
ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 17: Search and Planning: Hybrid A*, PRM

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com
huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com/

Announcements

• Project checkpoint: 11/13 or 11/14 (check CampusWire)
• No regular lecture on 11/13 (next Thursday)

• Midterm 2: 11/20
• Filtering/Localization + Planning

• Midterm 2 Review: 11/18 during lecture
• Will be very helpful for passing the exam! Please be sure to attend

• Guest Lectures (on Zoom): link posted on course schedule website
• Hongge Chen (Cruise): 12/2
• Zhouxing Shi (UC Riverside): 12/9
• If you attend both guest lectures fully, I will give you extra 1 point for your

final class grade (attendence will be tracked on Zoom)

https://publish.illinois.edu/safe-autonomy/schedule-fall-2025/

Review: deterministic search

• Deterministic search
• Uniform Cost Search (uninformed search)
• Informed search

• Greedy/Best-first search
• A, A* search

• Admissible heuristics
• Design of heuristics

• How to transform a planning problem in to a search problem?
• Know how to apply each search algorithm
• Soundness, completeness, optimality
• Design of heuristics

A* search (heuristics must be admissible)

� ← 푠푡��푡 // initialize queue with start

while � ≠ ∅:
 pick ��� �푒푚��푒 푝�푡ℎ � 푤�푡ℎ 푙�푤푒푠푡 푒푠푡�푚�푡푒� 푐�푠푡 � � = � � + ℎ ℎ푒�� � ���푚 �

 if ℎ푒�� � = ���푙 then return � // Reached the goal

 foreach �푒�푡푒� � 푠�푐ℎ 푡ℎ�푡 ℎ푒�� � , � ∈ �, do // for all neighbors

 add �, � 푡� � ; // Add expanded paths
return 퐹퐴퐼���� ; // nothing left to consider

Review: Example of A search

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

These are the heuristic values we used
for greedy search. Are they admissible?

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Updated heuristic values

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

 푠 0 6 0+6

Admissible
heristic values

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

 �, 푠 2 2+2=4

 �, 푠 3 5+3=8

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f
 푐, �, 푠 4 1 5

 �, 푠 5 3 8

 �, �, 푠 6 1 7

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f
 �, 푐, �, 푠 7 1 8

 �, 푠 5 3 8

 �, �, 푠 6 1 7

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

 �, 푐, �, 푠 7 1 8

 �, 푠 5 3 8

 �, �, �, 푠 8 0 8

This class: Search in
Continuous State Spaces

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

����

����

�����

�����

First approach: Hybrid A*
Vehicle models have continuous state spaces and kinematic
constraints
We could represent vehicle state in a uniform discrete grid, for
example, a 3D grid: �, �, � ℎ푒�����
A path (a) over this discrete grid can be a starting plan
But, the discrete path (a) may not be executable by the vehicle
dynamics
Hybrid A*: An extension of the traditional A* algorithm that
operates on a continuous state space an incorporates kinematic
constraints (e.g., cars cannot move sideways instantaneously)

(a)

Montemerlo, Michael, et al. "Junior: The stanford entry in the urban
challenge." Journal of field Robotics 25.9 (2008): 569-597.

Hybrid A* Search (high-level)
O = {(�0, �0, �0, g=0, h=0)} // open list
C = {} // closed list, tracking visited states
While O ≠ {}:
 n = (x, y, �) node with min cost f(n) = g(n) + h(n) in O
 If n = goal, return the path.
 C = C ∪ {n}
 For each motion primitive {m}:
 s = (x', y', �') = motion(x, y, �, m)
 g(s) = g(n) + cost(n, s) // Calculate cost
 h(s) = heuristic(s, goal)
 f(s) = g(s) + h(s)
 If s ∉ C or g(s) is lower than previously recorded cost:

 Add/update s in O with g(s), h(s)
Return failure if O is empty

Input: Source node �0, �0, �0,
goal node, Motion primitives

three motion
primitives

In practice, more tricks can be
added, e.g., directly expand a
analytical path when getting
very close to the goal or in an
open space (no obstacle)

https://www.youtube.com/watch?v=Ip2iUrVoFXc

https://www.youtube.com/watch?v=Ip2iUrVoFXc

Junior: The Stanford Entry in the Urban Challenge

http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf

Properties of Hybrid A*
• Soundness

• Unlike A*, soundness in hybrid A* may be compromised if motion primitives do not accurately
represent feasible trajectories.

