

ECE 484: Principles of Safe Autonomy (Fall 2025)

Lecture 16: Search and Planning: A* and heuristics

Professor: Huan Zhang

<https://publish.illinois.edu/safe-autonomy/>

<https://huan-zhang.com>

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra's slides for Spring 2025

GEM platform

Autonomy pipeline

Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,
etc.

Perception

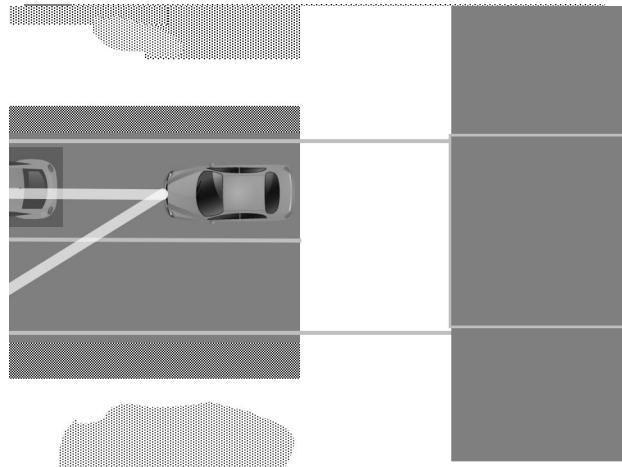
Programs for object
detection, lane
tracking, scene
understanding, etc.

Decisions and planning

Programs and multi-
agent models of
pedestrians, cars,
etc.

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.



Decisions and planning

Programs and multi-
agent models of
pedestrians, cars,
etc.

Outline

- Deterministic search
 - Uniform Cost Search (uninformed search)
 - Informed search
 - Greedy/Best-first search
 - **A, A* search**
 - Admissible heuristics
 - design of heuristics

Problem statement: find shortest path

Input: $\langle V, E, w, start, goal \rangle$

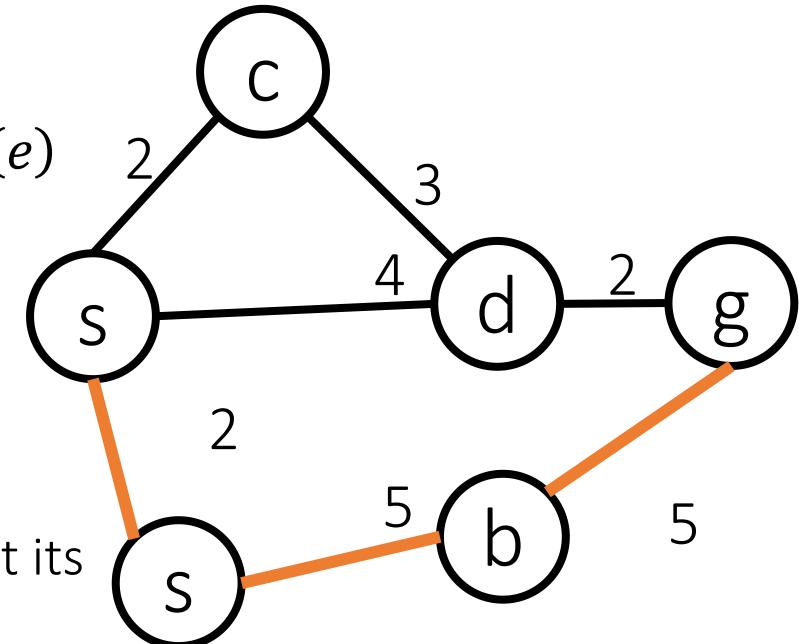
- V : (finite) set of vertices
- $E \subseteq V \times V$: (finite) set of edges
- $w: E \rightarrow \mathbb{R}_{>0}$: associates to each edge e to a positive weight $w(e)$
- $start, goal \in V$: start and end vertices.

A path is a sequence of vertices $p = v_0 \dots v_k$ such that $(v_i, v_{i+1}) \in E$

$$w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \quad \text{head}(p) = v_0 \quad \text{end}(p) = v_k$$

Output: a path p with $\text{head}(p) = start$ and $\text{end}(p) = goal$, such that its $w(p)$ is minimal among all such paths

