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Abstract

Probabilistic swarm guidance involves designing a homogeneous Markov
chain, such that each agent determines its own trajectory in a statistically
independent manner. Not only does the overall swarm converge to the de-
sired stationary distribution of the Markov chain but the agents also repair
the formation even if sections of the swarm are damaged. In this paper,
with the help of communication with neighboring agents, we discuss an
inhomogeneous Markov chain approach to probabilistic swarm guidance
algorithms for minimizing the number of transitions required for achieving
desired swarm distribution and then maintaining it. We first develop a sim-
ple method for designing a family of Markov transition matrices for a given
stationary distribution, where the tuning parameter dictates the number of
transitions. Next, we show that the agents reach an agreement across the
swarm on the current swarm distribution by communicating with neighbor-
ing agents using the Bayesian Consensus Filtering algorithm. Finally, we
prove the convergence and stability guarantees of the proposed algorithm.

Keywords: Markov chains, consensus, guidance, swarms, formation
flying

1 Introduction

Small satellites are well suited for formation flying missions, where multiple satellites
operate together in a cluster or predefined geometry to accomplish the task of a single
conventional large satellite. In comparison with traditional large satellites, small satel-
lites are modular in nature and offer low development cost by enabling rapid manufac-
turing using commercial–off–the–shelf components. Flight of swarms of hundreds to
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thousands of femtosatellites (100-gram-class satellites) for Synthetic Aperture applica-
tions has been discussed in [1]. In this paper, we discuss an inhomogeneous Markov
chain approach to probabilistic swarm guidance algorithms for achieving satellite for-
mations and maintaining them.

Consensus algorithms have been extensively studied for formation flying applica-
tions [2, 3, 4, 5, 6]. Analogous to fluid mechanics, this traditional view of multi–agent
systems is Lagrangian, as it deals with an indexed collection of agents [7]. In this pa-
per we adopt an Eulerian view, as we study the distribution of index–free agents over
the state space. One such probabilistic guidance approach is discussed in [8], where
each agent determines its own trajectory without any communication such that the
overall swarm converges to a desired distribution. Instead of allocating agent positions
ahead of time, probabilistic guidance is based on designing a homogeneous Markov
chain, such that the steady-state distribution corresponds to the desired swarm density.
Acikmese and Bayard [8] show that, although each agent propagates its position in a
statistically independent manner, the swarm asymptotically converges to the desired
steady-state distribution associated with the homogeneous Markov chain and also au-
tomatically repairs any damage. Similar study on self-organization of swarms using
homogeneous Markov chains has been done in [9]. The desired Markov matrices, to
guide individual swarm agents in a completely decentralized fashion, are synthesized
using the Metropolis-Hastings algorithm [10]. The main limitation of probabilistic guid-
ance using homogeneous Markov chains is that the agents are not allowed to settle
down even after the swarm has reached the desired steady-state distribution resulting
in significant fuel loss. This paper develops probabilistic swarm guidance algorithms
using inhomogeneous Markov chains, with the help of communication with neighbor-
ing agents, to address these limitations. In order to achieve these objectives, it is
only necessary that each agent communicates with its neighboring agents. Note that
inter–agent collisions have been ignored in this paper.

1.1 Notation

Let R ∈ Rnx be the nx–dimensional compact physical domain over which the swarm is
distributed. Let m ∈ N agents belong to this swarm. The time index is denoted by a
right subscript and the agent index is denoted by a lower–case right superscript. For
example, rjk represents the position of the jth agent at the kth time instant.

The communication network topology at the kth time instant is represented by the
directed time–varying graph Gk, where all the agents of the system form the set of
vertices Vk and the set of directed edges is denoted by Ek. The neighbors of the jth
agent at the kth time instant is the set of agents from which the jth agent receives
information at the kth time instant and is denoted by N j

k . Hence, if `, j ∈ Vk, then
` ∈ N j

k if and only if
−→
`j ∈ Ek. The set of inclusive neighbors of the jth agent is denoted

by J j
k , N

j
k ∪ {j}.

Let xk represent the true probability mass function (pmf) of the swarm of agents
over the space R at the kth time instant. xjk,ν represent the estimated pmf of the
swarm of agents over the space R, by the jth agent during the νth consensus loop at
the kth time instant. The symbol P(·) refers to the probability of an event.

