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ABSTRACT 

Recent advances in small, low cost satellite technology has generated a renewed interest in formation 

flying missions. One challenging aspect of satellite formation flying missions is collision free navigation and 

control. In this paper, novel robust control algorithm using Sliding Mode Control is presented for a three-

dimensional, high Earth orbit satellite formation scenario. The paper presents the comparison of results of three 

types of Sliding Mode Controllers (SMC): the first one is a tan-hyperbolic SMC, the second one is a constant 

plus proportional rate SMC and the third one is a power rate SMC. Hybrid propulsion system minimises the use 

of on-board power for close formations. Artificial Potential Field method is used for collision-free path planning 

of the satellites in the formation. Simulation results show that for the formation flying scenario considered in this 

study, the constant plus proportional rate SMC and the power rate SMC gives better performance over the tan-

hyperbolic SMC. Simulation results prove that for the tetrahedron formation considered in this study, the total 
control effort is less when the constant plus proportional rate controller and the power rate controller are used 

compared to the tan-hyperbolic sliding mode controller. Very little formation center movement is observed for 

the three SMCs.  

 

FULLTEXT 

 

I. INTRODUCTION 

Small satellites are highly suitable for 

formation flying missions, where multiple satellites 

operate together in a cluster or predefined geometry 

to accomplish the task of a single, conventional 

large satellite. In comparison to traditional large 
and expensive satellites, small satellites offer low 

development cost as it enables use and reuse of 

commercial off the shelf components in less time. 

Moreover modular nature of these systems helps in 

their replacement or up-gradation [1]. However, 

collision free navigation and control of these 

satellites is a challenging problem. Moreover, the 

space debris also poses threats to these small 

satellites.  

On the other hand, it has been observed for a 

long time that certain living beings tend to perform 
swarming behavior. Examples of swarms include 

flocks of birds, schools of fish, herds of animals, 

and colonies of bacteria. It is known that such a 

cooperative behavior has certain advantages such as 

avoiding predators and increasing the chance of 

finding food but it requires communications and 

coordinated decision making. Operational 

principles from such systems can be used in 

engineering for developing distributed cooperative 

control, coordination, and learning strategies for 

autonomous agent systems such as autonomous 

multirobot applications, unmanned undersea, land, 
or air vehicles. The general understanding among 

biologist is that the swarming behavior is a result of 

interplay between a long range attraction and short 

range repulsion between the individuals. A simple 

model is suggested in [2] composed of a constant 

attraction term and a repulsion term which is 

inversely proportional to the square of the distance 

between two members. In [3] and [4], the biologists 

have studied the affect on cohesion of a family of 

attraction/repulsion functions and provide good 

background and review of the swarm modelling 
concepts. A similar study on stable swarm 

aggregations using attraction/repulsion functions 

from an engineering perspective is done in [5].    

Autonomous collision-free reconfiguration is a 

challenging task and needs to be accomplished with 

minimal use of on-board power. The propulsion 

system is one of the key subsystems that determine 
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the cost and lifetime of the mission. Spacecraft 

propulsion utilising naturally available electrostatic 

forces is an emerging technology [6], [7] and 

spacecrafts could have extremely long lifetimes. 

Since all forces are internal and so the Coulomb 

forces cannot alter the total inertial linear and 

rotational momentum [8], [9]. But the concept has 

not yet been fully proven to be suitable for a 

realistic mission. Advancement in this field would 

be a major breakthrough in propulsion technology. 

This motivates us to use electrostatic propulsion in 
combination with electric propulsion for small 

satellite formation flying missions.  

