
ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 16: Search and Planning: A* and heuristics

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com
huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com/

Autonomy
pipeline

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

GEM platform

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Decisions and
planning

Programs and multi-
agent models of

pedestrians, cars,
etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Sensing

Physics-based
models of camera,

LIDAR, RADAR, GPS,
etc.

Outline

• Deterministic search
• Uniform Cost Search (uninformed search)
• Informed search

• Greedy/Best-first search
• A, A* search

• Admissible heuristics
• design of heuristics

Problem statement: find shortest path
Input: ⟨�, �, �, 푠푡��푡, 푔표��⟩

• �: (finite) set of vertices

• � ⊆ � × �: (finite) set of edges

• � : � → ℝ>0: associates to each edge � to a positive weight � �
• 푠푡��푡, 푔표�� ∈ �: start and end vertices.

A path is a sequence of vertices � = �0 …�� such that ��, ��+1 ∈ �

� � = �=0
�−1� ��, ��+1 head � = �0 end � = ��

Output: a path � with ℎ��� � = 푠푡��푡 and ��� � = 푔�표�, such that its
� � is minimal among all such paths

Algorithms: Dijkstra O((|V|+|E|)log|V|) , Bellman-Ford O(|V|x|E|),..

s

c

s

d

b

g

2 3
4 2

2
5 5

Review: Properties of search algorithm

• Soundness
• Completeness
• Optimality
• Speed (time complexity)
• Memory usage

Slow search can be life or death
Elephants migrate in thousands
from Okavango delta, Botswana,
drawn by the need to find water

Uniform cost search (Uninformed search)

� ← ⟨푠푡��푡⟩ // maintains paths sorted by cost
// initialize queue with start

while � ≠ ∅:
 pick (and remove) the path � with lowest cost w �
 if ℎ��� � = 푔표�� then return � ; // Reached the goal
 foreach ���푡�� � 푠��ℎ 푡ℎ�푡 ℎ��� � , � ∈ �, do // for all neighbors
 add ⟨�, �⟩ 푡표 � ; // Add expanded paths
return 퐹퐴퐼���� ; // nothing left to consider

Note no visited list; Use no information obtained from the environment

Example of Uniform-Cost Search (s to g)

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨푠⟩ 0

Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, 푠⟩ 2
⟨�, 푠⟩ 5

Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, �, 푠⟩ 4
⟨�, 푠⟩ 5

⟨�, �, 푠⟩ 6

Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, 푠⟩ 5
⟨�, �, 푠⟩ 6
⟨�, �, �, 푠⟩ 7

Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, �, 푠⟩ 6
⟨�, �, �, 푠⟩ 7
⟨푔, �, 푠⟩ 10

Notice a path to goal <g, b, s> has been found but the algorithm does
not terminate, since the path is currently not at the head of Q

Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost
⟨�, �, �, 푠⟩ 7
⟨푔, �, �, 푠⟩ 8

⟨푔, �, 푠⟩ 10

Another path to goal <g, d, a, s> has been found but the algorithm does
not terminate, since the path is currently not at the head of Q

Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost
⟨�, �, �, 푠⟩ 8

⟨푔, �, �, �, 푠⟩ 9

⟨푔, �, 푠⟩ 10

Algorithm stops when smallest cost path in Q has head = g

Properties of Uniform Cost Search
UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all
edges have the same cost)
UCS is sound, complete and optimal (assuming costs bounded away from
zero; zero or negative costs will cause infinite loops)

• Exercise: Prove the above claims
• Soundness: For any entry p in Q, is a path and head(p) = start

UCS is guided by path cost rather than path depth, so it may get in trouble
if some edge costs are very small
Worst-case time and space complexity � ��∗/� , where b is the branching
factor, �∗ is the optimal cost, and � is such that all edge weights are no
smaller than

Greedy or Best-First Search
UCS explores paths in all directions, with no bias towards the goal state
What if we try to get “closer” to the goal?
We need a measure of distance to the goal

It would be ideal to use the length of the shortest path...
but this is exactly what we are trying to compute!