Let N,Z+,C,R are the sets of natural numbers, non–negative integers, complex
numbers and real numbers respectively. Let 1 = [1, 1, . . . , 1]T , I, and 0 be the ones
vector, the identity matrix, and the zero matrix of appropriate sizes respectively. Fi-
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nally, ‖·‖`2, |·| and d·e represent the `2 norm, absolute value, and ceiling functions
respectively.

2 Problem Statement

Similar to the notations adopted in [8], let R be the physical domain over which the
swarm is distributed. It is assumed that region R is partitioned as the union of ncell

disjoint subregions. These subregions or bins are represented by Ri, i = 1, . . . , ncell,
such that

⋃ncell
i=1 Ri = R and Ri ∩Rj = φ, if i 6= j.

Let m ∈ N agents belong to this swarm. Let the jth agent have position rjk at the
kth time instant. Let xjk be a column vector of probabilities for the jth agent (1Txk = 1),
such that the ith element xjk[i] is the probability of the event that the jth agent will be
in bin Ri at the kth time instant:

xjk[i] = P(rjk ∈ Ri), ∀j ∈ {1, . . . ,m},∀i ∈ {1, . . . , ncell} (1)

Let xk be the swarm distribution, which is a concatenation of all the individual
probability vectors of all the agents:

xk =
1

m

m∑
j=1

xjk (2)

Note that, the ensemble of agent positions {rjk}mk=1 has a distribution that approaches
xk as the number of agents is increased.

The objective of probabilistic guidance algorithms (PGA) running onboard each
agent is to determine its trajectory such that the overall swarm converges to a desired
formation. The desired formation is represented as a column vector π ∈ Rncell (1Tπ =
1) over the region R. Given an initial swarm distribution x0 ∈ Rncell, the algorithm
guides the agents such that the swarm distribution converges the desired steady–state
distribution [8]:

lim
k→∞

xk[i] = π[i], ∀i ∈ {1, . . . , ncell} (3)

The key idea of PGA using inhomogeneous Markov chains is to synthesize a family
of column stochastic Markov transition matrices for each agent M j

k ∈ Rncell×ncell ,∀j ∈
{1, . . . ,m}, called Markov matrix, with π as their stationary distribution (M j

k ≥ 0,
1TM j

k = 1T , M j
kπ = π). The entries of matrix M j

k are defined as transition proba-
bilities at the kth time instant.

M j
k [i, `] = P(rjk+1 ∈ Ri|rjk ∈ R`), ∀j ∈ {1, . . . ,m} (4)

i.e., the jth agent in bin ` transitions to bin i during the kth time instant with probabil-
ity M j

k [i, `]. In this paper, we seek to minimize this transition from bin–to–bin during
each time step while achieving and maintaining formation, with the help of communi-
cation with neighboring agents. The matrix M j

k determines the time evolution of the
probability vector xjk as:

xjk+1 = M j
kx

j
k (5)
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Figure 1: The objective of PGA, running onboard each agent, is to independently
determine its trajectory such that the overall swarm converges to a desired final distri-
bution (here letter “I”), starting from any initial distribution.

The first objective of this paper is to design a family of column stochastic Markov
matrices with π as their stationary distribution. Note that if each agent recursively de-
termines its own trajectory using these Markov transition matrices, without any com-
munication with other agents, then it has been shown that the overall swarm converges
to the desired distribution [8]. The solution to this objective along with a discussion on
the tuning parameter, that dictates the number of transitions in each time step, is pre-
sented in Section 3.

The motion of agents in the swarm can be viewed as analogous to the random mo-
tion of molecules in fluids. Just as the temperature dictates the motion of molecules
in fluids; this paper uses the Kullback–Leibler (KL) divergence between the current
swarm distribution and the desired stationary distribution, to dictate the motion of
agents in the swarm. The KL divergence is a non-symmetric measure of the differ-
ence between two probability distributions [11]. Each agent communicates with the
agents in its surroundings and makes a localized guess of the current swarm distribu-
tion. Using the Bayesian Consensus Filtering algorithm, the agents reach a consensus
regarding the current global swarm distribution [12]. This is discussed in detail in Sec-
tion 4.

The final objective is synthesizing a series of inhomogeneous Markov chains, such
that as the KL divergence decreases, the Markov matrices tend towards an identity
matrix. The solution to this objective and their stability and convergence guarantees
are presented in Section 5. In essence, when the KL divergence between the current
swarm distribution and the desired stationary distribution is large, each agent propa-
gates its position in a statistically–independent manner, and the swarm tends toward
the desired distribution. When this KL divergence is small, the Markov matrices tend
towards an identity matrix and each agent holds its own position.

