

Hypothesis Testing for Network Security

Philip Godfrey, Matthew Caesar, David Nicol, William H. Sanders, Dong Jin INFORMATION TRUST INSTITUTE University of Illinois at Urbana-Champaign

We need a science of security

- Practice of doing cyber-security research needs to change
 - Attempts based on reaction to known/imagined threats
 - Too often applied in ad-hoc fashion
- SoS program: move security research beyond ad-hoc reactions
 - Need a principled and rigorous framework
 - Need a *scientific* approach

What is science?

sci•ence noun \'sī-ən(t)s∖

: the <u>systematic study</u> of the structure and behavior of the natural and physical world through observation and experiment

The scientific method

- 1. Ask a question
- 2. Formulate a hypothesis
- 3. Design and conduct an experiment
- 4. Analyze results

Towards a science of security

- Can we apply the scientific method to the domain of cybersecurity?
 - Challenges: complex, large scale+dynamic environments, many protocols/mechanisms
 - Opportunities: isolation, rigorous analyses, formal models, automation

Can we develop a methodology for science of security?

Our work

- NetHTM: a methodology for science of security
 - Techniques for performing/integrating security analyses to rigorously answer hypotheses about end to end security of a network
- Core: hypothesis evaluation engine
 - Input: testable hypotheses, formal model of system
 - Automatically designs and conducts experiments to evaluate veracity of hypotheses
- Our focus: Network data flow security
 - Builds upon our prior work in formal network modeling

Overall System Architecture

Security Scientist

Active sub-tasks and Status

 Task 1: Methodologies for modeling and analyzing networks

💫 Core Network Model

Modeling virtualized networks [best paper award, HotSDN 2014]

Task 2: Automated techniques for hypothesis testing

Automated experiment construction algorithm

• Task 3: Realizing a practical system

Modeling dynamic behaviors [NSDI 2015]

Let's start with a router

1

O INFORMATIO

8 1841 - HyperTerminal	
File Edit View Call Dansfer Help	
රිම් මරී ලෙපී ක්	
Router#show version Cisco IOS Software, 1841 Software (C1841-IPBASE-M), Version 12.4(1c), RELEN FTWARE (fc1) Technical Support: http://www.cisco.com/techsupport Copyright (c) 1986-2005 by Cisco Systems, Inc. Compiled Tue 25-Oct-05 17:10 by evmiller	ASE SO
ROM: System Bootstrap, Version 12.3(8r)T9, RELEASE SOFTWARE (fc1)	
Router uptime is 10 minutes System returned to ROM by power-on System image file is "flash:c1841-ipbase-mz.124-1c.bin"	
Cisco 1841 (revision 6.0) with 114688K/16384K bytes of memory. Processor board ID FHK0952230P 2 FastEthernet interfaces 2 Serial(sync/async) interfaces DRAM configuration is 64 bits wide with parity disabled. 191K bytes of NVRAM. 31360K bytes of ATA CompactFlash (Read/Write)	
Configuration register is 0x2102	
Router#	

1

• Pros:

 Can test prior to deployment

0

• Cons:

- Modeling is complex
- Predictionmisses bugs incontrol plane
- Requires vendor support

Our approach: Just model the data plane

Ι

• Pros:

Checks as close
 as possible to
 network
 behavior

- Unified analysis
 for multiple
 protocols
- Catches
 implementation
 bugs

Our approach: Data-plane modeling

• Challenge: need some general way to express complex forwarding behavior

- Solution: Represent data plane as boolean functions
 - Can leverage well-understood approaches to SAT solving, to check hypotheses against data plane
 - Translate SAT results to report hypothesis veracity along with diagnostic information

Examples

INFORMAT

Longest Prefix Matching

Packet Filtering

I

Automating Hypothesis Testing

- Could directly extend existing techniques (e.g., SAT solvers)
 - Problem: not very scalable
- Alternative solution: represent and test Boolean functions as graph traversals
- Main idea:
 - Represent network state as a forwarding graph
 - Translate hypothesis tests into graph traversals

Limiting the Search Space

Equivalence class:

Packets experiencing the same forwarding actions throughout the network.

Limiting the Search Space

Forwarding graphs:

Ι

All the info to answer hypotheses

0

INFORMAT

Limiting the Search Space

Evaluation

- Simulated an IP network using a Rocketfuel topology
 - Replayed Route Views BGP traces
 - 172 routers, 90K BGP updates
 - Microbenchmarked each phase of HTE's operation

Single-Hypothesis Testing Speed

CDF

18

Dealing with System Dynamics

000

- Challenge: Networks are Dynamic and Nondeterministic
 - May not always know what will happen given an input
 - May not always have up to date state
 - May not be fully deployed

Solution approach: dealing with "uncertainty"
 – Explicitly model uncertainty in network's current state

Uncertainty-aware modeling: Approach

- 1. Derive possible network states, given inputs
- Represent possible states using symbolic "uncertainty graph"
- 3. Traverse graph to test hypotheses
- 4. Update graph as information comes in
 - Network changes, acks from network, certain delays pass

Technical approach

0.00

INFORMATIO

Hypothesis Testing Time in Dynamic Networks

Ι

Conclusion

- We are constructing a hypothesis testing engine for SoS
 - Analysis methodology for reasoning about science of security of networks
 - Adds to theoretical underpinnings of SoS, supports practice of SoS
- Early results indicate feasibility
 - Experiments run in milliseconds on complex networks
- Interested in working with you

 My contact info: caesar@illinois.edu