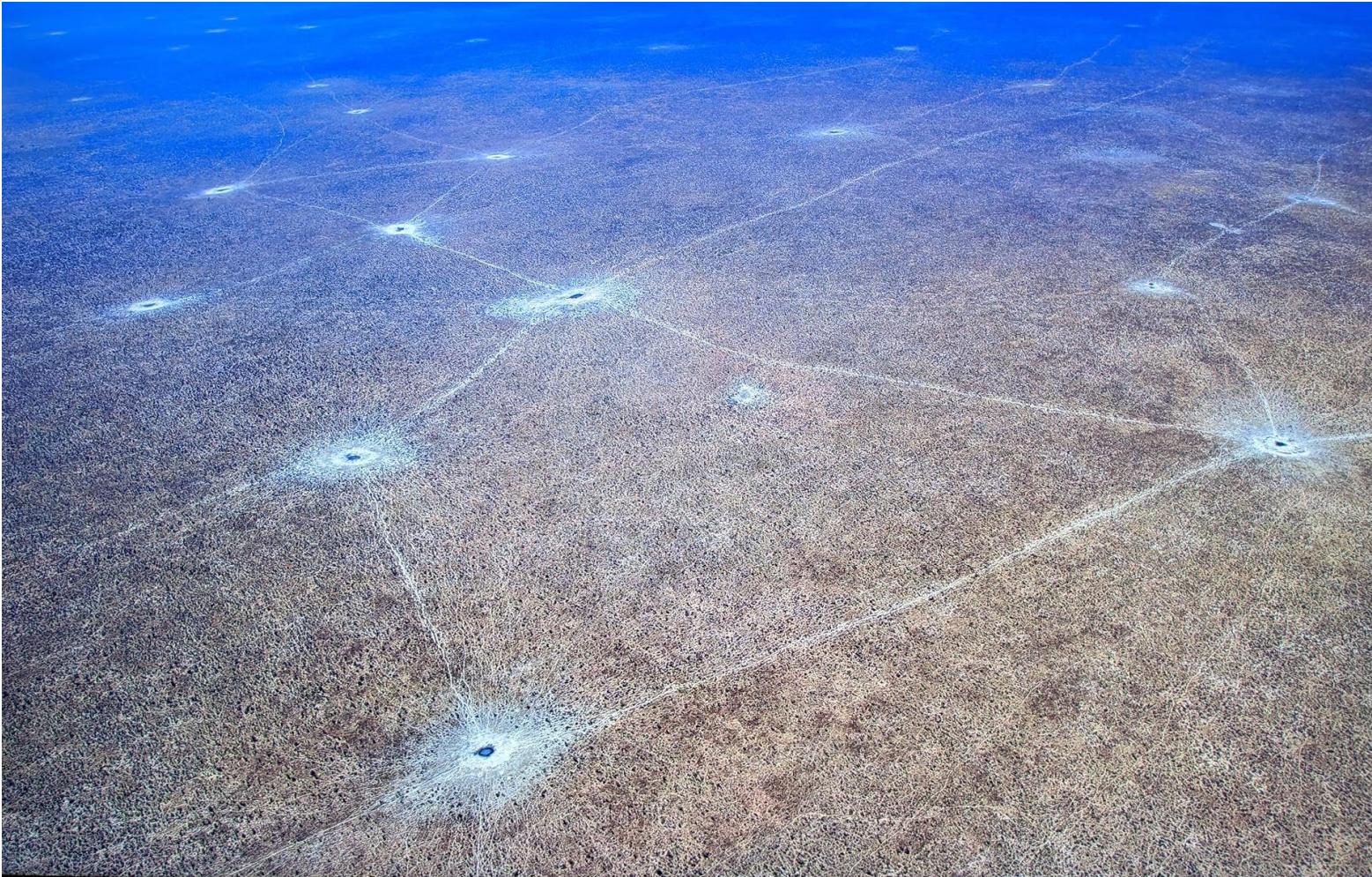
Algorithms: Dijkstra $O((|V|+|E|)\log|V|)$, Bellman-Ford $O(|V|\times|E|)$, ..



Review: Properties of search algorithm

- Soundness
- Completeness
- Optimality
- Speed (time complexity)
- Memory usage

Slow search can be life or death



Elephants migrate in thousands from Okavango delta, Botswana, drawn by the need to find water

Uniform cost search (Uninformed search)

```
 $Q \leftarrow \langle start \rangle$                                 // maintains paths sorted by cost
                                                               // initialize queue with start

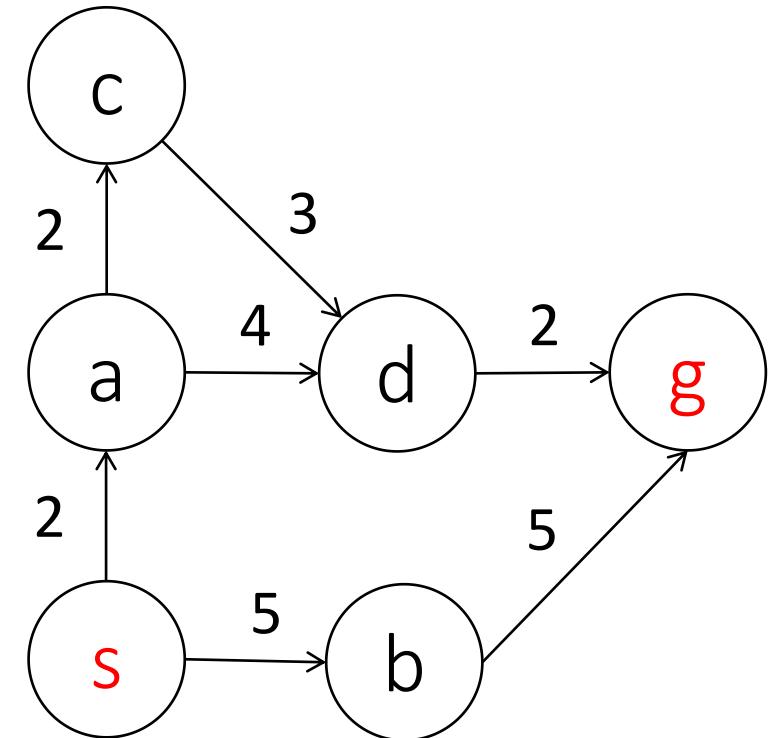
while  $Q \neq \emptyset$ :
    pick (and remove) the path  $P$  with lowest cost  $w(P)$ 
    if  $head(P) = goal$  then return  $P$  ;                      // Reached the goal
    foreach vertex  $v$  such that  $(head(P), v) \in E$ , do
        add  $\langle v, P \rangle$  to  $Q$  ;                          // for all neighbors
                                                       // Add expanded paths
    return FAILURE ;                                     // nothing left to consider
```

Note no **visited** list; Use no information obtained from the environment

Example of Uniform-Cost Search (s to g)

Q:

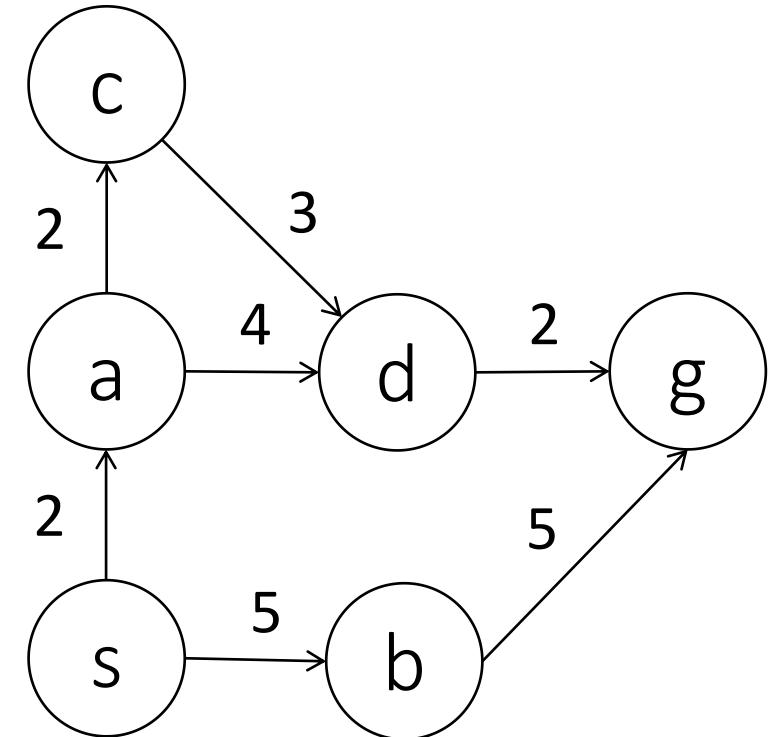
Path	Cost
$\langle s \rangle$	0



Example of Uniform-Cost Search

Q:

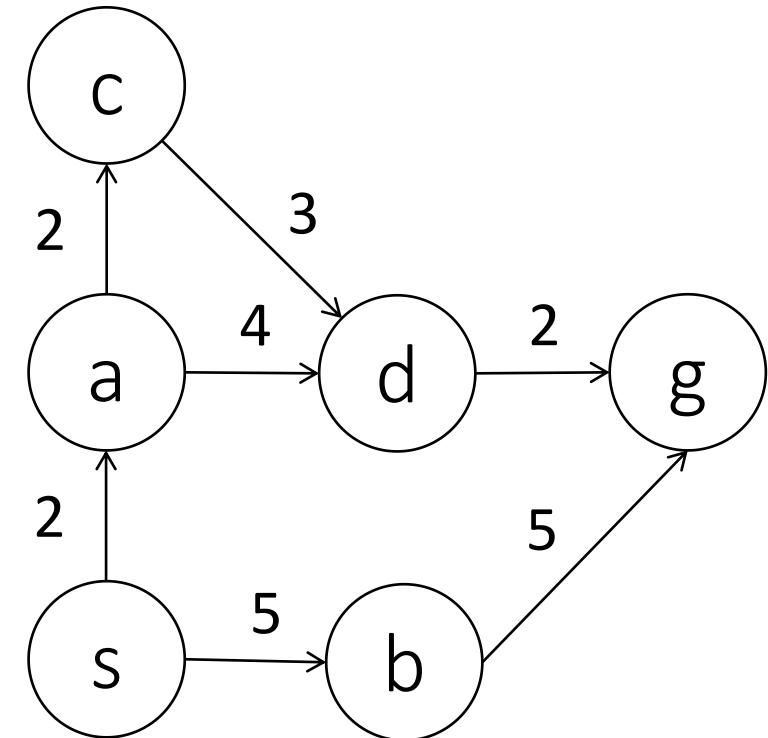
Path	Cost
$\langle a, s \rangle$	2
$\langle b, s \rangle$	5



Example of Uniform-Cost Search

Q:

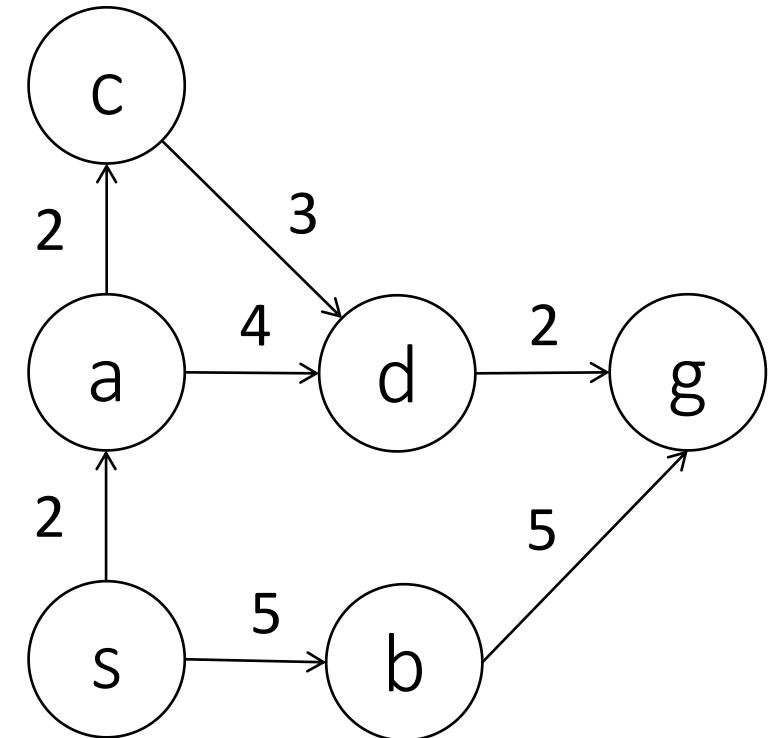
Path	Cost
$\langle c, a, s \rangle$	4
$\langle b, s \rangle$	5
$\langle d, a, s \rangle$	6



Example of Uniform-Cost Search

Q:

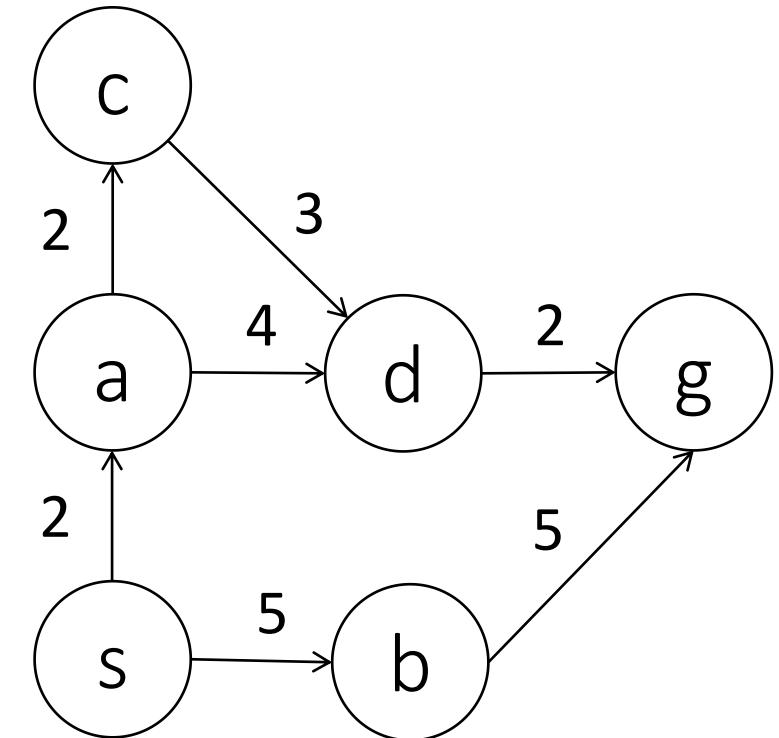
Path	Cost
$\langle b, s \rangle$	5
$\langle d, a, s \rangle$	6
$\langle d, c, a, s \rangle$	7