3 Designing Markov Matrices

In this section, we will design the family of Markov matrices for a given stationary
distribution. Note that this solution is much simpler than the recursive Metropolis–
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Hastings algorithm discussed in the literature [10]. The following theorem is used by
each agent to find the Markov matrix M j

k during each time instant.

Theorem 3.1. Let π be the desired stationary distribution and let M? = π1T . Then
a family of column stochastic Markov matrices M j

k , for the jth agent at the kth time
instant, with π as their stationary distribution is given by:

M j
k = λjkM

? + (1− λjk)I, 0 ≤ λjk ≤ λmax =
1

1−mini∈{1,2,...,ncell} π[i]
(6)

Proof If M j
k is a Markov matrix, then π is its eigenvector corresponding to its largest

eigenvalue 1, i.e. M j
kπ = π. Hence from Eq. (6), we get:

M j
kπ = λjkM

?π + (1− λjk)Iπ
= λjkπ1

Tπ + (1− λjk)Iπ
= λjkπ + (1− λjk)π = π

Hence the matrix M j
k given by Eq. (6) indeed is a Markov matrix. Moreover, in

order to ensure that all the elements in the matrix M j
k is non–negative, it is obvious

that λmax is the unique solution to the equation λjk
(
mini∈{1,2,...,ncell} π[i]

)
+(1 − λjk) = 0.

�

Finding the appropriate tuning parameter λjk, introduced in Eq. (6), is discussed in
Section 5. If λjk = 0 then M j

k = I and no transitions occur, i.e., the jth agent remains
in its original position. On the other hand, we expect that as λjk → λmax, the jth agent
vigorously moves from one bin to another to achieve the stationary distribution. In the
results shown in Figure 2 for a particular test case, we notice that for higher values of
λjk, the rate of decrease of KL divergence between the current global distribution and
the desired stationary distribution is high but the number of transitions in each time step
is also greater. An interesting problem, not discussed in this paper, would be to find
the optimum λjk such that the rate of decrease of KL divergence is maximized but the
number of transitions in each time step is minimized. In this paper, we are interested
in designing inhomogeneous Markov chain such that when the KL divergence is large,
we deploy a large tuning parameter λjk to achieve the formation. When the formation
is achieved and the resulting KL divergence is small, we reduce the tuning parameter
λjk so that the formation is maintained but the number of transitions is less.

In contrast, the homogeneous Markov chain approach to PGA [8] uses common
Markov matrix M across all agents for all time instants. The Markov matrix, which also
satisfies the motion constraints, is found using the Metropolis–Hastings algorithm. The
algorithm is implemented by providing a copy of the matrix M to each of the agents,
and then having each agent propagate its position as an independent realization of the
Markov chain as shown in Algorithm 1. The first step determines the agent’s current
bin number. The last two steps sample from the discrete distribution defined by the
column of M corresponding to the agent’s current bin number [8].

In this paper, each agent executes a different Markov matrix M j
k during every time

step. The tuning parameter λjk depends on the agent’s perception of the current swarm
distribution. We show that the inhomogeneous Markov chain thus obtained, still guides
the agents such that the swarm distribution converges the desired steady–state distri-
bution.
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Figure 2: Behavior of the tuning parameter (λjk): (a) the KL divergence falls faster with
increasing λjk, and (b) the number of transitions per time step increases with largerλjk .

Algorithm 1 Probabilistic Guidance Algorithm [8]
1: (one cycle of jth agent during kth time instant)
2: Agent determines its current bin, e.g., rjk ∈ Ri.
3: Agent generates a random number z that is uniformly distributed in [0; 1].
4: Agent goes to bin q , i.e., rjk+1 ∈ Rq if

∑q−1
`=1 M [`, j] ≤ z ≤

∑q
`=1M [`, j].

4 Bayesian Consensus Filtering

In the homogeneous Markov chain approach to PGA, no inter–agent communication is
needed for the swarm to reach the desired formation but the agents would not realize
that the desired formation has been achieved hence they would continue transition-
ing. On the other hand, in order to minimize the number of transitions to achieve
and maintain formation, the agents need to communicate to understand the current
swarm distribution and transition accordingly. In this section, we use the decentral-
ized Bayesian Consensus Filtering (BCF) algorithm, proposed in [12], for the agents
to reach an agreement on the current swarm distribution.

