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Announcements

• Project checkpoint: 11/13 or 11/14 (check CampusWire)
• No regular lecture on 11/13 (next Thursday)

• Midterm 2: 11/20
• Filtering/Localization + Planning 

• Midterm 2 Review: 11/18 during lecture
• Will be very helpful for passing the exam! Please be sure to attend

• Guest Lectures (on Zoom): link posted on course schedule website
• Hongge Chen (Cruise): 12/2
• Zhouxing Shi (UC Riverside): 12/9
• If you attend both guest lectures fully, I will give you extra 1 point for your 

final class grade (attendence will be tracked on Zoom)

https://publish.illinois.edu/safe-autonomy/schedule-fall-2025/


Review: deterministic search

• Deterministic search
• Uniform Cost Search (uninformed search)
• Informed search

• Greedy/Best-first search
• A, A* search

• Admissible heuristics
• Design of heuristics

• How to transform a planning problem in to a search problem?
• Know how to apply each search algorithm
• Soundness, completeness, optimality
• Design of heuristics



A* search (heuristics must be admissible)

� ←  푠푡��푡   // initialize queue with start

while � ≠ ∅:  
     pick  ��� �푒푚��푒   푝�푡ℎ � 푤�푡ℎ 푙�푤푒푠푡 푒푠푡�푚�푡푒� 푐�푠푡 � � = � � + ℎ ℎ푒�� �   ���푚 � 

     if ℎ푒�� � =  ���푙 then return � // Reached the goal 

     foreach �푒�푡푒� � 푠�푐ℎ 푡ℎ�푡  ℎ푒�� � ,  � ∈  �,  do // for all neighbors 

          add  �,  �  푡� � ;  // Add expanded paths 
return 퐹퐴퐼���� ; // nothing left to consider



Review: Example of A search
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Example of A search
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Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

 �, 푠 2 2+2=4

 �, 푠 3 5+3=8



Example of A search
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Example of A search
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This class: Search in 
Continuous State Spaces
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First approach: Hybrid A*
Vehicle models have continuous state spaces and kinematic 
constraints
We could represent vehicle state in a uniform discrete grid, for 
example, a 3D grid: �, �, �  ℎ푒����� 
A path (a) over this discrete grid can be a starting plan
But, the discrete path (a) may not be executable by the vehicle 
dynamics
Hybrid A*: An extension of the traditional A* algorithm that 
operates on a continuous state space an incorporates kinematic  
constraints (e.g., cars cannot move sideways instantaneously)

(a) 

Montemerlo, Michael, et al. "Junior: The stanford entry in the urban 
challenge." Journal of field Robotics 25.9 (2008): 569-597.



Hybrid A* Search (high-level)
O = {(�0,  �0, �0, g=0, h=0)}      // open list
C = {}            // closed list, tracking visited states
While O ≠ {}:
   n = (x, y, �) node with min cost f(n) = g(n) + h(n) in O
   If n = goal, return the path.
   C = C ∪ {n}
   For each motion primitive {m}:
         s = (x', y', �') = motion(x, y, �, m)
         g(s) = g(n) + cost(n, s)  // Calculate cost
         h(s) = heuristic(s, goal)
         f(s) = g(s) + h(s)
         If s ∉ C or g(s) is lower than previously recorded cost:

 Add/update s in O with g(s), h(s)
Return failure if O is empty

Input: Source node �0,  �0, �0, 
goal node, Motion primitives

three motion 
primitives

In practice, more tricks can be 
added, e.g., directly expand a 
analytical path when getting 
very close to the goal or in an 
open space (no obstacle)



https://www.youtube.com/watch?v=Ip2iUrVoFXc

https://www.youtube.com/watch?v=Ip2iUrVoFXc


Junior: The Stanford Entry in the Urban Challenge 

http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf


Properties of Hybrid A*
• Soundness

• Unlike A*, soundness in hybrid A* may be compromised if motion primitives do not accurately 
represent feasible trajectories.

• Completeness:

• Hybrid A* is not strictly complete due to the continuous state space.

• Completeness can be approximated with dense discretization of the state space.

• Optimality:

• Hybrid A* is not guaranteed to find the optimal path since it approximates the continuous space with 
motion primitives.

• The quality of the solution depends on the choice of motion primitives and heuristics.

• Feasibility:

• The generated path is kinematically feasible, respecting vehicle constraints (e.g., turning radius)



The motion planning problem
• Get from point A to point B avoiding obstacles

• Last 2 lectures we saw how to search for collision free trajectories can be 
converted to graph search

• Each vertex represents a region of the gridded state space; edges between centers
• Paths may not be realizable

• Hybrid A* constructs dynamically feasible paths
• edges between arbitrary points in grid regions
• Not guaranteed to be complete

• Grid/discretization does not scale to high-dimensional state spaces 

• Today: sampling-based motion planning 
• Can directly incorporate dynamical constraints
• Scales to higher dimensions
• Cons: Probabilistic completeness 



Motion planning problem

Given a dynamical system: 
�� 푡 
�푡

=  � � 푡 ,  � 푡  ,   � 0 =  �����.       1  

an obstacle set ���� ⊂ ℝ� , and a goal set ����� ⊂
ℝ�, the objective is to find (if it exists) a control 
signal �   such that the solution of (1) satisfies 

• for all 푡 ∈  ℝ≥0,  � 푡 ∉  ���� and 

• for some finite T ≥ 0, � �  ∈  ����� 

• Return failure if no such control signal exists.

����
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Motion planning is a central problem in robotics
Basic problem in robotics

• Autonomous vehicles
• Puzzles

Provably computationally hard: a basic version (the 
Generalized Piano Mover’s problem) is known to be 
PSPACE-hard [Reif, ’79].