We can estimate the distance to the goal through a heuristic function
 ℎ : � → ℝ≥0. E.g., the Euclidean distance to the goal (as the crow flies)

ℎ � is the estimate of the distance from � to goal

A reasonable strategy is to always try to move in such a way to minimize the
estimated distance to the goal: this is the basic idea of the greedy (best-first)
search

Greedy/Best-first search

� ← ⟨푠푡��푡⟩ // initialize queue with start

while � ≠ ∅:
 pick ��� ��푚표�� 푡ℎ� ��푡ℎ � ��푡ℎ �표��푠푡 ℎ����푠푡�� �표푠푡 ℎ ℎ��� � 푓�표푚 �
 if ℎ��� � = 푔표�� then return � // Reached the goal

 foreach ���푡�� � 푠��ℎ 푡ℎ�푡 ℎ��� � , � ∈ �, do // for all neighbors

 add ⟨�, �⟩ 푡표 � ; // Add expanded paths
return 퐹퐴퐼���� ; // nothing left to consider

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨푠⟩ 0 10

Heuristic values
(arbitrarily defined
for this example)

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨�, 푠⟩ 2 2

⟨�, 푠⟩ 5 3

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨�, �, 푠⟩ 4 1

⟨�, 푠⟩ 5 3

⟨�, �, 푠⟩ 6 4

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h
⟨�, �, �, 푠⟩ 7 4

⟨�, 푠⟩ 5 3

⟨�, �, 푠⟩ 6 4

Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h
⟨�, �, �, 푠⟩ 7 4

⟨푔, �, 푠⟩ 10 0

⟨�, �, 푠⟩ 6 4

Terminates with suboptimal path

Remarks on greedy/best-first search

Greedy (Best-First) search is similar to Depth-First Search
keeps exploring until it has to back up due to a dead end

Not complete (why?) and not optimal, but is often fast and efficient,
depending on the heuristic function h

Exercise: Find a counter-example where path exists but bad heuristic function
makes the algorithm loop forever

Worst-case time and space complexity?

A search: informed search
The problems

UCS is optimal, but may wander around a lot before finding the goal
Greedy is not optimal, but can be efficient, as it is heavily biased towards moving
towards the goal. The non-optimality comes from neglecting “the past.”

The idea
Keep track both of the cost of the partial path to get to a vertex, say g(v), and of the
heuristic function estimating the cost to reach the goal from a vertex, h(v)
In other words, choose as a “ranking” function the sum of the two costs:

f (v) = g(v) + h(v)
g(v) cost-to-come (from the start to v)
h(v): cost-to-go estimate (from v to the goal)
f (v): estimated cost of the path (from the start to v and then to the goal)

A and A* search
The challenges

Uninformed search without cost-to-go heuristic h (future prediction) is optimal, but may wander around a
lot before finding the goal

Greedy can be biased to explore efficiently towards the goal but may not be optimal as it neglect the cost
to arrive at a node (past)

The idea of A Search is to combine past and future
Use both of the cost of the partial path to get to a vertex, g(v), and of the heuristic function estimating the
cost to reach the goal from a vertex, h(v) to guide the exploration

sum of the two costs: f (v) = g(v) + h(v)

g(v) cost-to-come (from the start to v)

h(v): cost-to-go estimate (from v to the goal)

f (v): estimated cost of the path (from the start to v and then to the goal)

A search

A search is similar to UCS, with a bias induced by the heuristic h
If h = 0 then A search = UCS.
The A search is complete, but is not optimal

 What is wrong? (Recall that if h = 0 then A = UCS, and hence optimal...)
A Search
Choose an admissible heuristic, i.e., such 푡ℎ�푡 ℎ � ≤ ℎ∗ �

ℎ∗ � is the “optimal” heuristic---perfect cost to go
To be admissible ℎ � should be at most ℎ∗ �
A search with an admissible heuristic is called A* --- guaranteed to find optimal
path

A* search

� ← ⟨푠푡��푡⟩ // initialize queue with start

while � ≠ ∅:
 pick ��� ��푚표�� ��푡ℎ � ��푡ℎ �표��푠푡 �푠푡�푚�푡�� �표푠푡 푓 � = 푔 � + ℎ ℎ��� � 푓�표푚 �

 if ℎ��� � = 푔표�� then return � // Reached the goal

 foreach ���푡�� � 푠��ℎ 푡ℎ�푡 ℎ��� � , � ∈ �, do // for all neighbors

 add ⟨�, �⟩ 푡표 � ; // Add expanded paths
return 퐹퐴퐼���� ; // nothing left to consider

open set and closed set

Example of A search

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

These are the heuristic values we used
for greedy search. Are they admissible?

