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Outline

• Deterministic search
• Uniform Cost Search (uninformed search)
• Informed search

• Greedy/Best-first search
• A, A* search

• Admissible heuristics
• design of heuristics



Problem statement: find shortest path
Input: ⟨�,  �, �,  푠푡��푡,  푔표��⟩

• �: (finite) set of vertices 

• �  ⊆  �  ×  �: (finite) set of edges

• � :  �  → ℝ>0: associates to each edge � to a positive weight � � 
• 푠푡��푡,  푔표��  ∈  �: start and end vertices. 

A path is a sequence of vertices � = �0 …�� such that  ��, ��+1 ∈ � 

� � =  �=0
�−1� ��, ��+1   head � = �0 end � = ��

Output: a path � with ℎ��� � = 푠푡��푡 and ��� � = 푔�표�, such that its 
� �  is minimal among all such paths 

Algorithms: Dijkstra O((|V|+|E|)log|V|) , Bellman-Ford O(|V|x|E|),..
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Review: Properties of search algorithm

• Soundness 
• Completeness
• Optimality
• Speed (time complexity)
• Memory usage 



Slow search can be life or death
Elephants migrate in thousands 
from Okavango delta, Botswana, 
drawn by the need to find water



Uniform cost search (Uninformed search)

� ← ⟨푠푡��푡⟩   //  maintains paths sorted by cost
// initialize queue with start

while � ≠ ∅:  
     pick (and remove) the path � with lowest cost w �  
     if ℎ��� � =  푔표�� then return � ;   // Reached the goal 
     foreach ���푡�� � 푠��ℎ 푡ℎ�푡  ℎ��� � ,  � ∈  �,  do  // for all neighbors 
          add ⟨�,  �⟩ 푡표 � ;   // Add expanded paths 
return 퐹퐴퐼���� ; // nothing left to consider

Note no visited list; Use no information obtained from the environment



Example of Uniform-Cost Search (s to g)

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨푠⟩ 0



Example of Uniform-Cost Search
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Example of Uniform-Cost Search
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Example of Uniform-Cost Search
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Example of Uniform-Cost Search
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Notice a path to goal <g, b, s> has been found but the algorithm does 
not terminate, since the path is currently not at the head of Q



Example of Uniform-Cost Search
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Example of Uniform-Cost Search
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Properties of Uniform Cost Search
UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all 
edges have the same cost) 
UCS is sound, complete and optimal (assuming costs bounded away from 
zero; zero or negative costs will cause infinite loops) 

• Exercise: Prove the above claims
• Soundness: For any entry p in Q, is a path and head(p) = start

UCS is guided by path cost rather than path depth, so it may get in trouble 
if some edge costs are very small
Worst-case time and space complexity � ��∗/� , where b is the branching 
factor, �∗ is the optimal cost, and � is such that all edge weights are no 
smaller than



Greedy or Best-First Search
UCS explores paths in all directions, with no bias towards the goal state
What if we try to get “closer” to the goal? 
We need a measure of distance to the goal

It would be ideal to use the length of the shortest path... 
but this is exactly what we are trying to compute! 

We can estimate the distance to the goal through a heuristic function
 ℎ :  �  → ℝ≥0. E.g., the Euclidean distance to the goal (as the crow flies)

ℎ �  is the estimate of the distance from � to goal

A reasonable strategy is to always try to move in such a way to minimize the 
estimated distance to the goal: this is the basic idea of the greedy (best-first) 
search



Greedy/Best-first search

� ← ⟨푠푡��푡⟩   // initialize queue with start

while � ≠ ∅:  
     pick  ��� ��푚표��  푡ℎ� ��푡ℎ � ��푡ℎ �표��푠푡 ℎ����푠푡�� �표푠푡 ℎ ℎ��� �   푓�표푚 � 
     if ℎ��� � =  푔표�� then return �  // Reached the goal 

     foreach ���푡�� � 푠��ℎ 푡ℎ�푡  ℎ��� � ,  � ∈  �,  do  // for all neighbors 

          add ⟨�,  �⟩ 푡표 � ;   // Add expanded paths 
return 퐹퐴퐼���� ; // nothing left to consider



Example of Greedy search
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Example of Greedy search
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Remarks on greedy/best-first search

Greedy (Best-First) search is similar to Depth-First Search
keeps exploring until it has to back up due to a dead end

Not complete (why?) and not optimal, but is often fast and efficient, 
depending on the heuristic function h 

Exercise: Find a counter-example where path exists but bad heuristic function 
makes the algorithm loop forever

Worst-case time and space complexity?



A search: informed search
The problems 

UCS is optimal, but may wander around a lot before finding the goal
Greedy is not optimal, but can be efficient, as it is heavily biased towards moving 
towards the goal. The non-optimality comes from neglecting “the past.” 