The major focus of this study is on improving 

the control algorithm using a robust control 

algorithm using sliding mode control. Intelligent 

path planning algorithm is designed using Artificial 

Potential Field (APF) method [10], which is widely 

used for collision avoidance of mobile robots. This 

paper presents how satellites in the formation can 

aggregate towards a goal position, similar to 

biological swarms and then takes up positions to 
form a predefined formation. Based on the 

knowledge of current position, the APF method 

will optimise the trajectory to generate the next 

desired formation which will be achieved using the 

sliding mode controller. Since sliding mode control 

guarantees robust performance, the impact of 

external perturbations like solar wind and internal 

perturbations like change in mass due to fuel 

consumption will have negligible impact on the 

performance of the satellite. A comparative study in 

[11] shows that the tan-hyperbolic SMC gives 

better performance than the PD controller. As a 
follow-on study, this paper gives a comparison 

within the different kinds of sliding mode 

controllers; namely the tan-hyperbolic SMC, 

constant plus proportional rate SMC and the power 

rate SMC. It is envisaged that the results presented 

in this paper would enable to advance the current 

small satellite formation flying technology, in 

addition to enhancing controller performance for a 

realistic mission scenario. 

 

II. BACKGROUND RESULTS 

A. Path Planning Using Artificial Potential Field  

Let the formation consists of N individual 

agents in the n dimensional Euclidean space [12]. 

The position of the ith agent is described by

. It is assumed that there is no time delay and 

synchronous motion exists. The motion of each 

agent in the formation is governed by the equation:  

 

where  is an odd function which represents the 

sum of the function of attraction and repulsion 

between the agents. The function  can be 

represented by  

where  is arbitrary and  is the 

Euclidean norm [12]. Hence the magnitude and 

direction of motion of each member is determined 
as a sum of the attraction and repulsion of all the 

other members on this member. It is needed for 

avoiding collisions that the repulsion term  

dominates on short distances and for aggregation 

that the attraction term  dominates on large 

distances. There is a distance δ at which the 

attraction and the repulsion balance and 

. The attraction/repulsion function that we 

consider in this paper is 

 

where a, b and c are positive constants such that     

b > a. Note that the function  constitutes an 

artificial potential function, that governs the inter-

individual interactions [13]. The term 

 represents the repulsion, whereas 
the term a represents the attraction. This function is 

repulsive (i.e.,  dominates) for 
small distances and attractive (i.e., a dominates) for 

large distances, which is consistent with 
interindividual attraction/repulsion in biological 

swarms [4], [14]. Therefore, it constitutes a crude 

approximation of biological interactions and also 

allows us to perform stability analysis. The main 

drawbacks with  are that it is strongly repulsive 

but not unbounded for infinitesimally small 

arguments, which may be needed to avoid 

collisions, and it has an infinite range, which is 

inconsistent with biology since no creature has 

infinite sensing range [12]. By equating

, one can easily find 

that  switches sign at the set of points defined 

as . The 

distance δ is the distance at which the attraction and 

repulsion balance. It is known that there exists such 

a distance in biological swarms [14], [3]. 

Equation (1) can be represented also by:  

 

where  is the lumped vector of the 

positions of all the agents and  is a 
potential function [11]. Such potential functions are 

being used for swarm aggregations, formation 

control, and multiagent coordination and control 

under different names.  and  are related by 

equation (1) and (3). The potential  may 

represent only the interindividual interactions, or 

may include also environmental effects, or may be 

defined for some other purpose. For simplicity, we 
consider the case in which it does not include any 

environmental terms. In particular, consider the 

potential functions of the form 
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where  is the potential between i and 

j, and can be different for different pairs. Moreover, 

we assume that  satisfies the 

following [12]. 

(A) The potentials  are symmetric 

and satisfy 

 

(B) There exists a corresponding function 

 such that 

 

(C) There exist unique distances δij, at which we 

have

, and . 

Potential functions satisfying these are odd 

functions, which are attractive on distances 

 and repulsive on distances . 

The distance δij is the equilibrium distance at which 

the attraction and the repulsion balance. It can be 

shown that the functions satisfying these conditions 

result in aggregating swarm behavior [13], [5].  

