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Abstract— Transient instability is a phenomenon where inter-
agent collisions can occur in dynamically stable formations
of autonomous agents. Therefore, the necessity to manage
and mitigate transient instabilities is essential for successfully
deploying formation structures. This paper develops a novel
control architecture that augments the baseline formation
maintenance controller to mitigate transient instabilities. At
its heart, the proposed architecture consists of a projection
operator based estimator disguised as a reference model that
generates collision-free trajectories for the agents to follow. This
paper’s main theoretical result shows that the proposed control
architecture can simultaneously mitigate transient instabilities
and guarantee asymptotic convergence of the formation dynam-
ics. Also, an illustrative example demonstrates the theoretical
developments presented in this paper.

I. INTRODUCTION

A multi-agent system is an organization of several in-
dividual dynamic entities that collaboratively accomplish a
common objective that would be impossible or very difficult
to achieve with a sole individual. Formations are multi-agent
systems where their entities interact to achieve a desired
geometric shape or configuration, and they are particularly
useful in large scale sensing and mapping applications. Lo-
calization, the process of determining a location in space, can
be an incredibly tricky problem to solve for agents operating
in unknown environments or in deep space applications.
Therefore, the use of absolute position measurements, by
the agents, for the coordination of a formation can be too
restrictive. On the other hand, relative position measurements
made by onboard sensors, such as radar or lidar, are a more
practical approach to formation maintenance than absolute
coordinates. A typical control approach to formation main-
tenance is relative error feedback, which is the feedback
of the difference between the desired relative separation
and the measured relative positions, applied to every agent.
If the closed-loop dynamics with relative error feedback
are asymptotically—or better exponentially—stable, all the
agents will satisfy their desired relative separation, and the
formation achieves its geometric centrifugation. We discuss
the relative feedback approach to formations and their ex-

ponential stability in our previous work [1]; other notable
references include [2], and [3].

By itself, asymptotic stability of relative error dynamics
alone is not enough for the safe operation of formations.
In highly dynamic formation reconfigurations and tightly
packed multi-agent systems, inter-agent collisions can occur
due to the transient dynamics of an otherwise asymptotically
stable relative error trajectory; we define this phenomenon
as transient instability. A formation is said to be transient
stable if 1) its relative error dynamics are stable in the sense
of Lyapunov, and 2) the relative error dynamics result in
the collision-free evolution of the formation. Peppard in [4]
introduced and derived the necessary conditions for “string
stability” in serial chain vehicle platoons. Although string
stability guarantees asymptotic stability, it does not imply
collision-free relative dynamics. In [5], the authors develop a
novel control approach to formation construction and recon-
figuration and show that it is possible to satisfy collision-free
exponential stability in two-agent systems. Recently, in [6],
the authors develop a unique control approach to satisfying
transient stability using Control Barrier Functions (CBF).
Here, the simultaneous problems of exponential stability and
collision-avoidance are posed as a Quadratic Program (QP)
and solved continuously; it is a centralized control approach.
In the comprehensive survey of multi-agent algorithms [7],
the coordination and control algorithms fall into two distinct
categories: predictive and reactive.

Furthermore, with regards to formation maintenance, nei-
ther predictive nor reactive algorithms can satisfy transient
stability. In the literature, fundamental theoretical results on
transient stability tend to be either too restrictive — like
particular formation types, cardinality, and configurations —
or too centralized. Therefore, it is imperative to address
the issues of transient instabilities in more general and
decentralized formation geometries. This paper introduces a
novel decentralized control approach to mitigating transient
instabilities in arbitrary formations using projection-based
estimator dynamics and presents the associated theoretical
underpinnings, including stability results, for the proposed



architecture. This paper has two main contributions: first,
the transient stable control approach shown in Fig. 1, which
consists of the relative error feedback controller and the
combined projection-based collision-free trajectory generator
and the tracking controller, and second, the main theoretical
result, which provides the proof for the collision-free asymp-
totic stability of the inter-agent relative error dynamics.