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Updated heuristic values

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨푠⟩ 0 6 0+6

Admissible
heristic values

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨�, 푠⟩ 2 2+2=4

⟨�, 푠⟩ 3 5+3=8

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f
⟨�, �, 푠⟩ 4 1 5

⟨�, 푠⟩ 5 3 8

⟨�, �, 푠⟩ 6 1 7

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f
⟨�, �, �, 푠⟩ 7 1 8

⟨�, 푠⟩ 5 3 8

⟨�, �, 푠⟩ 6 1 7

Example of A search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨�, �, �, 푠⟩ 7 1 8

⟨�, 푠⟩ 5 3 8

⟨푔, �, �, 푠⟩ 8 0 8

Uniform cost search vs A*

https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/A*_search_algorithm

Proof of optimality of A*
Theorem. A* Search can find the optimal path.

Let w* be the cost of the optimal path P*.

Suppose for the sake of contradiction, that A* returns suboptimal P with w(P) > w*

Find the first node n on the optimal path P* that is not on P

When n’s parent x was expanded the path ⟨�, �, …⟩, f(n) was added in Q but then n was not
expanded later in the algorithm

Thus, we must have f(n) > w(P), otherwise n would have been expanded (1)

But, f(n) = g(n) + h(n)

= g*(n) + h(n) [since n is on the optimal path]

<= g*(n) + h*(n) [since h is admissible]

= w* [since w* is the cost of the optimal path which goes through n]

 => f(n) < w(P) (2) [since w* is the optimal cost < W(P)]

(1) and (2) contradict.

start

goal

P*

P

n

x

Admissible heuristics
How to find admissible heuristics? i.e., a heuristic that never overestimates the cost-
to-go.
Some examples
• ℎ(�) = 0: this always works! However, it is not very useful, A* = UCS
• ℎ(�) = ��푠푡����(�, 푔) when vertices are physical locations

• ℎ(�) = � − 푔 � , when vertices are points in a normed vector space

More generally
• Choose h as the optimal cost-to-go function for a relaxed problem, that is easy to

compute
• Relaxed problem: ignore some of the constraints in the original problem

• Ignore or under-approximate some of the obstacles
• Allow less restrictive dynamics

Admissible heuristics for the 8-puzzle

First, think about how to solve this game using search:
• What is the vertices on the graph?
• How to define the edges?
• What are the start and goal vertices?
• How the distance is defined?
• What heuristic to use?

Admissible heuristics for the 8-puzzle

Which of the following are admissible
heuristics?
• h = 0
• h = 1
• h = number of tiles in the wrong

position
• h = sum of (Manhattan) distance

between tiles and their goal position

YES, always good (uniform cost search), but can be slow

not valid in goal state

YES, “teleport” each tile to the goal in one move

YES, move each tile to the goal ignoring other tiles.

Which heuristc is better? A partial order of
heuristic functions
Some heuristics are better than others

• h = 0 is an admissible heuristic, but is not very useful
• h = h* is also an admissible heuristic, and it is the “best” possible one (it give us the

optimal path directly, no searches/backtracking)

Partial order
• We say that ℎ1 dominates ℎ2 if ℎ1(�) ≥ ℎ2(�) for all vertices v
• ℎ∗ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

Choosing the right heuristic
• In general, we want a heuristic that is as close to h* as possible
• However, such a heuristic may be too complicated to compute
• There is a tradeoff between complexity of computing ℎ and the complexity of the

search

Consistent heuristics

• An additional useful property for A* heuristics is called consistency
• A heuristic ℎ : � → ℝ≥0 is said consistent if

