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Abstract— In this paper, we introduce the novel concept of
transient instabilities in multi-agent systems and swarms, i.e.,
a small disturbance leads to increasing-amplitude oscillations
throughout the swarm, which results in a large number of inter-
agent collisions. This instability is dominant in the transient
phase of the system and it does not appear in the steady-state
behavior of the system, as each agent uses Lyapunov-stable
feedback control laws.

We present a rigorous definition of transient instability in
swarms, and discuss its key properties. We also present a
sufficient condition to check if a swarm will be transient
stable. Using both theoretical techniques and numerical re-
sults, we show that a simple Proportional-Integral-Derivative
(PID) feedback-tracking control law is not suitable for these
applications. We also present a robust control law for Euler-
Lagrangian systems that maintains transient stability across
static swarms or time-varying reconfiguration in swarms. Both
theoretical results and numerical simulations are presented to
demonstrate the effectiveness of our proposed approach.

I. INTRODUCTION

Multi-agent systems and swarms, consisting of formations
or constellations of small satellites or teams of aerial and
ground robots, can be used for a variety of applications in
space, in air, and on ground. It is commonly assumed in the
control theory literature that proving the Lyapunov-stability
of a swarm’s dynamics is sufficient to ascertain the stability
of the swarm. In this paper we show that this assumption
is incorrect, i.e., there exist formation geometries/shapes
and Lyapunov-stable feedback control laws that can lead to
multiple inter-agent collisions within the swarm.

We use the following toy problem to describe the concepts
in this paper. The evolution of a 2-dimensional (2D) swarm
of agents is shown in Fig. 1, where each agent tries to main-
tain a constant distance with its preceding agents along both
dimensions. A small disturbance in either dimension leads
to increasing-amplitude oscillations throughout the swarm,
which results in a large number of inter-agent collisions.
These oscillations die out with time and the steady-state be-
havior is asymptotically stable. We define this phenomenon
of increasing-amplitude oscillations within the swarm that
leads to inter-agent collisions as transient instability. This
instability is dominant in the transient phase of the system
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Fig. 1: Motion of a 2D swarm of agents, where each agent
tries to maintain a constant distance with its preceding agents
along both dimensions. A small disturbance in either dimen-
sion leads to increasing-amplitude oscillations throughout the
swarm, which results in a large number of inter-agent colli-
sions. We define this phenomenon as transient instability.

and it does not appear in the steady-state behavior of the
system.

Since each agent’s motion is asymptotically stable, all sta-
bility techniques in traditional control theory (like gain/phase
margin and root locus for linear systems and Lyapunov
theory or contraction theory for nonlinear systems) cannot
detect these transient instabilities because each agent’s mo-
tion is technically stable according to the standard stability
definition used in traditional control theory.

A. Literature Survey

Transient instabilities were first discovered in one-
dimensional (1D) vehicle convoys in the 1970s [1], where
it is often denoted as string instability. Many mitigation
strategies have been proposed for 1D vehicle convoys in [2],



[3], [4], [5], [6]. A recent review paper [7] lists the state-of-
the-art results in string stability of vehicle platoons.

To our knowledge, this is the first paper to show that
such transient instabilities can also arise in 2D or 3D swarm
formations. The main difficulties in applying the vehicle
convoys solutions to swarms are as follows:
• Swarms are usually deployed in higher dimensions (2D

and 3D), and the coupling between the dimensions in-
troduces new complexities not discussed in the previous
literature on 1D vehicle convoys.

• The dynamics of vehicle convoys is usually repre-
sented by linear time-varying equations, hence tools
from linear systems control theory are usually used in
the solution approach. The dynamics of swarm agents
are often nonlinear (e.g. spacecraft, quadrotor) hence
solutions techniques from linear systems control theory
cannot be directly applied.

B. Main Contributions

The main contributions and organization of this paper are
as follows:
• We first rigorously define transient instabilities in

swarms, and discuss its various features in Section II.
• We present a mathematical framework or “theoretical

tool” to detect transient instabilities in swarms in Sec-
tion III. For a special case, we also prove that this tool is
a sufficient condition for avoiding transient instabilities
in swarms.

• In Section IV, we show that the standard Proportional-
Integral-Derivative (PID) control law does not satisfy
this condition for linear systems.