We begin with a qualitative discussion of the control
architecture in Fig. 2 and claim that it provides transient
stability in arbitrary formations; later in Section IV, we
will present our main result to substantiate this claim. We
assume that every agent’s dynamics in the formation are
identical and linear, and available to every agent, through
some output matrix, is the average of the relative error
measurement of all its neighbors. Also, we assume that the
control information from the neighboring agents are made
available to every agent in the formation. The agents use
the output relative error measurements and communicated
control information to accomplish formation maintenance
via an output feedback control law; this forms the agent +
baseline formation controller in Fig. 1. As discussed earlier,
although the formation maintenance controller will drive the
agents to their respective positions in space asymptotically, it
alone cannot provide transient stability. The collision free tra-
jectory estimator + tracking controller, in Fig. 1, augments
the closed-loop agent dynamics and mitigates any transient
behavior that may cause inter-agent collisions. Unmodified,
the relative state estimator with stable error dynamics will
precisely track the actual relative error. The projection op-
erator modifies the estimated relative error dynamics so that
the estimated relative trajectory will never exceed the safe
transient bounds. Finally, the tracking controller drives the
actual relative state vector, of the agent, to the estimated state
vector and thwarting any inter-agent collisions that might
occur during transients.

In this paper, we present and discuss our results in four
sections: Section II establishes the formation dynamics that
arise from the interaction of linear agent dynamics and
describes the stability benefits of inter-agent communica-
tion, Section III introduces the constraints for collision-
free relative error dynamics, the projection operator and the
estimator dynamics, and few preliminary results central to
proving projection-based dynamics. Here, we also give the
precise definition of transient stable formation dynamics. In
Section IV, we present our main theoretical result on transient
stability, and finally, in Section V we use an illustrative
example to demonstrate the application of the theoretical
results and the control structure shown in Fig. 1. Before
moving onto Section II, we briefly introduce the notation
used in this paper to describe the theoretical results.

A. Formation Dynamics Notation

• Spaces: The state vector of every individual agent is an
n-dimensional vector space X≡Rn. The agent’s inputs
and outputs evolve in the m-dimensional input space
U ≡ Rm and the p-dimensional output space Y ≡ Rp,
respectively.

Fig. 1. An individual agent’s control structure for mitigating transient
instabilities; all the agents in the formation, except the leader, are equipped
with the same control architecture.

• Indices: I ≡ {1,2, . . . ,N} is the index set of all the
agents in the formation. The index variable i ∈I , used
exclusively as a subscript on vectors, refers to the ith

agent in the formation. The subset Ji ⊂ I \ i, is the
index set of all the neighbors of the ith agent. The index
variable j ∈Ji, used mostly as a superscript on vectors,
refers to the jth neighbor of the ith agent.

• Vectors: Every vector — except those representing col-
lective behavior — have subscripts i or j. For example,
xi ∈ X is the state vector of the ith agent. A vector can
also have a superscript j, along with the subscript i,
to indicate a vector directed from the ith agent to the
jth agent. For example, the vector d j

i is the constraint
vector originating at the ith agent and terminating at the
jth neighbor.

II. FORMATION DYNAMICS

In this section, we establish the dynamics of the formation,
beginning with the agent dynamics. Following this, we
introduce the relative error vector, the formation control
policy assuming inter-agent communication, and the overall
relative error dynamics for the entire formation.

A. Agent Dynamics

The dynamics of every agent i in the formation is the
Linear-Time-Invariant (LTI) system of the from

ẋi = Axi +Bui (1a)
yi =Cxi. (1b)

Here, xi ∈ X is the state vector of the agent, ui ∈ U the
input vector, and yi ∈ Y the output vector. The matrix tuple
(A,B,C) are appropriately sized constant matrices describing
the linear dynamics of the agent.

B. Relative Error Vector

Relative error vector and its feedback is the primary
mechanism for formation’s geometric configuration. For all



the |Ji| neighbors of the agent i, the relative error vector is
the average vector

ξi =
1
|Ji| ∑

j∈Ji

ξ
j

i . (2)

Here,
ξ

j
i = x j− xi−d j

i (3)

is the individual relative error vectors for each neighbor j ∈
Ji. The vector d j

i ∈X is the constraint vector and it evolves
according to the command generator dynamical system

η̇
j

i = Fη
j

i ; η
j

i (0) ∈ X (4a)

d j
i = Θη

j
i ;d j

i ∈ ker(A). (4b)

In (4), the matrix F describes the dynamics of the vector
η

j
i . The matrix Θ 3Θ2 = Θ, is a projection of the command

generator vector η
j

i on to the null space of the agent dynamic
matrix A; it maps the vector η

j
i to the output d j

i . Therefore,
the constraint vector d j

i resides in the ker(A). Although not
necessary, this assumption allows for the agents to maintain
the separation between their neighbors without the use of a
constant control effort. Fig. 2 and Fig. 3 show the relative
error vector for single and multiple neighbors, respectively.
In Fig. 3, the vector ξ̃

j
i is the scaled vector ξ

j
i /|Ji|, and the

same follows for ξ̃ k
i , ξ̃ l

i , and ξ̃ m
i .

