
Towards Privacy-Preserving
Mobile Utility Apps:

A Balancing Act
Presented by: Wing Lam1

In collaboration with Dengfeng Li1 and Wei Yang1 and Tao Xie1, Benjamin Andow2, Akhil Acharya2, William
Enck2, Kapil Singh3

1 University of Illinois at Urbana-Champaign
2 North Carolina State University

3IBM T.J. Watson Research Center

1

Presenter
Presentation Notes
So, what is balancing for privacy & utility? Imaging you download..

Utility - Example

2

Privacy - Example

3

Balancing Privacy and Utility

• What noticed: Mobile utility apps collect user’s app usage
data to enhance user experiences

• Mobile utility apps: app store management, IME (input method
editor), media player, navigation…

• Problem: App usage data often contains security-sensitive
information

• Goal: Balance the user’s privacy and utility app’s
functionality

4

Presenter
Presentation Notes
From the previous example, it is apparent that for mobile utility apps, we have to balance the user’s privacy against the utility functionalities of the app.

Proposed Privacy Framework

• Solution: Framework that combines four different
components to protect user’s sensitive information while
maintaining the functionalities of an app

• Proposed framework combines
• Sensitive-information detection
• Utility-impact analysis
• Privacy-policy compliance checking
• Privacy-preserving balancing

5

Proposed Privacy Framework - Overview

1

2

3

4

6

Presenter
Presentation Notes
Utility-Impact Analysis - Measure the impact of removing or anonymizing a specific user input on the level of utility efficacy
Privacy-Policy Compliance Checking - Check usage of sensitive information in the app against the app’s declared privacy policy

Sensitive-Input Detection

• Resolve semantics of input fields in the app to output a list of input fields
that are security-sensitive

• Collected both dynamically and statically

• Dynamically leveraging UI rendering, geometrical layout analysis, and
natural language processing (NLP) techniques to identify sensitive input
fields

• Static taint analysis to resolve sensitive information (such as a GPS location)
obtained from the system

1

7

Presenter
Presentation Notes
Dynamic some information come from web servers and such.

Privacy policy may miss sensitive information

Static analysis is more complete because dynamic might not run all code

Sensitive-Input Detection - Challenges

• How to automatically discover input fields from an app’s UI?

• How to identify which input fields are sensitive?

• How to associate sensitive input fields to the app’s corresponding
variables that store their values?

8

1

Presenter
Presentation Notes
To address these challenges, we have developed a framework called UiRef.

Sensitive-Input Detection - Solution

• UiRef (User InputREsolution Framework) is an approach for resolving
the semantics of the user input requested by mobile applications

• UiRef can disambiguate the semantics of user input by
• Extracting user interfaces
• Resolving user interface labels to their corresponding input field

• UiRef applied to over 50,000 Android applications from GooglePlay
achieves an accuracy of 95% on average to correctly determine if an
input field is security-sensitive or not

9

Presenter
Presentation Notes
Why dynamic rendering: Since users rely on the spatial arrangement of widgets and their proximity to each other to visually derive semantics from layouts, the extracted layouts should encode spatial data that can be used to reason about the proximity of widgets to one another, e.g., (x,y) coordinates.

What is pattern for label resolution? PROTO’s label resolution module operates on the intuition that developer’s are consistent with the physical arrangement and orientation of labels to user input fields. For example, if a developer positions labels to the left of a user input field, then it is expected that other labels in the layout will also be positioned on the left.

Why use data mining technique for semantic resolution? Using simplistic key-phrase matching techniques is not sufficient due to ambiguity in words. For example, a label with the word “address” can have multiple meanings, such as a postal address, web address, or an email address.

UiRef - Overview

10

Presenter
Presentation Notes
1. Layout Extraction Module: PROTO injects a custom activity into the APK, and rewrites the application’s manifest file by adding an entry for the injected activity to allow the injected activity to be invoked as an entry point into the application. Then, this injected activity will iterate all layout files in the APK and collect view hierarchy and metadata.

2. Label Resolution Module: PROTO’s label resolution module operates on the intuition that developer’s are consistent with the physical arrangement and orientation of labels to user input fields. For example, if a developer positions labels to the left of a user input field, then it is expected that other labels in the layout will also be positioned on the left.

3. Semantic Resolution Module: A new technique to resolve the semantics of user input fields by forming word encodings by using Word2Vec and mining frequent patterns, and then training a classifier to automatically classify a word based on the surrounding context.