• Completeness:

• Hybrid A* is not strictly complete due to the continuous state space.

• Completeness can be approximated with dense discretization of the state space.

• Optimality:

• Hybrid A* is not guaranteed to find the optimal path since it approximates the continuous space with
motion primitives.

• The quality of the solution depends on the choice of motion primitives and heuristics.

• Feasibility:

• The generated path is kinematically feasible, respecting vehicle constraints (e.g., turning radius)

The motion planning problem
• Get from point A to point B avoiding obstacles

• Last 2 lectures we saw how to search for collision free trajectories can be
converted to graph search

• Each vertex represents a region of the gridded state space; edges between centers
• Paths may not be realizable

• Hybrid A* constructs dynamically feasible paths
• edges between arbitrary points in grid regions
• Not guaranteed to be complete

• Grid/discretization does not scale to high-dimensional state spaces

• Today: sampling-based motion planning
• Can directly incorporate dynamical constraints
• Scales to higher dimensions
• Cons: Probabilistic completeness

Motion planning problem

Given a dynamical system:
�� 푡
�푡

= � � 푡 , � 푡 , � 0 = �����. 1

an obstacle set ���� ⊂ ℝ� , and a goal set ����� ⊂
ℝ�, the objective is to find (if it exists) a control
signal � such that the solution of (1) satisfies

• for all 푡 ∈ ℝ≥0, � 푡 ∉ ���� and

• for some finite T ≥ 0, � � ∈ �����

• Return failure if no such control signal exists.

����

����

�����

�����

Motion planning is a central problem in robotics
Basic problem in robotics

• Autonomous vehicles
• Puzzles

Provably computationally hard: a basic version (the
Generalized Piano Mover’s problem) is known to be
PSPACE-hard [Reif, ’79].

Types of planners

Discretization + graph search: Analytic/grid-based methods do not
scale well to high dimensions.

• A* , D* , etc. can be sensitive to graph size. Resolution complete.

Algebraic planners: Explicit representation of obstacles.
• Use complicated algebra (visibility computations/projections) to find the

path. Complete, but often impractical.

Potential fields/navigation functions: Virtual attractive forces
towards the goal, repulsive forces away from the obstacles.

• No completeness guarantees, unless “navigation functions” are available—
very hard to compute in general.

Our focus: Sampling-based algorithms

Solutions are computed based on samples from some distribution.

Retain some form of completeness, e.g., probabilistic completeness

Incremental sampling methods
- Lend themselves to real-time, on-line implementations
- Can work with very general dynamics
- Do not require explicit constraints

Outline

Probabilistic Roadmaps (this lecture)
Rapidly expanding random trees (RRT)
Rapidly-exploring Random Graph (RRG)

Probabilistic RoadMaps (PRM)
Introduced by Kavraki and Latombe in 1994

Mainly geared towards “multi-query” motion planning problems

Idea: build (offline) a graph (i.e., the roadmap) representing the “connectivity” of the environment;
use this roadmap to figure out paths quickly at run time.

Learning/pre-processing phase:

• Sample n points from ����� = 0, 1 � \ ����

• Try to connect these points using a fast “local planner”

• If connection is successful (i.e., no collisions), add an edge between the points.

At run time:

• Connect the start and end goal to the closest nodes in the roadmap

• Find a path on the roadmap, e.g., using BFS, DFS, A*

First planner ever to demonstrate the ability to solve general planning problems in > 4-5 dimensions!