Remark 1: The relative error vector ξ
j

i , as defined in
(3), is the difference between the desired and current states
of the agent, and it is markedly different from the usual
position or velocity based definition of relative error in 2D
or 3D Euclidean space; it allows for very general constraint
definitions.

C. Derivation of the Formation Control Policy Based on
Agent-to-Agent Communication

Let q j
i be a vector defined by q j

i ≡ x j − xi. Its time
derivative is

q̇ j
i = ẋ j− ẋi = Aq j

i +Bu j
i , and

y j
i =Cq j

i ,
(5)

where, u j
i = u j − ui. In a formation, the maintenance of

its geometry occurs by regulating all of its agents’ relative
error vector ξi, which is the same problem as all of the q j

i

Fig. 2. Relative er-
ror vector for a single
neighbor.

Fig. 3. Relative error vector for multiple
neighbors; the top figure shows the 1/4 scaled
individual relative error vectors for the four
agents; the bottom figure is the average relative
error vector.

tracking all the constraint vectors d j
i . The principle of ideal

trajectories in [8] solves the problem of tracking using output
feedback. Here, we use the principle of ideal trajectories to
determine the formation control law for the input ui. Let q∗ j

i
be the ideal trajectory of q j

i , along with the ideal input u∗ j
i ,

that evolves according to the ideal dynamics

q̇∗ j
i = Aq∗ j

i +Bu∗ j
i (6a)

y∗ j
i =Cq∗ j =Cd j

i . (6b)

The coordinate transformation(
q∗ j

i
u∗ j

i

)
=

(
S11 S12
Gd S22

)(
d j

i
0

)
(7)

defines the relationship between the ideal trajectory dynamics
(6) and the dynamics of the constraint vector d j

i in (4). From
(6), (7), q∗ j

i = S11d j
i , u∗ j

i = Gdd j
i , and by taking the time

derivative of q∗ j
i , we arrive at the matching conditions:

(AS11 +BGd)Θ = S11ΘF and (8a)
S11 = In×n. (8b)

The error dynamics between the ideal trajectory in (6) and
the dynamics of the vector q j

i in (5) is the controllable and
observable system

∆q̇ j
i = A∆q j

i +B∆u j
i (9a)

∆y j
i =C∆q j

i . (9b)

Here, ∆q j
i ≡ q j

i −q∗ j
i , ∆u j

i ≡ u j
i −u∗ j

i , and ∆y j
i =C∆q j

i =Cξ
j

i .
Provided the error system (9) meets the conditions [9] for
output feedback stabilization, there exists an appropriately
sized gain matrix, Gi, so that the control law,

∆u j
i = GiC∆q j

i (10)

results in the close-loop error system

∆q̇ j
i = (A+BGiC)∆q j

i (11a)

that is exponentially stable. Moreover,

∆q j
i → 0⇒ ∆y j

i =C∆q j
i =Cξ

j
i → 0 as t→ ∞. (12)

Taking the time derivative of (3) yields the relative error
dynamics

ξ̇
j

i = ẋ j− ẋi− ḋ j
i (13a)

= A(x j− xi)+B(u j−ui)−ΘFη
j

i (13b)

The control law in (10) determines the control policy for
the ith agent:

∆u j
i = u j

i −u∗ j
i = GiCξ

j
i . Also, u j

i = ui−u j & u∗ j
i = Gdd j

i

⇒ ui =

{
u j−GiCξ

j
i −Gdd j

i if |Ji| 6= 0
0 otherwise.

(14)

Substituting (14) into (13), results in

ξ̇
j

i = (A+BGiC)ξ j
i +(BGdΘ−ΘF)η

j
i . (15)



From the matching conditions in (8),

BGdΘ−ΘF =−AΘ. (16)

Therefore,

ξ̇
j

i = (A+BGiC)ξ j
i −AΘη

j
i . (17a)

But, AΘη
j

i = Ad j
i , and since, by assumption, d j

i ∈ ker(A),
Ad j

i = 0. Hence, the relative error dynamics of the ith with
respect to the jth agent, reduces to

ξ̇
j

i = (A+BGiC)ξ j
i . (18)