Example of Uniform-Cost Search

Q:

Path	Cost
$\langle d, a, s \rangle$	6
$\langle d, c, a, s \rangle$	7
$\langle g, b, s \rangle$	10

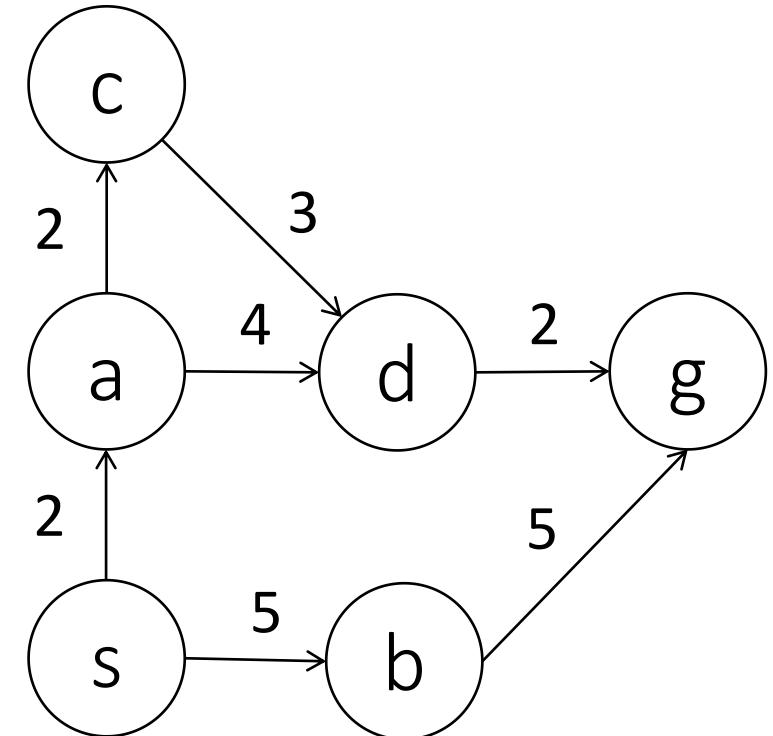


Notice a path to goal $\langle g, b, s \rangle$ has been found but the algorithm does not terminate, since the path is currently not at the head of Q

Example of Uniform-Cost Search

Q:

Path	Cost
$\langle d, c, a, s \rangle$	7
$\langle g, d, a, s \rangle$	8
$\langle g, b, s \rangle$	10

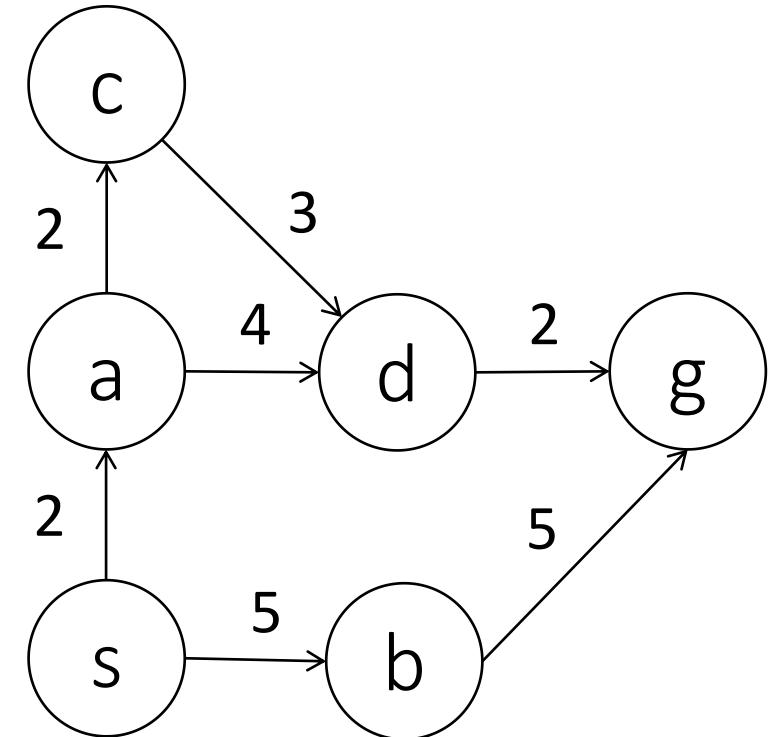


Another path to goal $\langle g, d, a, s \rangle$ has been found but the algorithm does not terminate, since the path is currently not at the head of Q

Example of Uniform-Cost Search

Q:

Path	Cost
$\langle g, d, a, s \rangle$	8
$\langle g, d, c, a, s \rangle$	9
$\langle g, b, s \rangle$	10



Algorithm stops when smallest cost path in Q has head = **g**

Properties of Uniform Cost Search

UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all edges have the same cost)

UCS is *sound*, *complete* and *optimal* (assuming costs bounded away from zero; zero or negative costs will cause infinite loops)

- Exercise: Prove the above claims
- Soundness: For any entry p in Q , is a path and $\text{head}(p) = \text{start}$

UCS is *guided by path cost rather than path depth*, so it may get in trouble if some edge costs are very small

Worst-case time and space complexity $O(b^{W^*/\epsilon})$, where b is the branching factor, W^* is the optimal cost, and ϵ is such that all edge weights are no smaller than

Greedy or Best-First Search

UCS explores paths in all directions, with no bias towards the goal state

What if we try to get “closer” to the goal?