• In Section V, a robust control law [8], previously
introduced for non-swarm applications, satisfies this
condition and always avoids transient instabilities for
linear systems.

• Moreover, this robust control law also preserves tran-
sient stability in the swarm, even when the agents
reconfigure and track time-varying inter-agent distances
as shown in Section VI.

Finally, Section VII concludes the paper.

II. DEFINITION OF TRANSIENT INSTABILITY IN SWARMS

In order to understand transient instability in swarms, let
us first discuss the example in Fig. 1. The indices used in
this example are described in Fig. 2. Here is a 2D swarm of
N×M agents, where N,M ∈ N. Each (i, j)th follower agent
(shown in blue) is trying to maintain a constant separation
distance D ∈ R from the right (i− 1, j)th agent and up
(i, j− 1)th agent. The leader (1,1)th agent (shown in red)
decides the desired trajectory of the swarm, that all the
follower agents will follow. The leader+follower agents at
the start of each axis (shown in green) also ensure that the
swarm maintains the desired trajectory selected by the leader
agent.

Let xi, j(t) = [pi, j,x(t) pi, j,y(t)vi, j,x(t)vi, j,y(t)] denote the
state of the (i, j)th agent in the swarm at time t, where pi, j,x,
pi, j,y and vi, j,x, vi, j,y are the positions and velocities of the

Fig. 2: Indices used in the 2D swarm of agents example.

agent in the X-axis and Y-axis respectively. The dynamics of
the (i, j)th follower agent (∀i ∈ {1, . . . ,N}, ∀ j ∈ {1, . . . ,M})
is given by:

ṗi, j,x(t) = vi, j,x(t), (1)
ṗi, j,y(t) = vi, j,y(t), (2)
v̇i, j,x(t) =−µ vi, j,x(t)+ui, j,x(t), (3)
v̇i, j,y(t) =−µ vi, j,y(t)+ui, j,y(t). (4)

Here ui, j,x(t), ui, j,y(t) are the control forces per unit mass
along X-axis and Y-axis, and µ is the linearized drag force
(damping) coefficient per unit mass. Note that there are no
disturbance terms in the system dynamics equations.

Let the desired state of the (i, j)th agent in the swarm be
denoted by x̄i, j(t) = [p̄i, j,x(t) p̄i, j,y(t) v̄i, j,x(t) v̄i, j,y(t)], where
p̄i, j,x, p̄i, j,y and v̄i, j,x, v̄i, j,y are the positions and velocities in
the X-axis and Y-axis respectively. Since the (i, j)th follower
agent is aiming to maintain the distance D from the right
(i− 1, j)th agent and the up (i, j− 1)th agent, the desired
state x̄i, j(t) is given by:

p̄i, j,x(t) = pi−1, j,x(t)−D , (5)
p̄i, j,y(t) = pi, j−1,y(t)−D , (6)
v̄i, j,x(t) = vi−1, j,x(t) , (7)
v̄i, j,y(t) = vi, j−1,y(t) . (8)

Note that the desired states of agents are represented in
multiple local reference frames, and not pegged to a single
reference frame. It might be possible to remove transient
instabilities by stating all desired trajectories in a single
reference frame only [9], but this is not possible in all
situations.

The Proportional-Integral-Derivative (PID) control scheme
of the (i, j)th follower agent is given by:

ui, j,x(t) =−h1 (pi, j,x(t)− p̄i, j,x(t))−h2 (vi, j,x(t)− v̄i, j,x(t))

−h3

∫ t

0
(pi, j,x(τ)− p̄i, j,x(τ))dτ (9)

ui, j,y(t) =−h1 (pi, j,y(t)− p̄i, j,y(t))−h2 (vi, j,y(t)− v̄i, j,y(t))

−h3

∫ t

0
(pi, j,y(τ)− p̄i, j,y(τ))dτ (10)



The gains of the PID controller (namely h1, h2, h3 in
Eq. (9,10)) can be tuned using pole placement. In Fig. 1, we
use the gains from [1], i.e., h1 = 0.25, h2 = 0.8, h3 = 0.025,
µ = 0.1.