One shortcoming of the motion dynamics 

in equation (4), and therefore, any results related to 

it, is that it does not correspond to the dynamics of 

realistic agents [12]. Therefore, the model is, in a 

sense, a kinematic model for swarm aggregation, 

formation control, or agent-coordination dynamics. 
For this reason, the results derived for it serve as 

proof of concept for the behaviour considered. 

However, they do not specify how that desired 

proven behavior could be achieved in engineering 

applications with given (i.e., predefined) agent 

(vehicle) dynamics. Nevertheless, they are still of 

practical interest, and can serve as guidelines for 

designing swarming engineering multiagent 

systems. In the next section, we will show how by 

using the sliding-mode control technique, we can 

achieve the above type of motion for agents with 
general fully actuated vehicle dynamics, even in the 

presence of disturbances and uncertainties. 

 

B. Coulomb Spacecraft Charging  

Let us assume that for a swarm of N 

satellites in GEO, the charge products can be 

perfectly implemented into individual real satellite 

charges. For the ith satellite, consider all possible 

pairs of charge products due to the remaining N−1 

satellites as . Then the 

commanded force acting on the ith satellites is [11]:  

 

where  Nm2/C2 is a 
constant of proportionality that depends on the 

permittivity of free space,  is the 

satellite separation and λd is the Debye length. The 

commanded force is calculated using an appropriate 

control law. Coulomb thrusting makes use of a 

renewable source of electrical energy and is 

essentially free from contaminations due to its 

extremely high fuel efficiency. It is estimated that 
Coulomb forces of the order of 10-1000 micro-

Newtons, comparable to the thrust developed by 

conventional electric propulsion, can be produced 

on short timescales, using less than 1 Watt of on 

board power [15], [16]. A navigation strategy 

cannot be implemented with a purely Coulomb-

based control concept, as sufficient thrust cannot be 

produced when separation between individual 

satellites is large. General charge control strategies 

to control the relative motion of N satellites are still 

an active area of research. At this stage this analysis 
is still idealized and will be refined for particular 

charge implementation strategies in the future. 

 

C. Comparison of Proportional-Derivative (PD) 

Controller with tan-hyperbolic Sliding Mode 

Controller 

Consider the general non-linear inertial 

equation of motion of the swarm agent represented 

by [11] 

 

where,  is the position vector of agent i, 

 is the mass or inertia matrix and is 

assumed to be non-singular, , N is 

the number of agents in the swarm,  is the 

control input delivered by the actuators. The 

additive term  is assumed to be of the form 

 

where  represents the known part and 

 is the unknown part of the system 

dynamics. Here  denote the actual force available 

from the hybrid thrusters to ith satellite for changing 

its manoeuvre. In the APF method, corresponding 

to equation (8), the motion of the individual agent 

is governed by equation (3).  

The PD controller for the ith satellite can 

be expressed in terms of the position and velocity 

errors as [11]: 
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where,  is the desired position,  is the actual 

position of ith satellite respectively.  is the 

nominal (known) mass of the satellite. The 

parameters Kpi and Kvi are the proportional and the 

derivative gains, respectively. Here  denote the 

force requested by the controller, from the hybrid 

thrusters to ith satellite, for changing its manoeuvre. 

Note that this controller requires the second 

derivative with respect to time of the desired 

(reference) trajectory  which is not needed by the 

sliding mode controller.  

For the sliding mode control method, the n 

dimensional sliding manifold for ith satellite is 

chosen as [11]: 

 

Note that here the potential function  is not 

static. It depends on the relative positions of the 

individuals in the swarm and need to satisfy certain 

assumptions made in [12]. Once all the satellite 

reach the respective sliding manifolds , 

equation (11) reduces to  which is 

same as the motion (3) of the satellite swarm. A 

sufficient condition for sliding mode to occur given 

in [17] is satisfaction of: 

 

This does not guarantee that starting from any 

initial point in the state space; the sliding manifold 

is reached in finite time. Further, if a stronger 

condition 

 

is satisfied, then it is guaranteed that sliding mode 

will occur in finite time. In order to achieve this 

objective, the sliding mode controller is given by: 

 

where, . The 

gain of the control input is chosen as

, for some εi > 0, and 

equation (13) is guaranteed. Here  and  are 

the known lower and upper bounds of the inertia 

matrix respectively. 