We need a **measure of distance to the goal**

It would be ideal to use the length of the shortest path...

but this is exactly what we are trying to compute!

We can **estimate** the distance to the goal through a **heuristic function**

$h : V \rightarrow \mathbb{R}_{\geq 0}$. E.g., the Euclidean distance to the goal (as the crow flies)

$h(v)$ is the estimate of the distance from v to goal

A reasonable strategy is to always try to move in such a way to minimize the estimated distance to the goal: this is the basic idea of the **greedy (best-first) search**

Greedy/Best-first search

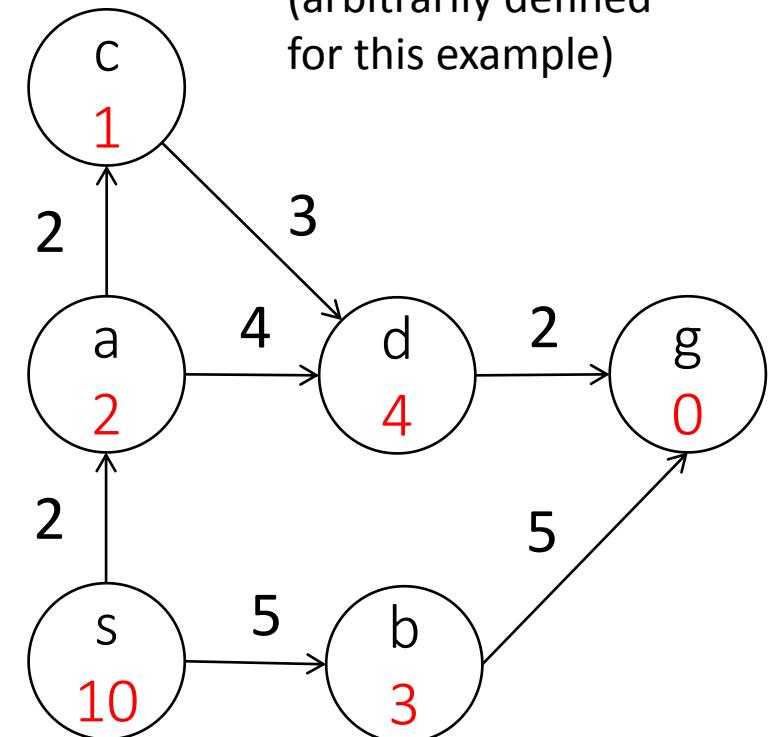
```
 $Q \leftarrow \langle start \rangle$                                 // initialize queue with start
while  $Q \neq \emptyset$ :
    pick (and remove) the path  $P$  with lowest heuristic cost  $h(\text{head}(P))$  from  $Q$ 
    if  $\text{head}(P) = goal$  then return  $P$                       // Reached the goal
    foreach vertex  $v$  such that  $(\text{head}(P), v) \in E$ , do
        add  $\langle v, P \rangle$  to  $Q$  ;                            // Add expanded paths
    return FAILURE ;                                         // nothing left to consider
```


Example of Greedy search

Q:

Path	Cost	h
$\langle s \rangle$	0	10

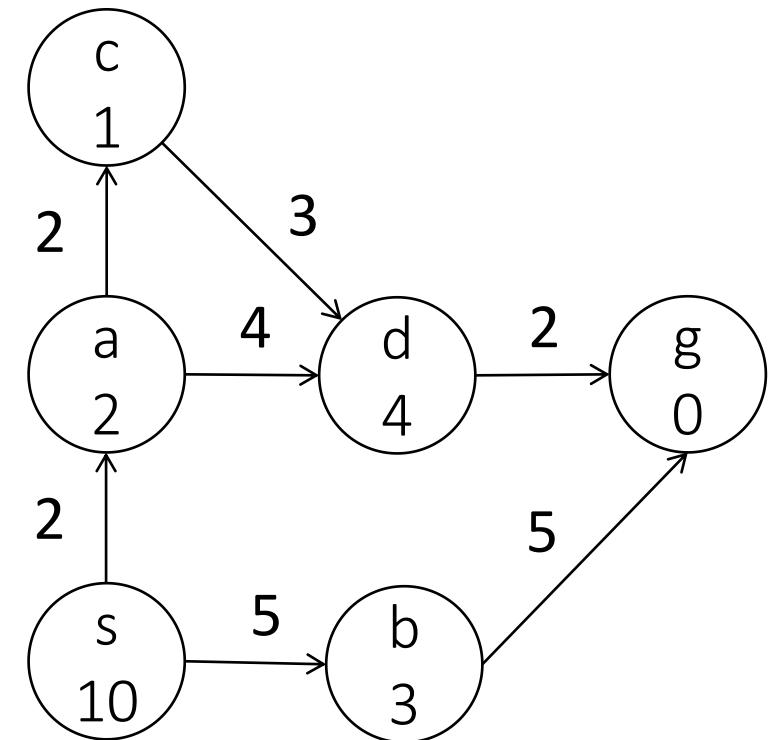
Heuristic values
(arbitrarily defined
for this example)



Example of Greedy search

Q:

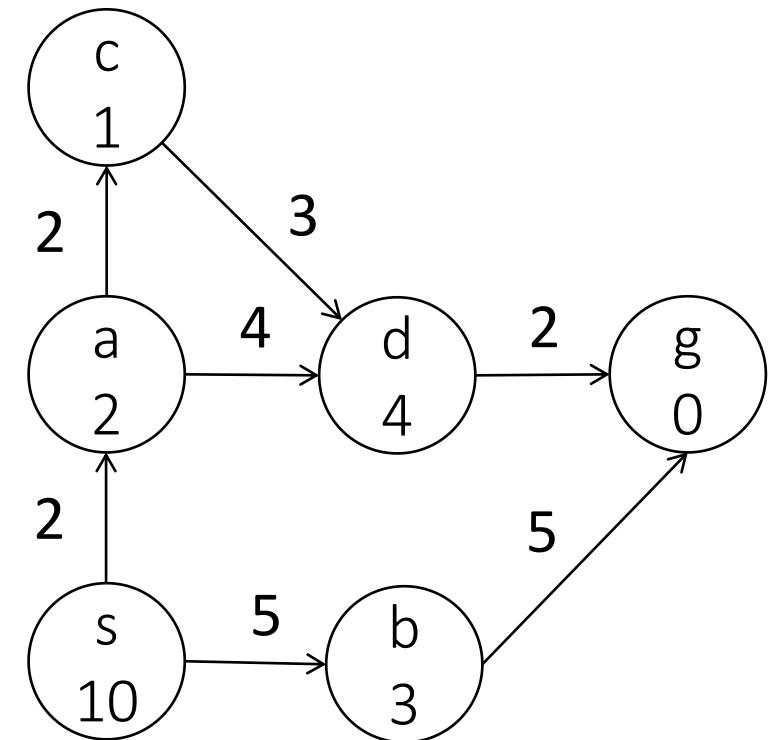
Path	Cost	h
$\langle a, s \rangle$	2	2
$\langle b, s \rangle$	5	3



Example of Greedy search

Q:

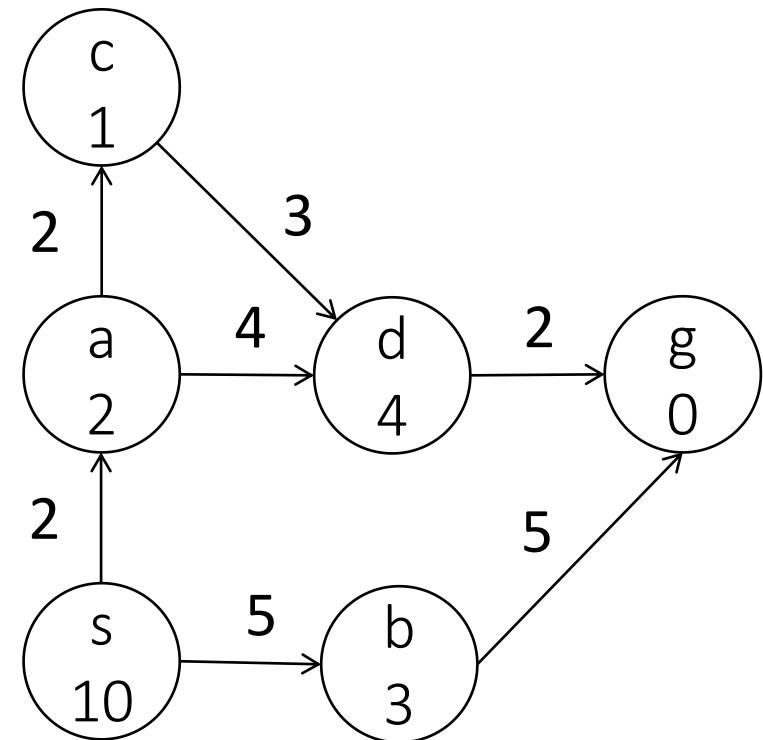
Path	Cost	h
$\langle c, a, s \rangle$	4	1
$\langle d, a, s \rangle$	6	4
$\langle b, s \rangle$	5	3



Example of Greedy search

Q:

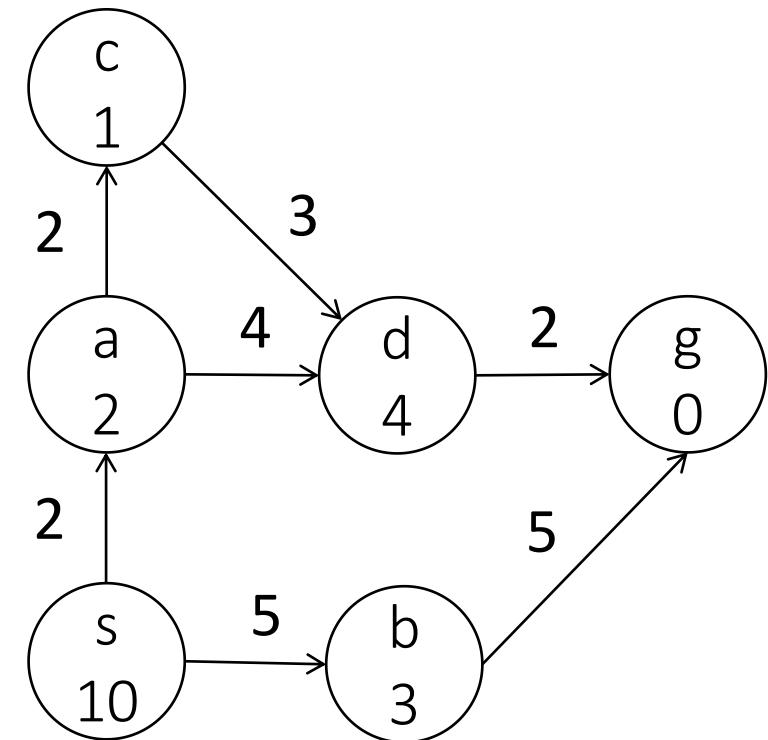
Path	Cost	h
$\langle d, c, a, s \rangle$	7	4
$\langle d, a, s \rangle$	6	4
$\langle b, s \rangle$	5	3



Example of Greedy search

Q:

Path	Cost	h
$\langle d, c, a, s \rangle$	7	4
$\langle d, a, s \rangle$	6	4
$\langle g, b, s \rangle$	10	0



Terminates with suboptimal path

Remarks on greedy/best-first search

Greedy (Best-First) search is similar to Depth-First Search
keeps exploring until it has to back up due to a dead end

Not complete (why?) and not optimal, but is often fast and efficient,
depending on the heuristic function h

Exercise: Find a counter-example where path exists but bad heuristic function
makes the algorithm loop forever

Worst-case time and space complexity?