For every jth neighbor of i, (18) is the relative error dynam-
ics, provided the control policy is (14). The control policy
for all the neighbors is the weighted linear combination of
the u j

i s for all the neighbors:

ui =

{
1
|Ji| ∑ j∈Ji

(
u j−GiCξ

j
i −Gdd j

i −uci

)
if |Ji| 6= 0

0 otherwise.
(19)

Here, transient stability — i.e. collision free — requirements
are met with the additional control input vector uci (discussed
later). Taking the time derivative of the combined relative
error vector in (2), and substituting for ui from (14), we
have

ξ̇i = (A+BGiC)ξi +Buci . (20)

Let ξ =(ξ1, . . . ,ξN)
T be the combined relative error vector

for all the agents in the formation, then the relative error
dynamics for the entire formation has the form

ξ̇1

ξ̇2
...

ξ̇N

=


A+BG1C 0 · · · 0

0 A+BG2C · · · 0
...

. . .
0 0 · · · A+BGNC


︸ ︷︷ ︸

=Ā


ξ1
ξ2
...

ξN




B 0 · · · 0
0 B · · · 0
...

. . .
0 0 · · · B


︸ ︷︷ ︸

=B̄


uc1
uc2
...

ucN


︸ ︷︷ ︸

=uc

,

(21)

or compactly as
ξ̇ = Āξ + B̄uc. (22)

Figure (4) illustrates the interaction and communication
topology between some agent i and its neighbors in some
arbitrary formation. Here, the agent i is interacting —
taking control action based on relative error — with its
neighbors {4,12,7,9}, while receiving control information
{u4,u12,u7,u9} from its neighbors to determine the forma-
tion maintenance control policy (u j) in (19).

Remark 2: In the control policy in (19), the availability of
the control information u j, via communication, plays a vital
role in the stability of the formation structure; it reduces the
drift vector field, Āξ , of the relative error dynamics to a

Fig. 4. Interaction and communication topology; for each interaction
with a neighbor, the agent expects to receive its neighbor’s control vector
information.

diagonal matrix, thereby, making the assessment of stability
straight forward.

Remark 3: Inter-agent communication has another re-
markable upshot on the overall stability of a formation; it
eliminates the interaction network’s effect on the relative
error dynamics, resulting in the diagonal formation matrix
shown in (21). Without inter-agent communication, the spec-
trum of the Laplacian matrix of the interaction graph would
scale the individual gain matrices, Gi, modifying the relative
error vector’s dynamic behavior [1]. Hence, inter-agent com-
munication provides for consistent dynamic behavior for all
agents regardless of their interaction topology.

Theorem 2.1 (Exponential Stability of Formation): The
combined relative error trajectory, ξ (t), of a formation is
exponentially stable under the control policy in (19), if for
every agent i ∈I , the closed-loop matrix

A+BGiC, (23)

is Hurwitz. Provided, for every agent i 3 |Ji| 6= 0,
Proof: From (21), it is clear that the matrix Ā is in

diagonal form under the control policy ui. And hence, the
spectrum ρ(Ā) is the set

ρ(Ā) = {ρ(A+BG1C), . . . ,ρ(A+BGNC)}. (24)

Therefore, the trajectory ξ (t) is exponentially stable, pro-
vided, every closed-loop matrix A+BGiC is Hurwitz.

III. CONSTRAINTS, TRANSIENT STABILITY, AND
PROJECTION BASED STABLE TRAJECTORY ESTIMATORS

Although Theorem 2.1 shows that the formation is expo-
nentially stable, we know that it does not guarantee collision-
free formation evolution. Therefore, in this section, we will
develop the relative error based constraint for transient sta-
ble formation dynamics, define transient stability precisely,
introduce the projection operator, and develop the projection-
based estimator for generating collision-free reference trajec-
tories.

A. Collision Free Relative Error Vector Constraints

The convex set Φ
j
i , defined by

Φ
j
i =

{
ξ̂

j
i : (ξ̂ j

i )
T

ξ̂
j

i −
(

1−α
j

i

)2
(d j

i )
T (d j

i )≤ 0
}
, (25)



describes the allowable region for the estimated relative
error trajectories to evolve collision-free. Here, 0 < α

j
i <

1 is a positive constant used to specify the safety zone
margin around an agent i concerning its neighbor j. Voronoi
cell-based constraints developed in [10], for the collision
avoidance of dynamic agents, inspired the definition of Φ

j
i .