The key features of these transient instabilities in Fig. 1
are as follows:

• A small disturbance in the leader’s motion, leads to
increasing amplitude oscillations down the chain of
agents. Once the amplitude of oscillations is greater
than the desired inter-agent distance, then inter-agent
collisions will happen. This is extremely undesirable
and we want to avoid such situations in swarms.

• Since each agent’s motion is asymptotically stable, all
stability techniques in traditional control theory (like
gain/phase margin and root locus for linear systems
and Lyapunov theory or contraction theory for nonlinear
systems [10]) cannot detect these transient instabili-
ties because each agent’s motion is technically stable
according to the standard stability definition used in
traditional control theory. In other words, if each agent’s
motion is individually analyzed, then it passes the
stability checks in traditional control theory and we
cannot even detect this transient instability within the
swarm.

Obviously, the problem of transient instabilities has to be
addressed before swarms can be deployed in the real world.
In order to detect these transient instabilities, we need to
analyze the swarm as a whole and pay special attention to
the interaction between agents and the emergent behaviors
of the swarm.

We now present a new definition of transient instabilities in
swarms. We know xi, j(t) = [pi, j,x(t) pi, j,y(t)vi, j,x(t)vi, j,y(t)]
represents the state vector of the (i, j)th follower agent in the
swarm at time t. Similarly, let xi−1, j(t), xi+1, j(t), xi, j−1(t),
xi, j+1(t) be the states of the (i−1, j)th, (i+1, j)th, (i, j−1)th,
(i, j+1)th neighboring agents in the swarm respectively.

Definition 1 (Transient Instability in Swarm): Transient
instability is defined as the phenomenon of increasing-
amplitude oscillations of inter-agent distances within the
swarm that leads to inter-agent collisions, such that either
or both of the following inequalities hold:

sup
τ

(
‖pi, j,x(t)‖L2(τ)−‖pi−1, j,x(t)‖L2(τ)

)
< sup

τ

(
‖pi+1, j,x(t)‖L2(τ)−‖pi, j,x(t)‖L2(τ)

)
,

∀i ∈ {2, . . . ,N−1} ,∀ j ∈ {1, . . . ,M}.
(11)

sup
τ

(
‖pi, j,y(t)‖L2(τ)−‖pi, j−1,y(t)‖L2(τ)

)
< sup

τ

(
‖pi, j+1,y(t)‖L2(τ)−‖pi, j,y(t)‖L2(τ)

)
,

∀i ∈ {1, . . . ,N} ,∀ j ∈ {2, . . . ,M−1}.
(12)

Here ‖ ·‖L2 is the norm defined by ‖ ·‖L2(τ) :=
√∫

τ

0 ‖ · ‖2dt

for a large but finite τ [10], on the space

L 2(τ)=

{
f : f is measurable and

(∫
τ

‖ f‖2dµ

)1/2

< ∞

}
.

(13)
�

Def. 1 succinctly captures the effect of increasing-
amplitude oscillations within the swarm, by comparing the
maximum distance between the positions of two neighboring
agents over time.

III. MATHEMATICAL TOOL TO CHECK TRANSIENT
STABILITY IN SWARMS

We need a mathematical framework or “theoretical tool”
to check if a swarm will exhibit transient stability, i.e., it will
avoid the instability defined in Def. 1. Therefore, we present
the following tool for transient stability in swarms, which is
a sufficient condition to avoid transient instabilities.

Assumption 1: The desired states of neighboring agents
x̄i−1, j(t), x̄i+1, j(t), x̄i, j−1(t), x̄i, j+1(t) do not force any inter-
agent collisions with x̄i, j(t) and always maintain sufficient
distance between neighbors.

In other words, the desired states in Eq.(5)–(8) are well
designed and don’t force the agent to collide with each other.