UiRef – Layout Extraction

• Dynamically render layout file to obtain
view hierarchy and metadata (coordinates
of each view, visibility attributes, and text
string)

• Goals:
 Accurately extract spatial arrangement of all

GUI widgets
 Properly handle custom views

11

• Text Label
• Text: Address
• Coordinates: [X, Y]

• Input Field
• Coordinates: [J, K]

Spatial arrangement of two GUI widgets

An Android GUI

Presenter
Presentation Notes
Ensuring the proper representation of custom views is required, as they are frequently used by developers (around 74% of applications from Section VI use custom views).

It injects a custom activity into the APK, and rewrites the application’s manifest file by adding an entry for the injected activity to allow the injected activity to be invoked as an entry point into the application. Then, this injected activity will iterate all layout files in the APK and collect view hierarchy and metadata.

UiRef – Label Resolution
• Goal: identify the label associated with each

user input widget

• Intuition: developers are consistent arranging
and orienting labels to input widgets

• Solution: resolve mapping of labels to input
widgets by identifying patterns within the
placement of labels relative to user input
widgets

12

Presenter
Presentation Notes
For example, if a developer positions labels to the left of a user input widget, then it is expected that other labels in the layout will also be positioned on the left.

UiRef – Label Resolution Algorithm

• Step 1: generate candidate pairs of label and input widget

• Step 2: for each pair, create a set of vectors representing the distance
from the widget to the label

13

Presenter
Presentation Notes
The vectors represent the euclidean distance (i.e., magnitude) and a direction (i.e., angle) between the input widget and label.

In total, up to three vectors are created for each input widget and label pair.

The two vectors go from the two closest corners of the input widget to the corresponding corners of the label.

UiRef – Label Resolution Algorithm (Cont.)

• Step 3: for every input widget, find the minimal cost label

• Assumption: Cost({v1, v2, v3}) < Cost({v4, v5, v6}) < Cost({v7, v8})

14

Presenter
Presentation Notes
The vectors represent the euclidean distance (i.e., magnitude) and a direction (i.e., angle) between the input widget and label.

In total, up to three vectors are created for each input widget and label pair.

The two vectors go from the two closest corners of the input widget to the corresponding corners of the label.

UiRef – Semantic Resolution

• Resolve the types of data that input widgets accept from the input
widget’s associated descriptive text

• Challenges: key-phrase matching alone is not sufficient due to
polysemy

15Android Layout Screenshot

URL
Address

Postal
Address

IP
Address

UiRef – Semantic Resolution Algorithm (1/2)

• Step 1: Terminology Extraction – determine security and privacy
terms

16

UiRef – Semantic Resolution Algorithm (2/2)

• Step 2: Concept Resolution - determine the semantics of an input
• Use surrounding context of word and send to system for disambiguation
• Use a system to check similarity between keywords (e.g., similar words to

“address”, “zip”, … -> “postal”)

17

Address
- Zip
- City
- Country

Extract context
of “Address”

Word
similarity
system

Postal
Address

Disambiguate

Input to
system

Presenter
Presentation Notes
multiple word-vectors per word

Proposed Privacy Framework

1

2

3

4

18

Presenter
Presentation Notes
First, we detect sensitive information collected by the given utility app.

Second, we conduct program analysis on the utility app and produce (1) a utility report to rank the collected user inputs based on their contribution or benefit extent towards delivering the utility functionality, and (2) a privacy-policy compliance report to assure sharing sensitive information while preserve privacy.

Third, we include an automatic privacy-control mechanism that anonymizes various types of sensitive information at different levels to achieve the desirable level of utility efficacy.

Privacy-Preserving Balancing

• Repair apps by eliminating unwanted behaviors without impacting
legitimate behaviors

• Goal: maximizing the functionalities while minimizing the amount of
sensitive information exposed and sensitive behaviors performed

• Repairing of apps is done at four levels of granularity
• Where do the unwanted behaviors occur? (e.g., thread, activity and service)
• When are the unwanted behaviors triggered? (e.g., event handler)
• What are the resources abused? (e.g., sensitive inputs)
• How are the unwanted behaviors implemented? (e.g., send through network)

19

Unwanted-behavior Removal

• Applying a repair patch that eliminates the unwanted behaviors to
keep the legitimate behaviors functional correctly

20
A general framework, SMAR (Systematic Mobile App Repair)

Unwanted-behavior Removal

• Interactively remove behavior at four levels of granularity

21

Repair at the “where” level

• Where do the unwanted behaviors occur? (e.g., thread, activity and
service)

• Prevent components from being activated by removing the invocation
of activation APIs or the registration of the components in the
manifest file.