Though the two are not equivalent. The hard constraint that
the relative error trajectory cannot violate is the positive
scalar function

φ̃
j

i = (1−α
j

i )
2(d j

i )
T d j

i . (26)

For some scalar ε > 0, another positive scalar function

φ̄
j

i =
(1−α

j
i )

2(d j
i )

T d j
i

1+ ε
, (27)

defines the soft constraint boundary. The relative error vector
is temporarily allowed to violate this constraint, and we
will see later that it informs the projection operator to start
modifying the estimated relative error trajectory. The convex
set enclosed within the soft constraint boundary is

Φ̄
j
i =

ξ̂
j

i : (ξ̂ j
i )

T
ξ̂

j
i −

(
1−α

j
i

)2
(d j

i )
T (d j

i )

1+ ε
≤ 0

 , (28)

and we can use the parameter ε to determine the extent of
the annulus between Φ

j
i and Φ̄

j
i . Fig. 5 uses an agent with

two neighbors to illustrate the constraints discussed thus far.
Finally, we have the precise definition of transient stablity in
formations:

Definition 1 (Transient Stability): A formation of au-
tonomous agents, with the dynamics defined by (1), is
transient stable if, for every agent i ∈I , the relative error
trajectory ξi evolves so that

‖ξi‖2 ≤ ∑
j∈|Ji|

(ξ j
i )

T (ξ j
i )≤ ∑

j∈|Ji|
φ̃

j
i , (29)

and ‖ξi(t)‖→ 0, as t→ ∞.

Fig. 5. Interaction con-
straints for an agent with two
neighbors; the area in yel-
low is the soft boundary; the
green area is the convex set
Φ̄l

i + Φ̄m
i ; the green and the

yellow area, added together,
represents the convex con-
straint set Φl

i +Φm
i ; the rela-

tive error vector ξi is allowed
to evolve within Φl

i +Φm
i .

Fig. 6. Projection Dynamics; Here, the
vector ∆h is parallel to the constraint
gradient ∇φi; the projection operator sub-
tracts ∆h from the vector field h(ξ̂i,uci ,yi).

B. Projection Operator Based Relative Trajectory Estimator

The projection operator has its origins in numerical so-
lutions to constrained optimization problems. According to
[11], Kreisselmeier and Narendra [12] introduced the projec-
tion operator as a mechanism to constrain time-varying pa-
rameters in adaptive systems. Since then, it has been hugely
popular in several adaptive control algorithms [13][14][11]
mainly due to its guarantee to heed its trajectory to the
prescribed bounds while being Lipschitz continuous in opera-
tion. Consider an arbitrary nonlinear dynamical system with
the differential equation ẋ = f (x), and suppose that there
is a limit on its evolution prescribed by the scalar convex
constraint function φ(x) = 0. The projection-based dynamics
for x(t) is the dynamical system

ẋ = Proj(x, f (x))

=

{(
I− ∇φ∇φT

‖∇φ‖2

)
f (x) , if φ(x)> 0∧ f (x)T ∇φ(x)> 0

f (x) , otherwise,
(30)

and according to the Lemma 11.4 in [11], the trajectory will
remain within the convex set defined by the boundary φ(x) =
0.

Borrowing from this example, we create a projection-
based estimator that generates collision-free relative error
trajectories. The estimator, in this case, will be the reference
model for the agent to follow. Let

˙̂
ξ

j
i = (A+BGiC)ξ̂ j

i +Buci +LC(ξ̂ j
i −ξ

j
i )

ŷ j
i =Cξ̂

j
i

(31)

be the unmodified Luenberger estimator for the relative error
trajectory for the jth neighbor of agent i. The error dynamics
for this estimator is

ė j
i = (A+BGiC+LC)e j

i , (32)

where e j
i = ξ̂

j
i −ξ

j
i . If we choose L such that the closed-loop

matrix A+BGiC+LC is Hurwitz, then the estimator error
dynamics will be exponentially stable, and the estimated
relative error will converge to the actual relative error. From
(27), we establish the convex constraint function

φ
j

i = φ(ξ j
i ) =

(1+ ε)‖ξ j
i ‖2−‖φ̄ j

i ‖2

ε‖φ̄ j
i ‖2

(33)

and enclose the estimator within the projection operator:

˙̂
ξ

j
i = Proj(ξ̂ j

i ,h(ξ̂
j

i ,uci ,y
j
i ))

=


(

I− ∇φ
j

i (∇φ
j

i )
T

‖∇φ
j

i ‖2

)
h , ifφ

j
i > 0∧ hT ∇φ

j
i > 0

h , otherwise,

(34)

where h(ξ̂ j
i ,uci ,y

j
i ) = (A + BGiC)ξ̂ j

i + Buci + LC(ξ̂ j
i − ξ

j
i ).