Definition 2 (Transient Stability in Swarm): The mathe-
matical framework or “theoretical tool” to check if a swarm
will exhibit transient stability is given by:

sup
τ

‖pi, j,x(t)‖L2(τ)

‖ p̄i, j,x(t)‖L2(τ)
≤ 1 , ∀i ∈ {1, . . . ,N} ,∀ j ∈ {1, . . . ,M} ,

(14)

sup
τ

‖pi, j,y(t)‖L2(τ)

‖ p̄i, j,y(t)‖L2(τ)
≤ 1 , ∀i ∈ {1, . . . ,N} ,∀ j ∈ {1, . . . ,M} ,

(15)

where L2-norm is defined in Eq. (13).
In the linear case, the left-hand side of Eq. (14) is

equivalent to [10], [11]:

sup
τ

‖pi, j,x(t)‖L2(τ)

‖ p̄i, j,x(t)‖L2(τ)
=

∥∥∥∥Pi, j,x(s)
P̄i, j,x(s)

∥∥∥∥
H∞

= max
ω

∣∣∣∣Pi, j,x(ιω)

P̄i, j,x(ιω)

∣∣∣∣ ,
∀i ∈ {1, . . . ,N} ,∀ j ∈ {1, . . . ,M} , (16)

where ι represents the imaginary unit vector and Pi, j,x(s) is
the Laplace transform of pi, j,x(t). Therefore, alternatively, in
the linear case, transient stability in swarms can be checked
using:

max
ω

∣∣∣∣Pi, j,x(ιω)

P̄i, j,x(ιω)

∣∣∣∣≤ 1 , ∀i ∈ {1, . . . ,N} ,∀ j ∈ {1, . . . ,M} ,

(17)

max
ω

∣∣∣∣Pi, j,y(ιω)

P̄i, j,y(ιω)

∣∣∣∣≤ 1 , ∀i ∈ {1, . . . ,N} ,∀ j ∈ {1, . . . ,M} ,

(18)

�
We now show that the above mathematical framework to

detect transient stability in swarms Def. 2 ensures that the



h1 h2 h3 µ Ap ωp [Hz] ωco [Hz] Inter-agent collision
Trial 1 0.25 0.8 0.025 0.1 1.2010 0.2840 0.5870 Yes
Trial 2 0.31 2.1 0.01 0.1 1.0180 0.1000 0.4472 No
Trial 3 0.7 1.0 0 0.1 1.2444 0.6204 1.0909 Yes
Trial 4 0.3 2.9 0 0.1 1 0 0.1000 No
Trial 5 0.3 3.0 0.01 0.1 1.0110 0.0577 0.2000 No
Trial 6 0.3 3.0 0.03 0.1 1.0339 0.0999 0.2695 No
Trial 7 0.2 1.7 0.02 0.1 1.0608 0.1088 0.3050 No
Trial 8 0.2 1.7 0.02 0.1 1.1850 1.2079 2.3306 No
Trial 9 100 11 1.0 0.1 1.3930 8.2048 14.0638 No
Trial 10 0 3.0 0.9 0.1 1.0200 0.3495 0.4664 Yes
Trial 11 2.0 23.0 0.9 0.1 1.0199 0.1978 0.4664 No
Trial 12 500 20 0.9 0.1 1.5471 19.3427 31.5593 No

TABLE I: Table with Ap (38), ωp (39), and ωco (40) for different trial values.

swarm will avoid the instability defined in Def. 1 for a special
case.

Theorem 1: In a leader-follower swarm (as shown in
Fig. 2), where each agent tries to maintain a constant
distance D from its neighboring agents and also starts in
this configuration, if the swarm satisfies the condition in
Eq. (14,15), then the swarm won’t have increasing-amplitude
oscillations in inter-agent distances described in Eq. (11,12).
Then the swarm will be transient stable.

Proof: We only show the steps in the proof for the
X-axis, as the proof along Y-axis is exactly similar.

Triangle inequality on Eq. (5) and ‖D‖2 = ‖−D‖2 gives:

‖p̄i, j,x(t)‖L2(τ) ≤ ‖pi−1, j,x(t)‖L2(τ)+‖D‖2 ,

∀i ∈ {2, . . . ,N} ,∀ j ∈ {1, . . . ,M} , (19)

Substituting Eq. (19) into Eq. (14) gives:

sup
τ

‖pi, j,x(t)‖L2(τ)

‖pi−1, j,x(t)‖L2(τ)+‖D‖2
≤ sup

τ

‖pi, j,x(t)‖L2(τ)

‖ p̄i, j,x(t)‖L2(τ)
≤ 1 ,

∀i ∈ {2, . . . ,N} ,∀ j ∈ {1, . . . ,M} , (20)

Eq. (20) implies that:

‖pi, j,x(t)‖L2(τ)