In the above controller, only the known 

part  of the disturbance is considered. For 

practical implementations, a major inherent 
drawback of sliding mode controllers is the 

chattering phenomenon. Finite high frequency 

oscillations are generated due to the presence of un-

modelled fast dynamics of the sensors and actuators 

and due to non-ideal realization of the relay 

characteristics of the SMC. In order to reduce the 

chattering phenomenon, the  term in the 

controller equation (14) can be replaced by a 

smooth approximation using . Note that 

the chattering maybe eliminated by this smoothing 
function but the controller will not be robust against 

uncertainties. It only ensures that the resulting 

sliding motion will lie in a close vicinity of the 

sliding manifold. The sliding mode controller used 

is: 

 

Since the dynamics of the hybrid 

propulsion actuator are not considered during the 

design of the controllers, the control variable in 

equation (10) for PD controller and in equation (15) 

for the sliding mode controller, is used as the 

control input  in equation (8). The simulation 

results in [11] show that, for the scenarios 

considered in that study, the control effort required 

by the individual satellite is far less with sliding 

mode controller when compared to that using PD 

controller. It is observed that the swarm center 

movement is less with sliding mode control 

facilitating quicker achievement of the formation 

and hence greater fuel saving. Moreover, sliding 

mode controller is inherently insensitive to 

parameter variations and disturbances once in the 

sliding mode, thereby eliminating the necessity of 
exact spacecraft modeling. In this paper, a different 

kind of sliding mode control algorithm has been 

used for swarm formation. This algorithm is based 

on the constant plus proportional rate reaching law 

and power rate reaching law, along with a sat 

function within the boundary layer.   

 

III.     SMC BASED ON BOUNDARY LAYER 

TECHNIQUE 

A. Sliding Mode Controller using Constant plus 

Proportional Rate Reaching Law 

The constant plus proportional reaching 
law with the replacement of the sgn function by the 

sat function is given as [18]: 

 

Here, when the trajectory enters into a small 

vicinity of the sliding surface (denoted by ), the 

control does not switch and hence chattering is 

eliminated. Differentiating equation (11) with 

respect to time gives 

 

Equating equation (16) and (17) gives  

 

Substituting equation (18) in the general non-linear 

inertial equation of motion of the swarm agent (8) 

gives the control input 
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When this control input is applied and all the 

satellite reach the respective sliding manifolds 

, the dynamics of the system reduces to 

 which is same as the motion (3) of 

the satellite swarm. 

 

B. Sliding Mode Controller using Power Rate 

Reaching Law 

The power rate reaching law with sat 

function is given as [18]: 

 

Equating equation (17) and (20) gives 

 

Substituting equation (21) in the general non-linear 

inertial equation of motion of the swarm agent (8) 

gives the control input 

 

When this control input is applied and all the 

satellite reach the respective sliding manifolds 

, the dynamics of the system reduces to 

 which is same as the motion (3) of 

the satellite swarm. 

 

IV. SIMULATION RESULTS 

The goal of this section is to simulate a 

tetrahedron formation using APF method, Coulomb 

forces and compare the three sliding mode 

controllers. The inter-satellite separation is to be 

maintained at 50 meter. The parameter a in 

equation (2) is computed in order to achieve the 

balance of attraction and repulsion between any two 

satellites at the desired distance d in the final 

tetrahedron formation. Let 

 and . For formation 
control, each agent in the formation is pre-assigned 

a desired relative position in the final formation. 