According to Lemma 11.4 in [11], we know that the esti-
mated relative error state will never exceed the boundary, φ̃

j
i ,

provided the initial condition for the estimator state is within
the set Φ̄

j
i . By subtracting from the estimator vector field, the

normal component to the constraint manifold, the projection



operator restricts the estimated relative error trajectory to the
set Φ

j
i (see Fig. 6). However, is the error dynamics for the

projection-based estimator stable? At this point, it is hard to
say since the projection operator induces nonlinear dynamics
into the otherwise linear relative error estimator dynamics.
As part of the main result of transient stability, we will
prove the projection-based estimator dynamics’ exponential
stability in Section IV, and in doing so, we will need the
following important lemma on the projection operator:

Lemma 3.1 (Projection Inequality): Let ξ̂
j

i
∗ be point in

the interior of the convex set Φ
j
i , and let Γ > 0 be some

positive definite and symmetric matrix, then for any other
ξ̂

j
i (t) ∈Φ

j
i ,

(ξ̂ j
i − ξ̂

j
i
∗)T
(

Γ
−1Proj

(
ξ̂

j
i ,Γh(ξ̂ j

i ,uci ,y
j
i )
)
−h
)
≤ 0. (35)

Proof: Refer to pg. 332 in [11].

IV. MAIN RESULT: CONTROL ARCHITECTURE FOR
TRANSIENT STABLE FORMATIONS

The following is the main result of this paper. It shows the
necessary condition under which the proposed control struc-
ture in Fig. 1 is adequate to mitigate transient instabilities in
general N-Dimensional formations.

Theorem 4.1 (Transient Stability for Arbitrary Formations):
An arbitrary N-agent formation is transient stable under the
control policy

ui =−βiGeC
1
|Ji| ∑

j∈Ji

(ξ̂ j
i −ξ

j
i )−G fC

1
|Ji| ∑

j∈Ji

ξ̂
j

i︸ ︷︷ ︸
=uci

+

1
|Ji| ∑

j∈Ji

(
u j−GiCξ

j
i −Gdd j

i

)
.

(36)

Provided, the pair (A,B) and (A,C), of the agent dynam-
ics in (1), are controllable and observable, Almost Strictly
Dissipative (ASD)[15], and

βi =

√
λmin(Qe)

√
λmin(Qξ )

‖Ge‖ ‖C‖2 −
‖G f ‖
‖Ge‖

(37)

for some positive definite matrices Qe and Qξ .
Proof: From (18), and the control policy in (36), the

overall closed-loop relative error dynamics for the ith agent
reduces to

ξ̇i = (A+BGiC)ξi +Buci

= Āiξi +Buci .
(38)

And, based on (38), the resulting collision-free estimator
dynamics is

˙̂
ξi =

{
hi−

∇φi∇φT
i

‖∇φi‖2
φihi , if ξ̂i ∈Φ

j
i − Φ̄

j
i

hi , otherwise
(39)

Here,
hi = Āiξ̂i +Buci +LC(ξ̂i−ξi), (40)

and {φi,Φ
j
i ,Φ̄

j
i } are the convex constraint variables

discussed in Section III. The estimator error is the vector
ei = ξ̂i−ξi, with the dynamics

ėi = Proj(ξ̂i,hi)−hi︸ ︷︷ ︸
Projection Dynamics

+ (Āi +LC)ei︸ ︷︷ ︸
Standard Estimator

. (41)

Let V1(ei), defined by

λmin(Γ)‖ei‖2 ≤V1(ei) =
1
2

eT
i Γei ≤ λmax(Γ)‖ei‖2, (42)

be the positive definite and decresent Lyapunov energy
function associated with the estimator error dynamics. The
linear closed-loop error dynamics, Āi +LC, is exponentially
stable, therefore, there exists a positive definite matrix Qe,
so that

ĀT
i Γ+ΓĀi =−Qe, (43)

and, using the projection Lemma 3.1, we have

⇒ V̇1(ei)≤−
1
2

λmin(Qe)‖ei‖2. (44)

Substituting for uci in (38), yields

ξ̇i = Āiξi +αiBGeCei +BG fCξ̂i

= (Āi +BG fC)ξi +B
(
αiGe +G f

)︸ ︷︷ ︸
=∆Ge(αi)