‖pi−1, j,x(t)‖L2(τ)+‖D‖2
≤ 1 , ∀τ ∈ R+

∀i ∈ {2, . . . ,N} ,∀ j ∈ {1, . . . ,M} , (21)

Since
(
‖pi−1, j,x(t)‖L2(τ)+‖D‖2

)
is positive, we get:

‖pi, j,x(t)‖L2(τ) ≤ ‖pi−1, j,x(t)‖L2(τ)+‖D‖2 , ∀τ ∈ R+

∀i ∈ {2, . . . ,N} ,∀ j ∈ {1, . . . ,M} , (22)
‖pi, j,x(t)‖L2(τ)−‖pi−1, j,x(t)‖L2(τ) ≤ ‖D‖2 , ∀τ ∈ R+

∀i ∈ {2, . . . ,N} ,∀ j ∈ {1, . . . ,M} , (23)

Taking the supτ over Eq. (23) gives:

sup
τ

(
‖pi, j,x(t)‖L2(τ)−‖pi−1, j,x(t)‖L2(τ)

)
≤ ‖D‖2 ,

∀i ∈ {2, . . . ,N} ,∀ j ∈ {1, . . . ,M} , (24)

Since each agent starts at time t = 0 with a distance D
from its preceding agent, we get that the distance between
first and second agent at time t = 0 is:(

‖p2, jx,(0)‖L2(0)−‖p1, j,x(0)‖L2(0)
)
= ‖D‖2 ,

∀ j ∈ {1, . . . ,M} , (25)

Taking the supτ over all time gives:

‖D‖2 =
(
‖p2, jx,(0)‖L2(0)−‖p1, j,x(0)‖L2(0)

)
≤ sup

τ

(
‖p2, j,x(t)‖L2(τ)−‖p1, j,x(t)‖L2(τ)

)
,

∀ j ∈ {1, . . . ,M} , (26)

If the swarm were to exhibit increasing-amplitude oscilla-
tions, then from Eq. (11) and Eq. (26), we get:

‖D‖2 ≤ sup
τ

(
‖p2, j,x(t)‖L2(τ)−‖p1, j,x(t)‖L2(τ)

)
< .. .

< sup
τ

(
‖pi, jx(t)‖L2(τ)−‖pi−1, j,x(t)‖L2(τ)

)
< sup

τ

(
‖pi+1, j,x(t)‖L2(τ)−‖pi, j,x(t)‖L2(τ)

)
< .. . ,

∀ j ∈ {1, . . . ,M} , (27)

Eq. (27), where ‖D‖2 is the strict lower-bound, contradicts
with Eq. (24), where ‖D‖2 is the upper bound. Hence
increasing-amplitude oscillations in inter-agent distance is
not possible.

In the next section, we study the effect of different kinds
of control laws on swarm transient stability.

IV. BEHAVIOR OF PID CONTROL LAWS

We first focus on the behavior of the PID control law
introduced in Eq. (9,10). The closed loop equations of motion
for the follower agents (∀i∈ {2, . . . ,N},∀ j ∈ {2, . . . ,M}) are:

ṗi, j,x(t) = vi, j,x(t) , (28)
ṗi, j,y(t) = vi, j,y(t) , (29)
v̇i, j,x(t) =−µvi, j,x(t)+h1 (p̄i, j,x(t)− pi, j,x(t))

+h2 ( ˙̄pi, j,x(t)− vi, j,x(t))+h3

∫ t

0
(p̄i, j,x(t)− pi, j,x(τ))dτ ,

(30)
v̇i, j,y(t) =−µvi, j,y(t)+h1 (p̄i, j,y(t)− pi, j,y(t))

+h2 ( ˙̄pi, j,y(t)− vi, j,y(t))+h3

∫ t

0
(p̄i, j,y(t)− pi, j,y(τ))dτ .

(31)

Since the closed loop system is linear, we can directly
use the transient stability tool shown in Eq. (17,18). Taking



(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4

(e) Trial 5 (f) Trial 6 (g) Trial 7 (h) Trial 8

(i) Trial 9 (j) Trial 10 (k) Trial 11 (l) Trial 12

Fig. 3: Evolution of inter-agent distance with time for all trials in Table I using the PID control law. Note the inter-agent
collisions in Trials 1, 3, and instability in Trial 10.