The satellites are propelled using the electrostatic 
propulsion, in combination with conventional 

electric thrusters as hybrid propulsion system 

minimises the use of on-board power for close 

formations. The actuator dynamics, the 

environmental perturbations and other factors 

except the controllers are the same as described in 

[11]. This paper deals with the comparison of the 

three sliding mode controllers. It is assumed that 

both the uncertainty in the satellite mass and 

external perturbation is same for all the controller 

designs. The bounds of the uncertainty in mass are 
set as ±50% of the nominal mass of the satellite. 

The bound on the known disturbance is set to 2mN. 

The simulation plots for the three Sliding 

Mode Controllers are shown in Fig. 1. It is assumed 

that initially the satellites are at rest with an average 

inter-satellite separation of around 2.7 km. With 

time, the four satellites move to their required final 

inter-satellite separation of 50 meter and form the 

required tetrahedron formation while avoiding 

collisions. Note that for this particular formation 

there is no local minima and therefore the local 

minima problem inherent in the potential functions 
method is not present here (and the formation can 

be achieved globally). The simulations were run for 

1 day (86400 seconds). The objective in this study 

is to compare the properties of the three sliding 

mode controllers and not to test the effectiveness of 

the potential functions method.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 1. Simulation results for tetrahedron formation: (a) Final swam formation; (b), (c) and (d) Commanded Force 
Magnitude History; (e) and (f) Variation of the norm of s with time for the three SMC  

Fig. 1 (a) shows the final formation 

positions of the satellites and the center of the 

formation is represented by „*‟. Very little 

formation center movement was observed for all the 

three sliding mode controllers due to the inherent 

invariance or robustness properties of the method. 

A large formation center movement was seen for 

PD controller in [11]. The center movement can 

lead to delay in achieving the final formation and 

can change the final orbit of the swarm. The 

commanded force magnitude history (control 

inputs) for the tan-hyperbolic SMC, the power rate 
SMC and the constant plus proportional SMC for 

all the four satellites are shown in Fig. 1 (b), (c) and 

(d) respectively. It is observed that the magnitude 

of the control effort is minimum for the tan-

hyperbolic SMC. The duration of the control effort 

is less for the power rate SMC and least for the 

constant plus proportional SMC. Hence, if the 

actuator doesn‟t saturate, then the constant plus 

proportional SMC and power rate SMC will cause 

the satellites to reach their respective sliding 

manifolds faster. Fig. 1 (e) and (f) show the 
variation of the norm of s with time in a linear and 

logarithmic scale respectively. Norm of s is defined 

as . From the linear plot it is 

seen that the power-rate SMC is fastest at reaching 

the sliding mode manifold, as seen in [18]. From 

the logarithmic plot it is seen that the norm of s in 

power rate SMC has an oscillating nature. The 

offset in the norm of s is due to computational 

limitations and inaccuracies due to discretization.  

 

V. CONCLUSION 

 The paper presented a comparative study of 

three robust control algorithms, based on sliding 

mode control for satellite formation flying 

missions. The simulation results prove that the 

power rate SMC and the constant plus proportional 
SMC are faster in reaching the sliding mode 

manifolds for the satellites. This helps in achieving 

the formation faster. The minimum swarm center 

movement for all the three SMCs result in lot of 

savings on onboard fuel. The use of electrostatic 

propulsion minimises the use of on-board power for 

tight formation in the high Earth orbits and hence 

increase the overall lifetime of the mission. The use 

of APF method guarantees collision free navigation 

and reduces the computational load, as this 

approach doesn‟t involve extensive map building. 
The path planning and control algorithms presented 

in this work can be adapted for low Earth orbit 
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formation flying missions as well. Simulation 

results prove that inherent robustness of the sliding 

mode controllers make this controller suitable for 

satellite formation flying missions. Further research 

is under progress to validate the suitability of 

sliding mode control for realistic formation flying 
missions. 
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