Cei. (45)

Let V2(ξi), defined by

λmin(P)‖ξi‖2 ≤V2(ξi) =
1
2

ξ
T
i Pξi ≤ λmax(P)‖ξi‖2, (46)

be the positive definite and decresent Lyapunov energy func-
tion associated with the relative error trajectory ξi. Taking the
time derivative of V2(ξi), we have

V̇2(ξi) = ξ
T
i Pξ̇i

= ξ
T
i P
[
(Āi +BG fC)ξi +B∆Ge(αi)Cei

]
⇒ V̇2(ξi) = ξ

T
i P(Āi +BG fC)ξi +ξ

T
i PB(∆GeC)ei. (47)

The gains Gi and G f , are such that, the matrix (Āi +BG fC)
is Hurwitz. Therefore, there exists a postive definite matrix,
Qξ , so that

(Āi +BG fC)T P+P(Āi +BG fC) =−Qξ , and (48)

V̇2(ξi)≤−
1
2

λmin(Qξ )‖ξi‖2 + |(∆GeCei,(PB)T
ξi)|. (49)

Applying the Cauchy-Schwarz (C-S) inequality to
|(∆GeCei,(PB)T ξi)|, we have

V̇2(ξi)≤−
1
2

λmin(Qξ )‖ξi‖2 +‖∆GeCei‖ ‖(PB)T
ξi‖. (50)

Using PB = CT (∵ the agent is ASD[15]), and substituting
for ∆Ge, results in

V̇2(ξi)≤−
1
2

λmin(Qξ )‖ξi‖2

+
(
αi‖Ge‖+‖G f ‖

)
‖C‖2‖ei‖ ‖ξi‖.

(51)



Let V (ei,ξi), defined by

V (ei,ξi) =V1(ei)+V2(ξi), (52)

be the Lyapunov energy function associated with the com-
bined dynamics of the relative error vector, ξi, and the
estimator error vector ei. Its time derivative is

V̇ (ei,ξi) = V̇1(ei)+V̇2(ξi) (53)

≤−1
2

λmin(Qe)‖ei‖2− 1
2

λmin(Qξ )‖ξi‖2

+
(
αi‖Ge‖+‖G f ‖

)
‖C‖2‖ei‖ ‖ξi‖.

(54)

Here, let γ2
1 = λmin(Qe), and γ2

2 = λmin(Qξ ), such that

(γ1‖ei‖− γ2‖ξi‖)2 = γ
2
1‖ei‖2 + γ

2
2‖ξi‖2

−2γ1γ2‖ei‖ ‖ξi‖.
(55)

Therefore,

V̇ (ei,ξi)≤−
1
2
(
γ

2
1‖ei‖2 + γ2‖ξi‖2

− 2
(
αi‖Ge‖+‖G f ‖

)
‖C‖2‖ei‖ ‖ξi‖

)
.

(56)

Since,

αi =

√
λmin(Qe)

√
λmin(Qξ )

‖Ge‖ ‖C‖2 −
‖G f ‖
‖Ge‖

, (57)

(
αi‖Ge‖+‖G f ‖

)
‖C‖2 = γ1γ2. (58)

Hence, V̇ (ei,ξi) reduces to

V̇ ≤−1
2
(
γ

2
1‖ei‖2 + γ

2
2‖ξi‖2−2γ1γ2‖ei‖ ‖ξi‖

)
(59)

or, V̇ ≤ (γ1‖ei‖− γ2‖ξi‖)2 . (60)

Therefore, the trajectories ei(t), and ξi(t), are bounded. And,
by Barbalat’s lemma, the real valued function

W (ei,ξi) = (γ1‖ei‖− γ2‖ξi‖)2→ 0, (61)

as t→∞. To show that the individual vectors ei(t), and ξi(t),
are asymptotically stable, consider

V̇1(ei)≤−
1
2

λmin(Qe)‖ei‖2 ≤− λmin(Qe)

2λmax(Γ)︸ ︷︷ ︸
=µ

V1(ei), (62)

which,
⇒ V̇1(ei)+µV1(ei)≤ 0. (63)

Integrating (63) with respect to τ using the integrating factor
eµt , we have

V1(ei)≤ e−µτV1(0). (64)

Further, V1(0)≤ λmax(Γ)‖ei(0)‖2, and λmin(Γ)‖ei‖2≤V1(ei),
by which

⇒‖ei(τ)‖ ≤

√
λmax(Γ)