Laplace transform of Eq. (28)–(31):

sPi, j,x(s) = Vi, j,x(s) , (32)
sPi, j,y(s) = Vi, j,y(s) , (33)

sVi, j,x(s) =−µVi, j,x(s)+h1
(
P̄i, j,x(s)−Pi, j,x(s)

)
+h2

(
sP̄i, j,x(s)−Vi, j,x(s)

)
+

h3

s

(
P̄i, j,x(s)−Pi, j,x(s)

)
, (34)

sVi, j,y(s) =−µVi, j,y(s)+h1
(
P̄i, j,y(s)−Pi, j,y(s)

)
+h2

(
sP̄i, j,y(s)−Vi, j,y(s)

)
+

h3

s

(
P̄i, j,y(s)−Pi, j,y(s)

)
. (35)

In order to apply Eq. (17,18), we evaluate the ratios:

Pi, j,x(s)
P̄i, j,x(s)

=
h2s2 +h1s+h3

s3 +(µ +h2)s2 +h1s+h3
, (36)

Pi, j,y(s)
P̄i, j,y(s)

=
h2s2 +h1s+h3

s3 +(µ +h2)s2 +h1s+h3
. (37)

In order to understand the transient behavior of the swarm,
we evaluate a number of trial cases, shown in Table I and
the evolution of their inter-agent distances, shown in Fig. (3).
Let us define peak magnitude Ap (38), frequency at peak
magnitude ωp (39), and maximum crossover frequency ωco

(40), after which the magnitude of the ratio
∣∣∣Pi, j,x(ιω)

P̄i, j,x(ιω)

∣∣∣ is
always smaller than 1.

Ap = max
ω

∣∣∣∣Pi, j,x(ιω)

P̄i, j,x(ιω)

∣∣∣∣ , (Same as Eq. (17)) (38)

ωp = argmax
ω

∣∣∣∣Pi, j,x(ιω)

P̄i, j,x(ιω)

∣∣∣∣ , (39)

ωco = max
ω

such that
(∣∣∣∣Pi, j,x(ιω)

P̄i, j,x(ιω)

∣∣∣∣= 1
)
. (40)

In Fig. 4, we plot the Ap and ωco for many different
positive PID gains (i.e., h1 > 0, h2 > 0, and h3 > 0 in
Eq. (9,10)). We see a clear band of good gains, where the
minimum inter-agent distance is lower-bounded and does not
lead to collisions (see red, yellow, green, blue, and magenta
dots) and bad gains where the agents collide (see black dots).

Fig. 4: Minimum inter-agent distance for different PID gains,
for a swarm with 20× 20 agents and µ = 0.1, D = 1. The
lines indicate an approximate fit of those colored points. All
examples shown here have steady-state inter-agent distance
∈ [0.99D, 1.01D], i.e., the swarm is asymptotically stable.

This shows that Ap≤ 1 in Eq. (17) is a sufficient condition for
transient stability in swarms, but not a necessary condition.

Now we want to understand the effect of different pa-
rameters in these simulations. We vary only the following
parameters (number of agents in the N×N swarm, damping
µ , inter-agent distance D) in the following simulations:

• Fig. 5a shows that increasing the number of agents in
the swarm pushes the lines downwards towards Ap = 1
line, i.e. the blue line in Fig. 4 converges to the Ap = 1
line.

• Fig. 5b shows that increasing the damping pushes the
lines downwards towards the Ap = 1 line.

• Fig. 5c shows that reducing the desired distance between
agents D pushes the lines downwards towards the Ap = 1
line.

This shows that the transient stability tool Ap ≤ 1 in
Eq. (17,18) is also a necessary condition when the number of
agents in the swarm N,M is very large, or the damping µ is



(a) Number of agents in an N×N swarm. (b) Damping µ in agent’s dynamics (c) Desired inter-agent distance D

Fig. 5: These plots show the effect of changing different parameters on the transient stability of the swarm. The lines
indicate an approximate fit of those color points, with minimum inter-agent distance ∈ [0.7D, 0.9D] and steady-state inter-
agent distance ∈ [0.99D, 1.01D]. That is, all of these lines represent the blue line in Fig. 4.

large, or the inter-agent distance D is quite small. Moreover,
since it is almost impossible to get peak magnitude Ap ≤ 1
for any positive PID gains in Eq. (9,10), we can claim that
it is impossible to have transient stability in a swarm with a
simple PID control law.