The objective of BCF is to estimate the current swarm distribution and maintain
consensus across the network during each time step. This objective is achieved in
two steps: (i) each agent locally estimates the pmf of the swarm, and (ii) the local
estimates convergence to the global estimate of the current swarm distribution as each
agent recursively transmits its estimated pmf to other agents, receives estimates from
its neighboring agents and updates its estimated pmf of the swarm distribution.

In this section, we discuss the BCF to estimate the current swarm distribution which
is illustrated in Algorithm 2. Each agent generates a local estimate of the swarm dis-
tribution by only determining its current bin location. The local estimate of the swarm’s
pmf by the jth agent at the start of the consensus stage during the kth time instant is
given by xjk,0, where xjk,0[i] = 1 if rjk ∈ Ri else xjk,0[i] = 0.

xjk,0[i] =

{
1 if rjk ∈ Ri

0 otherwise
(7)

In essence, the local pmf is a discrete representation of the position of the jth agent,
6



within the partitioned space R. Hence the current swarm distribution is given by xk =∑m
i=1

1
m
xjk,0.

During the consensus stage, the agents recursively combine and update their local
pmfs using the linear opinion pool to reach an agreement across the network. The
number of consensus loops (nloop ∈ N) depends on the second largest eigenvalue
of the matrix representing the balanced communication network topology. Note that
xjk,ν represents the estimated swarm pmf by the jth agent during the νth consensus
loop at the kth time instant. The Linear Opinion Pool (LinOP) of probability measures
[13], which has been used for combining subjective probability distributions [14, 15], is
described by the following equation [16]:

xjk,ν =
∑
`∈J jk

aj`k,ν−1x
j
k,ν−1, ∀j ∈ {1, . . . ,m},∀` ∈ J

j
k ,∀ν ∈ N (8)

where
∑

`∈J jk
aj`k,ν−1 = 1 and the updated pmf xjk,ν after the νth consensus loop is a

weighted average of the pmfs of the inclusive neighbors xjk,ν−1,∀` ∈ J
j
k at kth time

instant. Let Wk,ν =
(
x1k,ν , . . . , x

m
k,ν

)T be an array of pmf estimates of the agents after
the νth consensus loop, then the LinOP Eq. (8) can be expressed concisely as:

Wk,ν = Pk,ν−1Wk,ν−1, ∀ν ∈ N (9)

where Pk,ν−1 is a matrix with entries [Pk,ν−1]j` = aj`k,ν−1.

Assumption 1. The communication network topology of the multi–agent system G(k)
is strongly connected (SC). The weighting factors aj`k,ν−1,∀j, ` ∈ {1, . . . ,m} and the
matrix Pk,ν−1 have the following properties: (i) the weighting factors are the same for all
consensus loops within each time instants, i.e., aj`k,ν−1 = aj`k and Pk,ν−1 = Pk,∀ν ∈ N; (ii)
the matrix Pk conforms with the graph G(k), i.e., aj`k > 0 if and only if ` ∈ J j

k , else aj`k =

0; (iii) the matrix Pk is row stochastic, i.e.,
∑m

`=1 a
j`
k = 1; and (iv) the weighting factors

aj`k are balanced, i.e., the in–degree equals the out–degree
∑

`∈J jk
aj`k =

∑
r,s.t.j∈J rk

arjk ,
where j, `, r ∈ {1, . . . ,m}.

Theorem 4.1. [12] (BCF-LinOP on SC Balanced Digraphs) Under Assumption 1, using
the linear opinion pool Eq. (8), each xjk,ν exponentially converges in distribution to the

pmf xk =
∑m

i=1
1
m
xjk,0 with a rate faster or equal to λm−1(P

2
k ), i.e., limν→∞ x

j
k,ν

dist.−−→
xk exponentially, ∀j ∈ {1, . . . ,m}. The disagreement vector is defined as θk,ν =(
θ1k,ν , . . . , θ

m
k,ν

)T , where θjk,ν =
∑ncell

i=1

∣∣xjk,ν [i]− xk[i]∣∣. For the `2 norm of the disagree-
ment vector to be less than some quantity ε > 0, i.e.,

∥∥θk,nloop

∥∥ ≤ ε; the number of

consensus loops within each consensus stage should be at least nloop ≥
⌈

log(ε/2
√
m)

log λm−1(Pk)

⌉
.

Proof Under Assumption 1, Pk is a nonnegative, row stochastic and irreducible ma-
trix which implies that that Pk is a primitive matrix. The Perron–Frobenius Theorem
(cf. [17, pp. 3]) states that there exists a left eigenvector 1 of Pk corresponding to
the eigenvalue 1 which is unique to constant multiples, i.e., P T

k 1 = 11. The Ergodic
Theorem for primitive Markov Chains (cf. [17, pp. 119]) states that limν→∞ P

ν
k = 1

m
11T .