PRM in action

Picture from Wikipedia.org
https://en.wikipedia.org/wiki/Probabilistic_roadmap

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M.
H. (1996), "Probabilistic roadmaps for path planning in high-
dimensional configuration spaces", IEEE Transactions on
Robotics and Automation, 12 (4): 566–580

https://en.wikipedia.org/wiki/Lydia_Kavraki
https://en.wikipedia.org/wiki/Jean-Claude_Latombe
https://en.wikipedia.org/wiki/Mark_Overmars

Simple PRM (sPRM) construction

V ← {xinit} ∪ {��~�����}i=1,...,N-1
E ← ∅
foreach v ∈ V do
 U ← Near(G = (V, E), v, r) \ {v}
 foreach u ∈ U do

if CollisionFree(v, u) then
 E ← E ∪ {(v, u),(u, v)}
return G = (V, E)

path = shortest_path(xinit, xgoal, V, E)
// Dijkstra's or A*

Near(G, v, r): Finds the subset of vertices in G that are
within r distance of v

CollisionFree(v, u): checks whether there is a path from u
to v that does not collide with the obstacles

v

r

Probabilistic RoadMap

Connect points within a radius r, starting
from “closest” ones

Do not attempt to connect points already
on the same connected component of
PRM

What properties does this algorithm have?

• Will it find a solution if one exists?

• Is this an optimal solution?

• What is the complexity?

����

����

�����

�����

Robustness and Probabilistic completeness
Definition. A motion planning problem � = �����, �����, ����� is
robustly feasible if there exists some small δ>0 such that a solution
remains a solution if obstacles are “dilated” by δ.

Definition. An algorithm ALG is probabilistically complete if, for any
robustly feasible motion planning problem defined by � =
 �����, �����, ����� , lim�→∞

Pr ALG returns a solution to � = 1.

• N is the number of samples

• Applicable to motion planning problems with a robust solution.

����

����

�����

�����

Fig. not robustly feasible.

Paper: Sampling-based Algorithms for Optimal Motion Planning, Sertac Karaman Emilio Frazzoli

Asymptotic optimality of sampling-based algorithms

Suppose we have a cost function 푐 that associates to each path � a non-

negative cost 푐 � , e.g., 푐 � = � � 푠 �푠.

��
��� = 푐 �� Cost of the output path �� from ALG with � samples

Definition. An algorithm ALG is asymptotically optimal if, for any motion
planning problem � = �����, �����, ����� and cost function 푐 that
admits a robust optimal solution with finite cost 푐∗,

� lim
�→∞

 ��
��� = 푐∗ = 1

Properties of PRM
The simplified version of the PRM (sPRM) algorithm has been shown to be
probabilistically complete. (No proofs available for the “real” PRM!)

Moreover, the probability of success goes to 1 exponentially fast, if the environment
satisfies visibility conditions.

Two nodes satisfies visibility if they have a straight line collision-free path between
them

But, NOT asymptotically optimal

Edges make unnecessary connections in a connected component

Set of optimal paths has measure 0

Improved version of PRM (PRM*) exists to achieve asymptotical optimality

Complexity of Sampling-based Algorithms
How can we measure complexity for an algorithm that does not necessarily
terminate?

Treat the number of samples as “the size of the input.” (Everything else stays the same)
Complexity per sample: how much work (time/memory) is needed to process one sample.
Useful for comparison of sampling-based algorithms. Not for deterministic, complete algorithms.

Complexity of PRM for N samples Θ �2
Practical complexity reduction tricks

k-nearest neighbors: connect to the k nearest neighbors. Complexity Θ(N log N). (Finding nearest
neighbors takes log N time.)
Bounded degree: connect at most k neighbors among those within radius r.
Variable radius: change the connection radius r as a function of N. How?