V. BEHAVIOR OF ROBUST CONTROL LAWS

We now use the robust control scheme derived for the
attitude control of spacecraft with disturbances [8], which is
a modified version of the control law for Euler-Lagrangian
systems [12]. The control law for the (i, j)th follower agent,
using separation measurements and aiming to maintain dis-
tance D from right (i−1, j)th agent and up (i, j−1)th agent,
is given by:

ui, j,x(t) = Ω̇i, j,x(t)+µΩi, j,x(t)+h2 (Ωi, j,x(t)− vi, j,x(t))
(41)

where
Ωi, j,x(t) = ˙̄pi, j,x(t)+h1 (p̄i, j,x(t)− pi, j,x(t)) , (42)
p̄i, j,x(t) = pi−1, j,x(t)−D , (43)
˙̄pi, j,x(t) = ṗi−1, j,x(t) = vi−1, j,x(t) , (44)
¨̄pi, j,x(t) = p̈i−1, j,x(t) = v̇i−1, j,x(t) , (45)

Only equations for X-axis are shown here, as the Y-axis is
exactly similar. The closed loop equations of motion are:

ṗi, j,x(t) =vi, j,x(t) , (46)
v̇i, j,x(t) =−µvi, j,x(t)+ ¨̄pi, j,x(t)+h1 ( ˙̄pi, j,x(t)− ṗi, j,x(t))

+µ ˙̄pi, j,x(t)+µh1 (p̄i, j,x(t)− pi, j,x(t))

+h2 ( ˙̄pi, j,x(t)+h1 (p̄i, j,x(t)− pi, j,x(t))− vi, j,x(t))
(47)

Simplifying Eq. (47) gives:

v̇i, j,x(t) = ¨̄pi, j,x(t)+(h2−µ +h1)( ˙̄pi, j,x(t)− vi, j,x(t))

+(µh1 +h2h1)(p̄i, j,x(t)− pi, j,x(t)) (48)

Taking the Laplace transform:

s2Pi, j,x(s) =s2P̄i, j,x(s)+(h2−µ +h1)(sP̄i, j,x(s)− sPi, j,x(s))

+(µh1 +h2h1)(P̄i, j,x(s)−Pi, j,x(s)) , (49)
Pi, j,x(s)
P̄i, j,x(s)

=
s2 +(h2−µ +h1)s+(µh1 +h2h1)

s2 +(h2−µ +h1)s+(µh1 +h2h1)
= 1 . (50)

Eq. (50) shows that robust control law always satisfies
Ap ≤ 1 in Eq. (17). This means that the swarm will be
transient stable for all values of h1 and h2. Using the gain
values in Table I, we see in Fig. 6 that the swarm agents
avoid inter-agent collisions for all trials.

Note that damping (µ) is not necessary for ensuring swarm
transient stability using this robust control law, as shown in
Fig. 7 where damping µ = 0.

VI. BEHAVIOR OF ABOVE CONTROL LAWS UNDER
SWARM RECONFIGURATION

We now wish to reconfigure the swarm such that the (i, j)th

follower agent maintains a time-varying distance (D0 +D1t)
from the right (i−1, j)th agent and up (i, j−1)th agent for
the first 50 sec, and then holds the final inter-agent distance.

We first use the robust control law, introduced in Sec-
tion V. Only equations for X-axis are shown here:

ui, j,x(t) =Ω̇i, j,x(t)+µΩi, j,x(t)+h2 (Ωi, j,x(t)− vi, j,x(t))
(51)

where
Ωi, j,x(t) = ˙̄pi, j,x(t)+h1 (p̄i, j,x(t)− pi, j,x(t)) , (52)
p̄i, j,x(t) =pi−1, j,x(t)−D0−D1t , (53)
˙̄pi, j,x(t) =ṗi−1, j,x(t)−D1 = vi−1, j,x(t)−D1 , (54)
¨̄pi, j,x(t) =p̈i−1, j,x(t) = v̇i−1, j,x(t) , (55)