Hence, limν→∞ x
j
k,ν = xk = 1

m

∑m
j=1 x

j
k,0 is the consensual pmf. By Lemma 1 of [12],

the measure induced by xjk,ν on R converges weakly to the measure induced by xk on

R and limν→∞ x
j
k,ν

dist.−−→ xk, , where R is the Borel σ–algebra of R.
7



Let θjk,ν =
∑ncell

i=1

∣∣xjk,ν [i]− xk[i]∣∣ be the L1 distance between the local estimated pmf
during each consensus loop (xjk,ν) and the final consensual pmf (xk). The disagree-
ment vector is defined as θk,ν =

(
θ1k,ν , . . . , θ

m
k,ν

)T , and its dynamics due to the LinOP
Eq. (8) is given by θk,ν+1 = Pkθk,ν . A special case of the Courant–Fisher Theorem (cf.
[18, pp. 179]) gives:

max
[1]T θk,ν

θTk,νP
2
kθk,ν

θTk,νθk,ν
≤ λm−1(P

2
k )‖θk,ν‖2`2 (10)

Then the Lyapunov function Φk,ν = θTk,νθk,ν = ‖θk,ν‖2`2 vanishes exponentially as
Φk,ν+1 ≤ λm−1(P

2
k )Φk,ν . Since ‖θk,0‖`2 ≤ 2

√
m, the number of loops in the consen-

sus stage are nloop ≥
⌈

log(ε/2
√
m)

log λm−1(Pk)

⌉
. �

It follows from the above Theorem, that the consensual pmf xjk,nloop
is the average of

the individual pmfs at the start of the consensus stage xjk,0,∀j ∈ {1, . . . ,m}. Hence the
agents indeed exponentially convergence to the global estimate of the current swarm
distribution during the consensus stage.

5 Designing Inhomogeneous Markov Chains

In this section, we shall study the stability and convergence characteristics of the in-
homogeneous Markov chains which converge to the given stationary distribution. Let
π represent the desired pmf of the swarm of satellites over the space R. Each agent
chooses the tuning parameter based on the KL divergence of the current swarm dis-
tribution from the desired distribution, using the following equation:

λjk = min
(
λmax, DKL(π||xjk,nloop

)
)

where DKL(π||xjk,nloop
) =

ncell∑
i=1

π[i] ln

(
π[i]

xjk,nloop
[i]

)
(11)

Each agent shall then choose the appropriate Markov matrix using Theorem 3.1 with
the tuning parameter given by Eq. (11). Conditions for such series of inhomoge-
neous Markov matrices that tend to the same stationary distribution, called ‘hardening-
position scheme’, are discussed in [19].

From Eq. (5), the overall time evolution of the probability vector xjk is given by:

xjk = M j
k−1M

j
k−2 . . .M

j
1M

j
0x

j
0 (12)

where each M j
` , ` = 0, . . . , k−1 are Rncell×ncell are column stochastic matrices obtained

using Theorem 3.1. This is similar to inhomogeneous Markov chains, except that the
matrix product goes backward, hence we shall use only those results which are direc-
tion free. Let us denote this backward matrix product M j

k−1M
j
k−2 . . .M

j
1M

j
0 by

∏k−1
`=0 M

j
` .

The main convergence result of the sequence
∏k−1

`=0 M
j
` from Eq. (12) is given by the

following theorem, which has been partially adapted from the homogeneous case dis-
cussed in [8].
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Algorithm 2 PGA using inhomogeneous Markov chains
1: (one cycle of jth agent during kth time instant)
2: Agent determines its current bin, e.g., rjk ∈ Ri.
3: Set nloop, the weighting factors aj`k }Theorem 4.1
4: for ν = 1 to nloop


Consensus

Stage

5: if ν = 1 then
6: Set xjk,0 from rjk
7: end if
8: Transmit the pmf xjk,ν−1 to other agents
9: Obtain the pmfs xjk,ν−1,∀` ∈ J

j
k from neighboring agents

10: Compute the new pmf xjk,ν using LinOP Eq. (8)
11: end for
12: Compute the tuning parameter λjk using Eq. (11)
13: Compute the Markov matrix M j

k }Theorem 3.1
14: Agent generates a random number z ∈ unif[0; 1]
15: Agent goes to bin q , i.e., rjk+1 ∈ Rq

if
∑q−1

`=1 M
j
k [`, j] ≤ z ≤

∑q
`=1M

j
k [`, j].