The idea 
Keep track both of the cost of the partial path to get to a vertex, say g(v), and of the 
heuristic function estimating the cost to reach the goal from a vertex, h(v)
In other words, choose as a “ranking” function the sum of the two costs: 

f (v) = g(v) + h(v) 
g(v) cost-to-come (from the start to v)
h(v): cost-to-go estimate (from v to the goal)
f (v): estimated cost of the path (from the start to v and then to the goal)



A and A* search
The challenges 

Uninformed search without cost-to-go heuristic h (future prediction) is optimal, but may wander around a 
lot before finding the goal

Greedy can be biased to explore efficiently towards the goal but may not be optimal as it neglect the cost 
to arrive at a node (past)

The idea of A Search is to combine past and future
Use both of the cost of the partial path to get to a vertex, g(v), and of the heuristic function estimating the 
cost to reach the goal from a vertex, h(v) to guide the exploration

sum of the two costs:  f (v) = g(v) + h(v) 

g(v) cost-to-come (from the start to v)

h(v): cost-to-go estimate (from v to the goal)

f (v): estimated cost of the path (from the start to v and then to the goal)



A search

A search is similar to UCS, with a bias induced by the heuristic h 
If h = 0 then A search = UCS. 
The A search is complete, but is not optimal

 What is wrong? (Recall that if h = 0 then A = UCS, and hence optimal...)
A Search 
Choose an admissible heuristic, i.e., such 푡ℎ�푡 ℎ �   ≤ ℎ∗ � 

ℎ∗ �  is the “optimal” heuristic---perfect cost to go
To be admissible ℎ �   should be at most ℎ∗ �  
A search with an admissible heuristic is called A* --- guaranteed to find optimal 
path



A* search

� ← ⟨푠푡��푡⟩   // initialize queue with start

while � ≠ ∅:  
     pick  ��� ��푚표��   ��푡ℎ � ��푡ℎ �표��푠푡 �푠푡�푚�푡�� �표푠푡 푓 � = 푔 � + ℎ ℎ��� �   푓�표푚 � 

     if ℎ��� � =  푔표�� then return �  // Reached the goal 

     foreach ���푡�� � 푠��ℎ 푡ℎ�푡  ℎ��� � ,  � ∈  �,  do  // for all neighbors 

          add ⟨�,  �⟩ 푡표 � ;   // Add expanded paths 
return 퐹퐴퐼���� ; // nothing left to consider

open set and closed set



Example of A search
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Example of A search
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Uniform cost search vs A*

https://en.wikipedia.org/wiki/A*_search_algorithm

https://en.wikipedia.org/wiki/A*_search_algorithm



Proof of optimality of A*
Theorem. A* Search can find the optimal path.

Let w* be the cost of the optimal path P*.

Suppose for the sake of contradiction, that A* returns suboptimal P with w(P) > w*

Find the first node n on the optimal path P* that is not on P

When n’s parent x was expanded the path ⟨�,  �,  …⟩, f(n) was added in Q but then n was not 
expanded later in the algorithm  

Thus, we must have f(n) > w(P), otherwise n would have been expanded      (1)

But, f(n) = g(n) + h(n)

= g*(n) + h(n) [since n is on the optimal path]

<= g*(n) + h*(n) [since h is admissible]

= w* [since w* is the cost of the optimal path which goes through n] 

  => f(n) < w(P) (2) [since w* is the optimal cost < W(P)]

(1) and (2) contradict. 

start

goal

P*

P

n

x



Admissible heuristics
How to find admissible heuristics? i.e., a heuristic that never overestimates the cost-
to-go.
Some examples 
• ℎ(�) =  0: this always works! However, it is not very useful,  A* = UCS
• ℎ(�) =  ��푠푡����(�,  푔) when vertices are physical locations 

• ℎ(�) =    � −  푔  � , when vertices are points in a normed vector space

More generally
• Choose h as the optimal cost-to-go function for a relaxed problem, that is easy to 

compute 
• Relaxed problem: ignore some of the constraints in the original problem

• Ignore or under-approximate some of the obstacles
• Allow less restrictive dynamics



Admissible heuristics for the 8-puzzle

First, think about how to solve this game using search:
• What is the vertices on the graph?
• How to define the edges?
• What are the start and goal vertices?
• How the distance is defined?
• What heuristic to use?



Admissible heuristics for the 8-puzzle

Which of the following are admissible 
heuristics? 
• h = 0
• h = 1
• h = number of tiles in the wrong 

position
• h = sum of (Manhattan) distance 

between tiles and their goal position

YES, always good (uniform cost search), but can be slow 

not valid in goal state 

YES, “teleport” each tile to the goal in one move 

YES, move each tile to the goal ignoring other tiles.