Note that the desired separation distance keeps increasing
with time t. The closed loop equations of motion (only for
the X-axis) are:

ṗi, j,x(t) =vi, j,x(t) , (56)
v̇i, j,x(t) = ¨̄pi, j,x(t)+(h2−µ +h1)( ˙̄pi, j,x(t)− vi, j,x(t))

+(µh1 +h2h1)(p̄i, j,x(t)− pi, j,x(t)) (57)

Taking the Laplace transform:

s2Pi, j,x(s) =s2P̄i, j,x(s)+(h2−µ +h1)(sP̄i, j,x(s)− sPi, j,x(s))

+(µh1 +h2h1)(P̄i, j,x(s)−Pi, j,x(s)) , (58)
Pi, j,x(s)
P̄i, j,x(s)

=
s2 +(h2−µ +h1)s+(µh1 +h2h1)

s2 +(h2−µ +h1)s+(µh1 +h2h1)
= 1 . (59)

Eq. (59) shows that robust control law always satisfies
Ap ≤ 1 in Eq. (17). This means that the swarm will be



(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4

(e) Trial 5 (f) Trial 6 (g) Trial 7 (h) Trial 8

(i) Trial 9 (j) Trial 10 (k) Trial 11 (l) Trial 12

Fig. 6: Evolution of inter-agent distance with time for all trials in Table I using the robust control law. Note that all trajectories
are transient stable. The variation of inter-agent distance in the Y-axis is very small.

(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4

(e) Trial 5 (f) Trial 6 (g) Trial 7 (h) Trial 8

(i) Trial 9 (j) Trial 10 (k) Trial 11 (l) Trial 12

Fig. 7: Evolution of inter-agent distance with time for all trials in Table I using the robust control law, with damping µ = 0.
Note that all trajectories are transient stable. The variation of inter-agent distance in the Y-axis is very small.

(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4

(e) Trial 5 (f) Trial 6 (g) Trial 7 (h) Trial 8

(i) Trial 9 (j) Trial 10 (k) Trial 11 (l) Trial 12

Fig. 8: Evolution of inter-agent distance with time for all trials in Table I using the robust control law for swarm
reconfiguration. Note that all trajectories are transient stable.

transient stable for all values of h1 and h2. Using the gain
values in Table I and D0 = 1 m and D1 = 0.05 m/sec; we see

in Fig. 8 that the swarm agents avoid inter-agent collisions
for all trials. As expected, this reconfiguration could cause



(a) Trial 1 (b) Trial 2 (c) Trial 3 (d) Trial 4

(e) Trial 5 (f) Trial 6 (g) Trial 7 (h) Trial 8

(i) Trial 9 (j) Trial 10 (k) Trial 11 (l) Trial 12

Fig. 9: Evolution of inter-agent distance with time for all trials in Table I using the PID control law for swarm reconfiguration.
Note the inter-agent collisions in Trial 1 and instability in Trial 10.

inter-agent collisions under a bad controller. For example,
if the PID controller in Section IV and the the gain values
in Table I are used, where D0 = 1 m and D1 = 0.05 m/sec;
we see in Fig. 9 that the swarm agents do have inter-agent
collisions and instability even though the agents are moving
away from each other.

VII. CONCLUSIONS

We first introduced the concept of transient instabilities
in multi-agent systems and swarms, which is new concept
in the swarm and control theory literature. We presented a
mathematical framework or “theoretical tool” to detect if a
swarm is going to be transient stable. We proved that tool is
a sufficient condition for transient stability in swarms, but it
tends to become a necessary condition when the swarm size
is very large or other parameters are changed. We showed
how a simple PID control law, irrespective of choice of gains,
is not appropriate for transient stability in swarms. On the
other hand, a robust control law for Euler-Lagrangian system
guarantees transient stability in swarms, while the agents are
tracking static or time-varying inter-agent distances.

The theoretical results shown in this paper are for a very
special case, but we show that the tools also work for
more general cases. Future work will focus on developing
theoretical arguments for the general cases too.

Future work will also focus on applying these techniques
to nonlinear swarm systems and more complex geometries.
We also plan to focus on the development of general mit-
igation strategies that can guarantee swarm stability under
all conditions. We envisage that these techniques will be
widely used to check the stability of swarms, before they
are deployed in the field.
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