
Hypothesis Testing for Network Security

Philip Godfrey, Matthew Caesar, David Nicol,
William H. Sanders, Dong Jin
INFORMATION TRUST INSTITUTE
University of Illinois at Urbana-Champaign

We need a science of security
• Practice of doing cyber-security research

needs to change
– Attempts based on reaction to known/imagined

threats
– Too often applied in ad-hoc fashion

• SoS program: move security research beyond
ad-hoc reactions
– Need a principled and rigorous framework
– Need a scientific approach

2

What is science?
sci·ence noun \ˈsī-ən(t)s\

: the systematic study of the structure and behavior of the
natural and physical world through observation and
experiment

The scientific method
1. Ask a question
2. Formulate a hypothesis
3. Design and conduct an experiment
4. Analyze results

3

Towards a science of security
• Can we apply the scientific method to the

domain of cybersecurity?
– Challenges: complex, large scale+dynamic

environments, many protocols/mechanisms
– Opportunities: isolation, rigorous analyses, formal

models, automation

• Can we develop a methodology for science of
security?

4

Our work
• NetHTM: a methodology for science of security

– Techniques for performing/integrating security analyses to
rigorously answer hypotheses about end to end security of
a network

• Core: hypothesis evaluation engine
– Input: testable hypotheses, formal model of system
– Automatically designs and conducts experiments to

evaluate veracity of hypotheses

• Our focus: Network data flow security
– Builds upon our prior work in formal network modeling

5

Overall System Architecture

NetHTM
Hypothesis
Testing
Platform

System under evaluation

Security Scientist

• “All network paths traverse a firewall”
• “Fraction of CRE vulnerabilities in

network, given set of deployed ACLs,
is less than 1%”

Hypotheses

Results 6

Active sub-tasks and Status
• Task 1: Methodologies for modeling and

analyzing networks
– Core Network Model
– Modeling virtualized networks [best paper award,

HotSDN 2014]

• Task 2: Automated techniques for hypothesis
testing
– Automated experiment construction algorithm
– Database model of network behavior

• Task 3: Realizing a practical system
– Modeling dynamic behaviors [NSDI 2015] 7

Let’s start with a router

Control Plane

Configuration

Data Plane

Network
Forwarding

8

One approach: Build a model of the router

Configuration

Control Plane

Data Plane

Network
Forwarding

Input

Predicted

• Pros:
– Can test prior to

deployment

• Cons:
– Modeling is

complex
– Prediction

misses bugs in
control plane

– Requires vendor
support

9

Our approach: Just model the data plane

Configuration

Control Plane

Data Plane

Network
Forwarding

Input

Predicted

• Pros:
– Checks as close

as possible to
network
behavior

– Unified analysis
for multiple
protocols

– Catches
implementation
bugs

10

Our approach: Data-plane modeling
• Challenge: need some general way to express

complex forwarding behavior

• Solution: Represent data plane as boolean
functions
– Can leverage well-understood approaches to SAT

solving, to check hypotheses against data plane
– Translate SAT results to report hypothesis veracity

along with diagnostic information

11

Examples

u v

Destination Interface

10.1.1.0/24 v

Drop port 80 to v

P(u,v) = IPdest ∈ 10.1.1.0/24
^ Portdest ≠ 80

Packet Filtering

u
v

Destination Interface

10.1.1.0/24 v

10.1.1.128/25 w

Longest Prefix Matching

w

P(u,v) = IPdest ∈ 10.1.1.0/24

^ IPdest ∉ 10.1.1.128/25

Similar approaches to handle NAT, multicast, ACLs, encapsulation, MPLS
label swapping, OpenFlow, etc.

12

Automating Hypothesis Testing
• Could directly extend existing techniques

(e.g., SAT solvers)
– Problem: not very scalable

• Alternative solution: represent and test
Boolean functions as graph traversals

• Main idea:
– Represent network state as a forwarding graph
– Translate hypothesis tests into graph traversals

13

Limiting the Search Space

Hypothesis Testing Engine

Generate
Equivalence
Classes

Updates

Equivalence class:
Packets experiencing
the same forwarding
actions throughout the
network.

Fwd’ing rules

Equiv. classes

0.0.0.0/1 64.0.0.0/3

1 2 3 4

0.0.0.0/0

14

Limiting the Search Space

Hypothesis Testing Engine

Generate
Forwarding
Graphs

Generate
Equivalence
Classes

Forwarding
graphs:

Updates

All the info to answer
hypotheses

15

Limiting the Search Space

Hypothesis Testing Engine

Generate
Forwarding
Graphs

Generate
Equivalence
Classes

Run ExperimentsUpdates

Black holes,
Routing loops,
Isolation of multiple VLANs,
Access control policies

Correct Hypotheses
Result report

•Experimental step
that violates
hypothesis
•Affected set of
packets

Incorrect
Hypotheses

16

Evaluation

• Simulated an IP network using a Rocketfuel
topology
– Replayed Route Views BGP traces
– 172 routers, 90K BGP updates
– Microbenchmarked each phase of HTE’s operation

17

Single-Hypothesis Testing Speed

97.8% of experiments concluded
within 1 millisecond

18

Dealing with System Dynamics
• Challenge: Networks are Dynamic and

Nondeterministic
– May not always know what will happen given an

input
– May not always have up to date state
– May not be fully deployed

• Solution approach: dealing with “uncertainty”
– Explicitly model uncertainty in network’s current

state
19

Motivating example

Controller
Change your next hop

to C

nh=C

Change your next hop
to S2

nh=S2

B C

S1 S2

B C ?S1 S2
Case 1: update
[nh=D received

B C ?S1 S2
Case 2: update not
yet received

Should I send B
[nh=C] now?

I want to shift
traffic from S1

to S2.

20

Uncertainty-aware modeling: Approach

1. Derive possible network states, given inputs
2. Represent possible states using symbolic

“uncertainty graph”
3. Traverse graph to test hypotheses
4. Update graph as information comes in

– Network changes, acks from network, certain delays pass

“uncertain” links

“certain” links

21

Technical approach

Network Model

Analysis
Engine

Stream of
Updates

Pass

Controller
GCC

Pending Updates

Update

Network

Update

Update

Fail
Confirm

22

Hypothesis Testing Time in Dynamic Networks

80% of the hypotheses tested within
10 microseconds

23

Conclusion
• We are constructing a hypothesis testing

engine for SoS
– Analysis methodology for reasoning about science

of security of networks
– Adds to theoretical underpinnings of SoS,

supports practice of SoS

• Early results indicate feasibility
– Experiments run in milliseconds on complex

networks

• Interested in working with you
– My contact info: caesar@illinois.edu 24

	Slide Number 1
	We need a science of security
	What is science?
	Towards a science of security
	Our work
	Overall System Architecture
	Active sub-tasks and Status
	Let’s start with a router
	One approach: Build a model of the router
	Our approach: Just model the data plane
	Our approach: Data-plane modeling
	Examples
	Automating Hypothesis Testing
	Limiting the Search Space
	Limiting the Search Space
	Limiting the Search Space
	Evaluation
	Single-Hypothesis Testing Speed
	Dealing with System Dynamics
	Motivating example
	Uncertainty-aware modeling: Approach
	Technical approach
	Hypothesis Testing Time in Dynamic Networks
	Conclusion