Which heuristc is better? A partial order of 
heuristic functions
Some heuristics are better than others 

• h = 0 is an admissible heuristic, but is not very useful
• h = h* is also an admissible heuristic, and it is the “best” possible one (it give us the 

optimal path directly, no searches/backtracking) 

Partial order 
• We say that ℎ1 dominates ℎ2 if ℎ1(�) ≥  ℎ2(�) for all vertices v 
• ℎ∗ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

Choosing the right heuristic 
• In general, we want a heuristic that is as close to h* as possible
• However, such a heuristic may be too complicated to compute
• There is a tradeoff between complexity of computing ℎ and the complexity of the 

search



Consistent heuristics

• An additional useful property for A* heuristics is called consistency 
• A heuristic ℎ :  � →  ℝ≥0 is said consistent if 

ℎ(�) ≤  � (� =  (�,  �)) +  ℎ(�),  ∀(�,  �) ∈  �
• In other words, a consistent heuristics satisfies a triangle inequality 

• If h is a consistent heuristics, then 푓 =  푔 +  ℎ is non-decreasing along paths:
 푓  � =  푔 � +  ℎ � =  푔 � +  � � = (�,  �) +  ℎ � ≥ 푔 � +  ℎ � =  푓  � 

• Hence, the values of f on the sequence of nodes expanded by A* is non-
decreasing: the when we expand path P with the lowest f(P), P is the optimal 
path to head(P)

• With consistent heuristics, A* is not only optimal (finds the best path), but also 
has optimal efficiency (explores fewest node)



A* search

� ← ⟨푠푡��푡⟩   // initialize queue with start

while � ≠ ∅:  
     pick  ��� ��푚표��   ��푡ℎ � ��푡ℎ �표��푠푡 �푠푡�푚�푡�� �표푠푡 푓 � = 푔 � + ℎ ℎ��� �   푓�표푚 � 

     if ℎ��� � =  푔표�� then return �  // Reached the goal 

     foreach ���푡�� � 푠��ℎ 푡ℎ�푡  ℎ��� � ,  � ∈  �,  do  // for all neighbors 

          add ⟨�,  �⟩ 푡표 � ;   // Add expanded paths 
return 퐹퐴퐼���� ; // nothing left to consider

open set and closed set



Review

• Deterministic search
• Uniform Cost Search (uninformed search)
• Informed search

• Greedy/Best-first search
• A, A* search

• Admissible heuristics
• design of heuristics

• How to transform a planning problem in to a search problem?
• Know how to apply each search algorithm
• Soundness, completeness, optimality
• Design of heuristics



A* to Continuous State 
Spaces



Applying A* to vehicles
Vehicle models have continuous state spaces and kinematic 
constraints

We could represent vehicle state in a uniform discrete grid, for 
example, a 4D grid: �, �, �  ℎ�����푔 , ��� (fwd,rev)

A path (a) over this discrete grid can be a starting plan

But, the discrete path (a) may not be executable by the vehicle 
dynamics

Hybrid A*: An extension of the traditional A* algorithm that 
operates on a continuous state space an incorporates kinematic 
(e.g., non-holonomic) constraints

(a) 

Montemerlo, Michael, et al. "Junior: The stanford entry in the urban 
challenge." Journal of field Robotics 25.9 (2008): 569-597.



Hybrid A* Search
O = {(�0,  �0, �0, g=0, h=0)}      // open list
C = {}    // closed list
While O ≠ {}:
   n = (x, y, �) node with min cost f(n) = g(n) + h(n) in O
   If n = goal, return the path.
   C = C ∪ {n}
   For each motion primitive {m}:
      s = (x', y', �') = motion(x, y, �, m)
         g(s) = g(n) + cost(n, s)  // Calculate cost
         h(s) = heuristic(s, goal)
         f(s) = g(s) + h(s)
         If s ∉ C or g(s) is lower than previously recorded cost:

 Add/update s in O with g(s), h(s)
Return failure if O is empty

Input: Source node �0,  �0, �0, goal node
Motion primitives



Junior: The Stanford Entry in the Urban Challenge 

http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf


Properties of Hybrid A*
• Soundness

• sound when the heuristic function is admissible and consistent.
• However, soundness may be compromised if motion primitives do not accurately represent feasible 

trajectories.

• Completeness:

• Hybrid A* is not strictly complete due to the continuous state space.

• Completeness can be approximated with dense discretization of the state space.

• Optimality:

• Hybrid A* is not guaranteed to find the optimal path since it approximates the continuous space with 
motion primitives.

• The quality of the solution depends on the choice of motion primitives and heuristics.

• Feasibility:

• The generated path is kinematically feasible, respecting vehicle constraints (e.g., turning radius)



Summary

A* algorithm combines cost-to-come g(v) and a heuristic function h(v) 
for cost-to-go to find shortest path

• informed search

Heuristic function must be admissible  ℎ(�) ≤ ℎ∗(�)
• Never over-estimate the actual cost to go
• Dominant and consistent heuristics are preferrable

Hybrid A* extends A* to continuous state spaces and incorporates 
kinematic constraints