λmin(Γ)
e−

µ

2 τ‖ei(0)‖. (65)

Therefore, ei(τ)→ 0, as τ → ∞, exponentially at the rate
µ/2. Next, consider

0≤ | γ2‖ξi‖ |= |γ2‖ξi‖− γ1‖ei‖+ γ1‖ei‖ | (66)
≤ |γ2‖ξi‖− γ1‖ei‖|+ |γ1‖ei‖| (67)

=W 1/2(ei,ξi)+ |γ1‖ei‖|. (68)

From (61), W (ei,ξi)→ 0, as t→ ∞

⇒W 1/2(ei,ξi)→ 0, as t→ ∞, (69)

Hence,

0≤ lim
t→∞
|γ2‖ξi‖| ≤ lim

t→∞
W 1/2(ei,ξi)+ lim

t→∞
|γ1‖ei‖| (70)

From (65), and (69),

0≤ lim
t→∞
|γ2‖ξi‖| ≤ 0, (71)

Consequently, ξi(t)→ 0, as t→ ∞.

V. SIMULATION RESULT / ILLUSTRATIVE EXAMPLE

The purpose of this illustrative example is to verify that
the numerical simulations are consistent with the theoretical
predictions discussed in Sections II-IV. The formation under
consideration is two dimensional and consists of nine linear
agents with the 2-dimensional double integrator dynamics

ẍ = ux; ÿ = uy. (72a)

All the agents in the formation, except the leader (agent 1),
have identical control policy, as shown in (36). The dynamic
model for all the inter-agent spacing, d j

i , is a (see (4)) step
generator with the matrix F = 0. We choose the following
output and the baseline controller gain matrices:

C =

(
1 0 0.125 0
0 1 0 0.125

)
and Gi =

(
−0.9 0

0 −0.9

)
,

which results in a stable closed-loop matrix A+BGiC for the
baseline formation controller. Since the dynamic model for
d j

i is a step generator, the gain matrix Gd reduces to zero.
The stable tracking controller gains are

Ge =

(
2.8 0.0
0.0 2.8

)
and G f =

(
3.7 0.0
0.0 3.7

)
.

Fig. 1 shows the agents’ geometric arrangement. As men-
tioned in [5], the node augmentation approach was used to
generate a structurally stable interaction topology. The tran-
sient instability mitigation was assessed using two simulation
runs: In the first simulation run, the formation used only
the baseline controller for spatial distance maintenance. In
the second simulation run, the formation used the baseline
controller and the projection estimator reference model and
the corresponding tracking controller. In both the simulation
runs, an initial command of a 90 degrees of rotation followed
by 25% size reduction command was issued at time events
t=1s and t=7s, respectively. Also, for both the simulation
runs, the RK45 explicit solver from Python’s SciPy library
was used to propagate all the agent and controller states. Fig.
8 and Fig. 9 show the simulation’s outcome of the first and
second simulation runs respectively. Clearly, from Fig. 9, it



is evident that the controller, as shown in Fig. 1, effectively
avoids inter-agent collision while simulataneously satisfying
asymptotic stability, and thereby mitigating transient insta-
bility.

Fig. 7. Simulation formation topology.
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Fig. 8. Simulation 1: all agents have only the baseline controller
enabled; formation reconfiguration events leads to safety-zone violations,
and therefore, inter-agent collisions.
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Fig. 9. Simulation 2: the baseline controller, the projection-based collision
estimator, and tracking controller are enabled for all the agents; none of the
agents violate the prescribed safety zone; no inter-agent collisions occur.

VI. CONCLUSIONS

This paper has proposed a novel control approach to
mitigate transient stability in general N agent formation
of autonomous agents that is fast and easy to implement.
The formation dynamics assumed inter-agent communication
availability at the outset, which eliminated the agent-to-
agent interaction graph’s influence on the overall dynamics.
Following this, we defined the constrains and the projection

operator to generate collision-free estimates of the relative
error trajectories. Finally, this paper’s main theoretical result
substantiated the proposed architecture as a viable mecha-
nism for mitigating transient instabilities in formations. In
this paper, we focused entirely on deterministic agents, and
the problem of transient instability was restricted to forma-
tion reconfiguration. The sequel to this paper and future work
includes exploring and developing mitigation strategies for
transient instabilities that result from external deterministic
and stochastic disturbances and nonlinear effects.
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