ℎ(�) ≤ � (� = (�, �)) + ℎ(�), ∀(�, �) ∈ �
• In other words, a consistent heuristics satisfies a triangle inequality

• If h is a consistent heuristics, then 푓 = 푔 + ℎ is non-decreasing along paths:
 푓 � = 푔 � + ℎ � = 푔 � + � � = (�, �) + ℎ � ≥ 푔 � + ℎ � = 푓 �

• Hence, the values of f on the sequence of nodes expanded by A* is non-
decreasing: the when we expand path P with the lowest f(P), P is the optimal
path to head(P)

• With consistent heuristics, A* is not only optimal (finds the best path), but also
has optimal efficiency (explores fewest node)

A* search

� ← ⟨푠푡��푡⟩ // initialize queue with start

while � ≠ ∅:
 pick ��� ��푚표�� ��푡ℎ � ��푡ℎ �표��푠푡 �푠푡�푚�푡�� �표푠푡 푓 � = 푔 � + ℎ ℎ��� � 푓�표푚 �

 if ℎ��� � = 푔표�� then return � // Reached the goal

 foreach ���푡�� � 푠��ℎ 푡ℎ�푡 ℎ��� � , � ∈ �, do // for all neighbors

 add ⟨�, �⟩ 푡표 � ; // Add expanded paths
return 퐹퐴퐼���� ; // nothing left to consider

open set and closed set

Review

• Deterministic search
• Uniform Cost Search (uninformed search)
• Informed search

• Greedy/Best-first search
• A, A* search

• Admissible heuristics
• design of heuristics

• How to transform a planning problem in to a search problem?
• Know how to apply each search algorithm
• Soundness, completeness, optimality
• Design of heuristics

A* to Continuous State
Spaces

Applying A* to vehicles
Vehicle models have continuous state spaces and kinematic
constraints

We could represent vehicle state in a uniform discrete grid, for
example, a 4D grid: �, �, � ℎ�����푔 , ��� (fwd,rev)

A path (a) over this discrete grid can be a starting plan

But, the discrete path (a) may not be executable by the vehicle
dynamics

Hybrid A*: An extension of the traditional A* algorithm that
operates on a continuous state space an incorporates kinematic
(e.g., non-holonomic) constraints

(a)

Montemerlo, Michael, et al. "Junior: The stanford entry in the urban
challenge." Journal of field Robotics 25.9 (2008): 569-597.

Hybrid A* Search
O = {(�0, �0, �0, g=0, h=0)} // open list
C = {} // closed list
While O ≠ {}:
 n = (x, y, �) node with min cost f(n) = g(n) + h(n) in O
 If n = goal, return the path.
 C = C ∪ {n}
 For each motion primitive {m}:
 s = (x', y', �') = motion(x, y, �, m)
 g(s) = g(n) + cost(n, s) // Calculate cost
 h(s) = heuristic(s, goal)
 f(s) = g(s) + h(s)
 If s ∉ C or g(s) is lower than previously recorded cost:

 Add/update s in O with g(s), h(s)
Return failure if O is empty

Input: Source node �0, �0, �0, goal node
Motion primitives

Junior: The Stanford Entry in the Urban Challenge

http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf

Properties of Hybrid A*
• Soundness

• sound when the heuristic function is admissible and consistent.
• However, soundness may be compromised if motion primitives do not accurately represent feasible

trajectories.

• Completeness:

• Hybrid A* is not strictly complete due to the continuous state space.

• Completeness can be approximated with dense discretization of the state space.

• Optimality:

• Hybrid A* is not guaranteed to find the optimal path since it approximates the continuous space with
motion primitives.

• The quality of the solution depends on the choice of motion primitives and heuristics.

• Feasibility:

• The generated path is kinematically feasible, respecting vehicle constraints (e.g., turning radius)

Summary

A* algorithm combines cost-to-come g(v) and a heuristic function h(v)
for cost-to-go to find shortest path

• informed search

Heuristic function must be admissible ℎ(�) ≤ ℎ∗(�)
• Never over-estimate the actual cost to go
• Dominant and consistent heuristics are preferrable

Hybrid A* extends A* to continuous state spaces and incorporates
kinematic constraints