A search: informed search

The problems

UCS is optimal, but may wander around a lot before finding the goal

Greedy is not optimal, but can be efficient, as it is heavily biased towards moving towards the goal. [The non-optimality comes from neglecting “the past.”](#)

The idea

Keep track [both of the cost of the partial path to get to a vertex, say \$g\(v\)\$, and of the heuristic function estimating the cost to reach the goal from a vertex, \$h\(v\)\$](#)

In other words, choose as a “ranking” function the sum of the two costs:

$$f(v) = g(v) + h(v)$$

$g(v)$ cost-to-come (from the start to v)

$h(v)$: cost-to-go estimate (from v to the goal)

$f(v)$: estimated cost of the path (from the start to v and then to the goal)

A and A* search

The challenges

Uninformed search without cost-to-go heuristic h (future prediction) is optimal, but may wander around a lot before finding the goal

Greedy can be biased to explore efficiently towards the goal but may not be optimal as it [neglect the cost to arrive at a node \(past\)](#)

The idea of A Search is to combine past and future

Use [both of the cost of the partial path to get to a vertex, \$g\(v\)\$](#) , and of the heuristic function [estimating the cost to reach the goal from a vertex, \$h\(v\)\$](#) to guide the exploration

sum of the two costs: $f(v) = g(v) + h(v)$

$g(v)$: cost-to-come (from the start to v)

$h(v)$: cost-to-go estimate (from v to the goal)

$f(v)$: estimated cost of the path (from the start to v and then to the goal)

A search

A search is similar to UCS, with a bias induced by the heuristic h

If $h = 0$ then A search = UCS.

The A search is complete, but is *not optimal*

What is wrong? (Recall that if $h = 0$ then A = UCS, and hence optimal...)

A Search

Choose an **admissible heuristic**, i.e., such that $h(v) \leq h^*(v)$

$h^*(v)$ is the “optimal” heuristic---perfect cost to go

To be admissible $h(v)$ should be at most $h^*(v)$

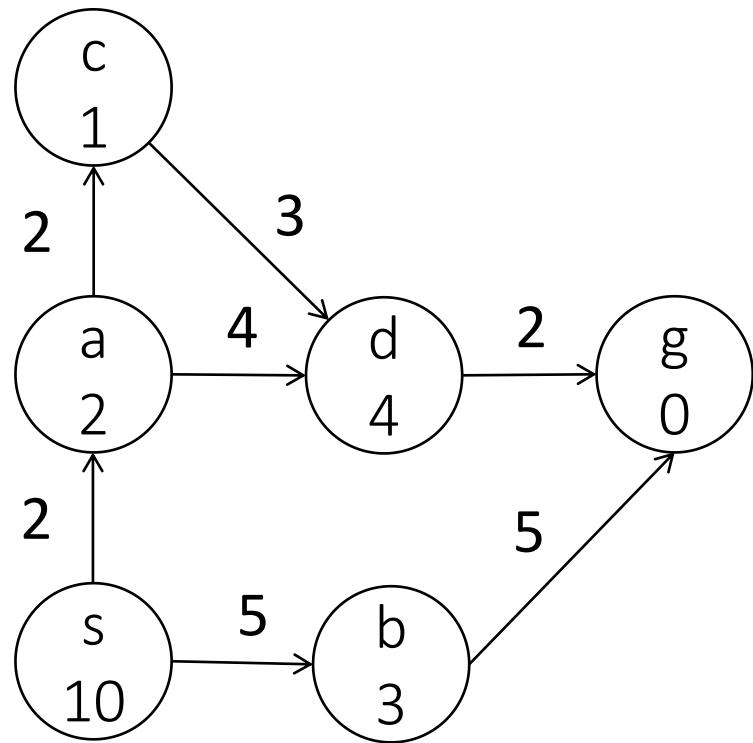
A search with an admissible heuristic is called A* --- guaranteed to find optimal path

A* search

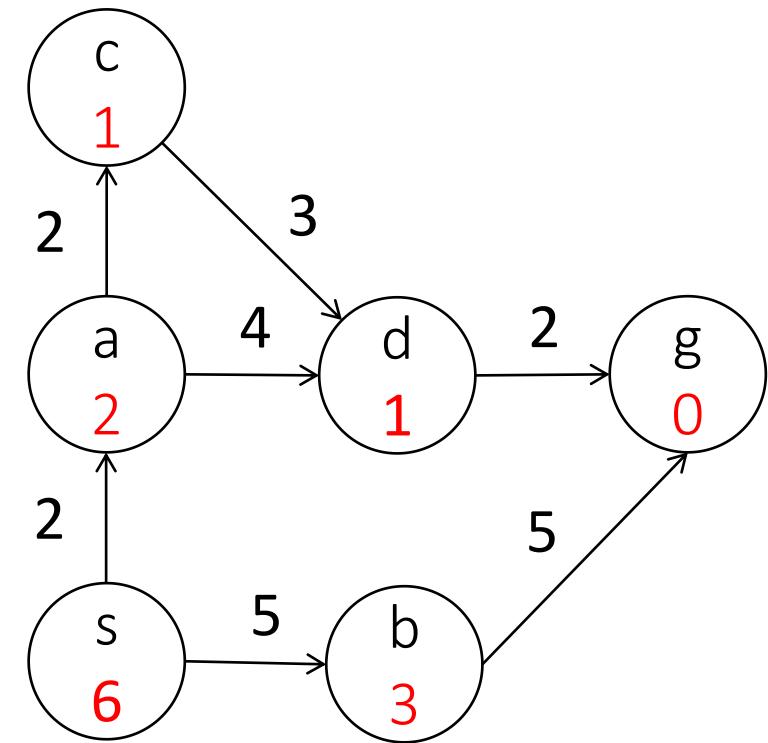
open set and closed set

```
 $Q \leftarrow \langle start \rangle$                                 // initialize queue with start
while  $Q \neq \emptyset$ :
    pick (and remove) path  $P$  with lowest estimated cost  $f(P) = g(P) + h(\text{head}(P))$  from  $Q$ 
    if  $\text{head}(P) = \text{goal}$  then return  $P$                       // Reached the goal
    foreach vertex  $v$  such that  $(\text{head}(P), v) \in E$ , do
        add  $\langle v, P \rangle$  to  $Q$  ;                                // Add expanded paths
    return FAILURE ;                                         // nothing left to consider
```


Example of A search



These are the heuristic values we used for greedy search. Are they admissible?