22

E.g., repair adware at the “where” level

Presenter
Presentation Notes
Strategies at the “where” level are simple and straightfor- ward. However, they also have high probability to impact the other legitimate behaviors of the app.

Repair at the “when” level

• When are the unwanted behaviors triggered? (e.g., event handler)

• Remove the registered observers or listeners of the events that
trigger the unwanted behaviors

23

E.g., remove a intent filter for the system event.

Repair at the “what” and “how” levels

• What are the resources abused? (e.g., sensitive inputs)

• How are the unwanted behaviors implemented? (e.g., send through network)

• Repair strategies at the “what” and “how” levels according to different types of
unwanted behaviors

• We focus on four commonly seen unwanted behaviors
 Information Leakage
 Root Exploit
 Adware
 SMS/Phone call abuses

24

Repair Information Leakage
• Information leakage: sensitive information is retrieved from protected

sources and flows to sinks that leak information.
• Repair strategies
 repair at sources
 repair at sinks

25Repair at sources Repair at sink

Repair Root Exploit

• Root exploits: apps escalate their privileges using rootkit
• Repair strategies

• Delete/replace rootkits
• Prevent the execution of rootkits

26

E.g., prevent the execution of rootkits.

Repair Adware

• Adware: uses users’ private information for profiling and targeted
advertisements

• Repair strategies
• Replace sensitive information flowing to ad libraries
• Delete unwanted API calls of ad libraries

27

Repair SMS/Phone call abuses

• SMS/Phone call abuses:
sending SMS to premium
rate number, deleting
SMS and recording the
phone call

• Repair strategies
• Delete permissions
• Deleting unwanted

operations

28

• SMS/Phone call abuses: sending SMS to premium rate number,
deleting SMS and recording the phone call

Validation and Robustness Testing

• Validation: ensure unwanted-behavior has been successfully repaired
• Environment mocking: simulate environmental dependencies such as

changing system time
• System logging: insert logging functions at the code locations of repair patch

• Robustness Testing : ensure legitimate behaviors of the app under
repair have been preserved and are functional correctly

• Leverage automatic testing tools such as Monkey
• Manual inspection

29

Conclusion

• Mobile utility apps collect user’s app usage data to enhance
user’s experiences

• App usage data often contains security-sensitive information

• Challenges: How to balance the user’s privacy and our utility app’s
functionality

• Proposed new privacy framework combines
• Sensitive-information detection
• Utility-impact analysis
• Privacy-policy compliance checking
• Privacy-preserving balancing

30

Thank you! Any questions?

31

Conclusion

• Mobile utility apps collect user’s app usage data to enhance
user’s experiences

• App usage data often contains security-sensitive information

• Challenges: How to balance the user’s privacy and our utility app’s
functionality

• Proposed new privacy framework combines
• Sensitive-information detection
• Utility-impact analysis
• Privacy-policy compliance checking
• Privacy-preserving balancing

32

	Towards Privacy-Preserving Mobile Utility Apps: �A Balancing Act
	Utility - Example
	Privacy - Example
	Balancing Privacy and Utility
	Proposed Privacy Framework
	Proposed Privacy Framework - Overview
	Sensitive-Input Detection
	Sensitive-Input Detection - Challenges
	Sensitive-Input Detection - Solution
	UiRef - Overview
	UiRef – Layout Extraction
	UiRef – Label Resolution
	UiRef – Label Resolution Algorithm
	UiRef – Label Resolution Algorithm (Cont.)
	UiRef – Semantic Resolution
	UiRef – Semantic Resolution Algorithm (1/2)
	UiRef – Semantic Resolution Algorithm (2/2)
	Proposed Privacy Framework
	Privacy-Preserving Balancing
	Unwanted-behavior Removal
	Unwanted-behavior Removal
	Repair at the “where” level
	Repair at the “when” level
	Repair at the “what” and “how” levels
	Repair Information Leakage
	Repair Root Exploit
	Repair Adware
	Repair SMS/Phone call abuses
	Validation and Robustness Testing
	Conclusion
	Thank you! Any questions?
	Conclusion