Types of planners

Discretization + graph search: Analytic/grid-based methods do not 
scale well to high dimensions. 

• A* , D* , etc. can be sensitive to graph size. Resolution complete.

Algebraic planners: Explicit representation of obstacles. 
• Use complicated algebra (visibility computations/projections) to find the 

path. Complete, but often impractical.

Potential fields/navigation functions: Virtual attractive forces 
towards the goal, repulsive forces away from the obstacles. 

• No completeness guarantees, unless “navigation functions” are available—
very hard to compute in general.



Our focus: Sampling-based algorithms

Solutions are computed based on samples from some distribution. 

Retain some form of completeness, e.g., probabilistic completeness

Incremental sampling methods
- Lend themselves to real-time, on-line implementations
- Can work with very general dynamics
- Do not require explicit constraints



Outline

Probabilistic Roadmaps (this lecture)
Rapidly expanding random trees (RRT)
Rapidly-exploring Random Graph (RRG)



Probabilistic RoadMaps (PRM)
Introduced by Kavraki and Latombe in 1994

Mainly geared towards “multi-query” motion planning problems

Idea: build (offline) a graph (i.e., the roadmap) representing the “connectivity” of the environment; 
use this roadmap to figure out paths quickly at run time.

Learning/pre-processing phase:

• Sample n points from ����� =   0,  1 � \  ����

• Try to connect these points using a fast “local planner” 

• If connection is successful (i.e., no collisions), add an edge between the points. 

At run time:

• Connect the start and end goal to the closest nodes in the roadmap

• Find a path on the roadmap, e.g., using BFS, DFS, A*  

First planner ever to demonstrate the ability to solve general planning problems in > 4-5 dimensions!



PRM in action

Picture from Wikipedia.org 
https://en.wikipedia.org/wiki/Probabilistic_roadmap

Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; Overmars, M. 
H. (1996), "Probabilistic roadmaps for path planning in high-
dimensional configuration spaces", IEEE Transactions on 
Robotics and Automation, 12 (4): 566–580

https://en.wikipedia.org/wiki/Lydia_Kavraki
https://en.wikipedia.org/wiki/Jean-Claude_Latombe
https://en.wikipedia.org/wiki/Mark_Overmars


Simple PRM (sPRM) construction

V ← {xinit} ∪ {��~�����}i=1,...,N-1 
E ← ∅
foreach v ∈ V do
   U ← Near(G = (V, E), v, r) \ {v}
      foreach u ∈ U do 

if CollisionFree(v, u) then 
                E ← E ∪ {(v, u),(u, v)}
return G = (V, E)

path = shortest_path(xinit, xgoal, V, E)  
// Dijkstra's or A*

Near(G, v, r): Finds the subset of vertices in G that are 
within r distance of v

CollisionFree(v, u): checks whether there is a path from u 
to v that does not collide with the obstacles

v

r



Probabilistic RoadMap

Connect points within a radius r, starting 
from “closest” ones

Do not attempt to connect points already 
on the same connected component of 
PRM

What properties does this algorithm have? 

• Will it find a solution if one exists? 

• Is this an optimal solution? 

• What is the complexity?

����
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Robustness and Probabilistic completeness
Definition. A motion planning problem � =  �����,  �����,  �����  is 
robustly feasible if there exists some small δ>0 such that a solution 
remains a solution if obstacles are “dilated” by δ.

Definition. An algorithm ALG is probabilistically complete if, for any 
robustly feasible motion planning problem defined by � =
 �����,  �����,  ����� , lim�→∞

Pr  ALG returns a solution to � =  1.

• N is the number of samples

• Applicable to motion planning problems with a robust solution. 

����

����
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Fig. not robustly feasible.

Paper: Sampling-based Algorithms for Optimal Motion Planning, Sertac Karaman Emilio Frazzoli



Asymptotic optimality of sampling-based algorithms

Suppose we have a cost function 푐 that associates to each path � a non-

negative cost 푐 � ,  e.g., 푐 �  =  � � 푠 �푠.

��
��� = 푐 ��         Cost of the output path �� from ALG with � samples 

Definition. An algorithm ALG is asymptotically optimal if, for any motion 
planning problem � =  �����,  �����,  �����  and cost function 푐 that 
admits a robust optimal solution with finite cost 푐∗,  

�   lim
�→∞

 ��
��� =  푐∗   = 1



Properties of PRM
The simplified version of the PRM (sPRM) algorithm has been shown to be 
probabilistically complete. (No proofs available for the “real” PRM!) 

Moreover, the probability of success goes to 1 exponentially fast, if the environment 
satisfies visibility conditions. 

Two nodes satisfies visibility if they have a straight line collision-free path between 
them

But, NOT asymptotically optimal

Edges make unnecessary connections in a connected component

Set of optimal paths has measure 0

Improved version of PRM (PRM*) exists to achieve asymptotical optimality



Complexity of Sampling-based Algorithms
How can we measure complexity for an algorithm that does not necessarily 
terminate? 

Treat the number of samples as “the size of the input.” (Everything else stays the same)
Complexity per sample: how much work (time/memory) is needed to process one sample.
Useful for comparison of sampling-based algorithms. Not for deterministic, complete algorithms.

Complexity of PRM for N samples Θ �2 
Practical complexity reduction tricks

k-nearest neighbors: connect to the k nearest neighbors. Complexity Θ(N log N). (Finding nearest 
neighbors takes log N time.)
Bounded degree: connect at most k neighbors among those within radius r.
Variable radius: change the connection radius r as a function of N. How?