Theorem 5.1. (PGA using inhomogeneous Markov chains) Consider the Markov chain
in Eq. (5) with column stochastic matrices M j

k and π as their stationary distribution.
Then for any initial probability vector x0 ∈ Rncell, the global swarm distribution xk
asymptotically converges in distribution to the desired pmf π, i.e., limk→∞ xk

dist.−−→ π.

Proof Theorem 1 of [19] states that for the matrix product in Eq. (12), weak and strong
ergodicity is equivalent. Moreover, the sequence

∏k−1
`=0 M

j
` is ergodic as there is only

one absolute probability vector π common to all matrices [20]. Hence, the sequence is
strongly ergodic (in backward direction) and limk→∞

∏k−1
`=0 M

j
` = π1T . Hence, not only

do the agent’s distribution converge with respect to each other, but also the swarm
distribution tends to stabilize in time to a fixed distribution [19].

Next, we need to show that the final swarm distribution is indeed the desired distri-
bution given by π. We first prove by induction that:

k−1∏
`=0

(M j
` − π1

T ) =
k−1∏
`=0

M j
` − π1

T (13)

Since Eq. (13) is true for k = 1, we assume it is true for k. Then for k + 1 we get:

k∏
`=0

(M j
` − π1

T ) =

(
k−1∏
`=0

M j
` − π1

T

)
(M j

k − π1
T )

=

(
k∏
`=0

M j
` − π1

TM j
k

)
+

(
π1Tπ1T −

k−1∏
`=0

M j
`π1

T

)

=
k−1∏
`=0

M j
` − π1

T

9



Due to strong ergodicity, Eq. (13) vanishes which implies that ρ(M j
k−π1T ) < 1,∀k ∈ N.

It follows from Theorem 2 of [8] that for any a probability vector xj0 ∈ Rncell, limk→∞ x
j
k =

π if and only if ρ(M j
k − π1T ) < 1. This result follows from the error dynamics of

ejk(= xjk − π) which evolves as ejk+1 = (M j
k − π1T )ejk.

Since the individual probability distribution of agents converges to π, from Eq. (2)
we get limk→∞ xk = π. Finally, by Lemma 1 of [12] the measure induced by xk on R

converges weakly to the measure induced by π on R and limk→∞ xk
dist.−−→ π, where R

is the Borel σ–algebra of R. �

Thus we have shown that the swarm executing the PGA using inhomogeneous
Markov chain asymptotically converges to the desired stationary distribution.
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Figure 3: Histogram plots of the swarm distribution at different time instants. Starting
form an uniform distribution, the swarm converges to a desired distributions within 20
time steps. The middle section of the swarm is damaged during the 21st time step, but
the swarm autonomously recovers within 10 time steps.

6 Numerical Example

This example demonstrates decentralized swarm guidance using PGA while minimiz-
ing transitions. The swarm contains m = 2000 agents that are guided to form the
probability distributions π associated with the letter “E”. As shown in Figure 3, the
scenario starts at k = 1 with the swarm uniformly distributed across R. Each agent
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independently executes the PGA using inhomogeneous Markov chains illustrated in
Algorithm 2. As shown in the KL divergence graph in Figure 4, the desired distribution
is almost achieved within the first 10 time steps.

After the 20th time step, the swarm is damaged by removing approximately 340
agents from the middle section of the formation. This can been seen by comparing the
images for the 20th and 21st time step in Figure 3. Note that the swarm quickly recovers
from this damage and the remaining agents attain the desired stationary distribution
within another 10 time steps. From the great match between the plots of KL divergence
and number of transitions in Figure 4, we can infer that the agents in the swarm actively
move only when it is required of them to do so.
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Figure 4: Convergence of the swarm to the desired distribution in terms of KL diver-
gence and number of transitions per time step. Note the spike during the 21st time
step due to the damage in the middle section of the swarm.

7 Conclusions

We have extended the scope of probabilistic guidance algorithms by augmenting it with
inhomogeneous Markov chains for minimizing the number of transitions for achieving
and maintaining formations. Note that the algorithm requires the agents to communi-
cate with their neighboring agents. The swarm converges asymptotically to the desired
distribution and the algorithm is robust to external disturbances or damages to sec-
tions of the swarm. A simulation result demonstrates the properties of convergence
and self-repair. Future directions of research should include motion constraints and
avoid inter–agent collision.
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