

• Emulations

• Testbed experiments

16

Speed Analysis

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

Fr
ac

tio
n

of
 t

ri
al

s

Microsecond

Uncertain-100
Uncertain-1000

Uncertain-10000
VeriFlow

Simulated network: BGP RIBs and update trace from
RouteViews injected into 172-router AS 1755 topology,

checking reachability invariant

15X less memory overhead (540MB vs. 9GB)

Emulation: Segment-independent Policies

• Local (4ms)

• Wide area (100ms)

Measure: path completion time

18

NOX (Shortest path & load balancing)

CCG

Mininet

…… ……

…

Controller-switch delay = network delay + processing delay

Emulation: Segment-independent Policies

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

Fr
ac

tio
n

of
 t

ri
al

s

Millisecond

Optimal
CCG

CCG-waypoint
Dionysus

Consistent Updates
Incremental CU

Local

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fr
ac

tio
n

of
 t

ri
al

s

Millisecond

Optimal
CCG

CCG-waypoint
Dionysus

Consistent Updates
Incremental CU

Wide area

No fallback triggered
No additional memory

Emulation: Non-segment-independent Policies

Traces from a enterprise network with 200+ layer-3 devices.

One day, one snapshot per hour, 24 transitions, 4ms delay.

• New rules were added first, then old rules deleted.

Rules overlapped with longest prefix match, not segment-independent.

20

Fallbacks happened rarely.

Overhead close to Immediate Update, with no transient connectivity violations.

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

25000$

20000$

15000$

10000$

5000$

0$
7/22/2014$
22:00:00$

7/22/2014$
23:00:00$

7/23/2014$
0:00:00$

7/23/2014$
1:00:00$

//$

//$

//$

//$

//$

//$

Time$

N
um

be
r$o

f$R
ul
es
$

in
$th

e$
N
et
w
or
k$

7/22/2014$
22:00:02$

7/22/2014$
23:00:02$

7/23/2014$
0:00:02$

7/23/2014$
1:00:02$

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Immediate Update

GCC

Consistent Updates
 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Immediate Update

GCC

Consistent Updates

End

End

End

Comple?on$
Time$} CCG

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Immediate Update

GCC

Consistent Updates

End

End

End

 0

 5000

 10000

 15000

 20000

 25000

 0 2 4 6 8 10 12 14 16

Immediate Update

GCC

Consistent Updates

End

End

End

Conclusion

Uncertainty problem with network control

Uncertainty-aware network model

GCC, a system that

• enforces customizable network consistency properties with

• heuristically optimized efficiency.

Ongoing work:

• Study the generality of segment independency

• Test with more data traces, and compare against the original
implementation of Dionysus

• Handle changes initiated from the network.

21