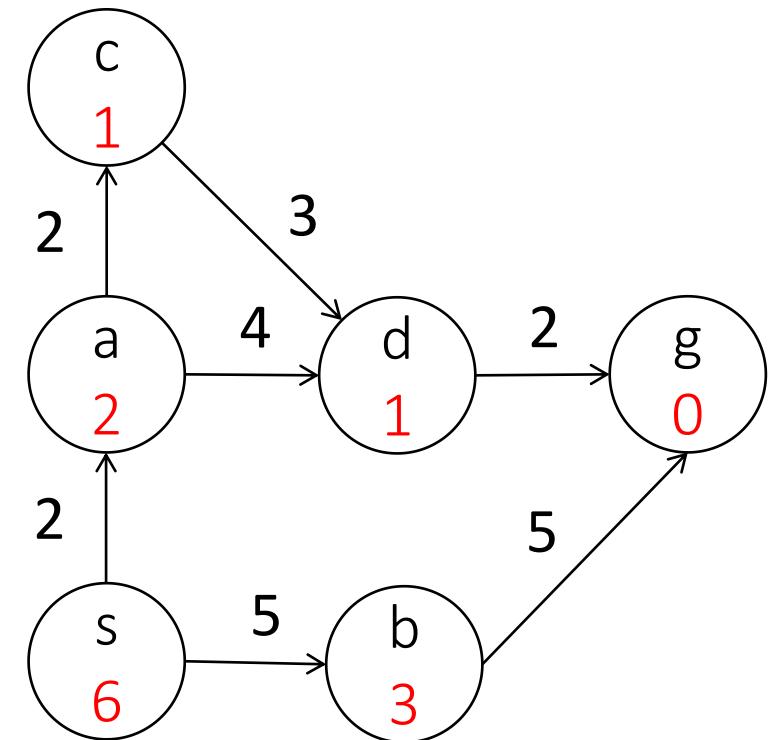


Updated heuristic values

Example of A search

Q:

Path	g	h	f
$\langle s \rangle$	0	6	0+6

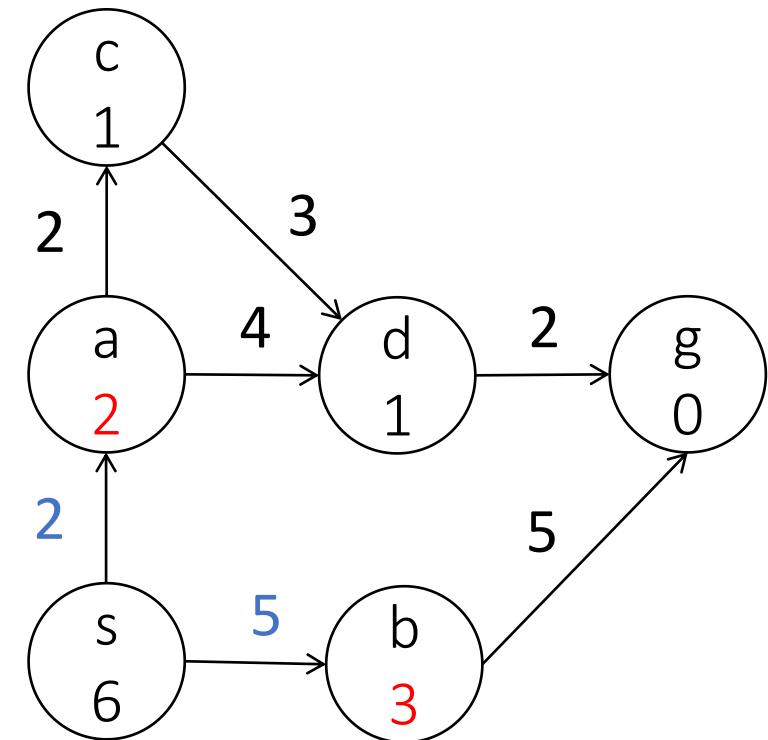


Admissible
heuristic values

Example of A search

Q:

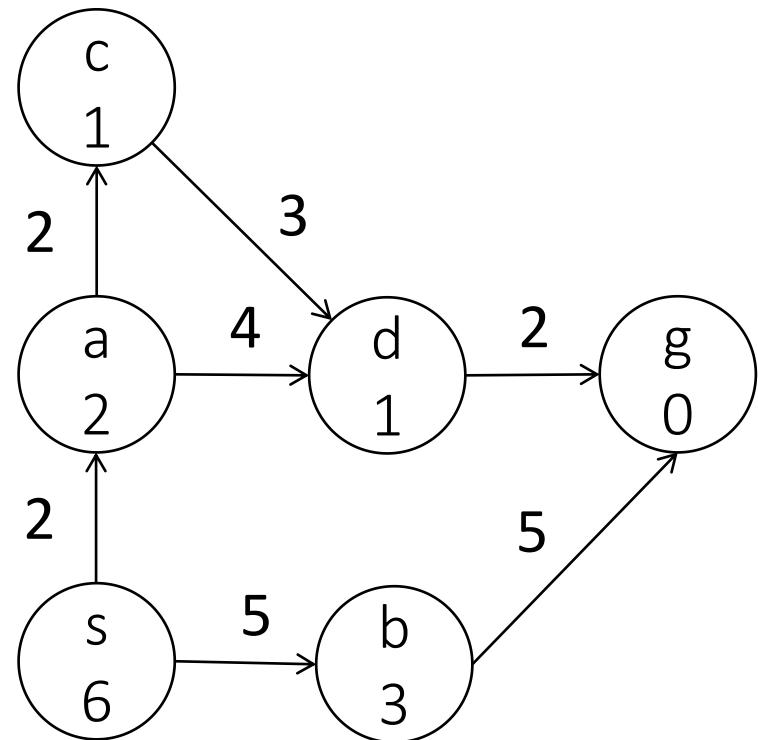
Path	g	h	f
$\langle a, s \rangle$	2	2	$2+2=4$
$\langle b, s \rangle$	5	3	$5+3=8$



Example of A search

Q:

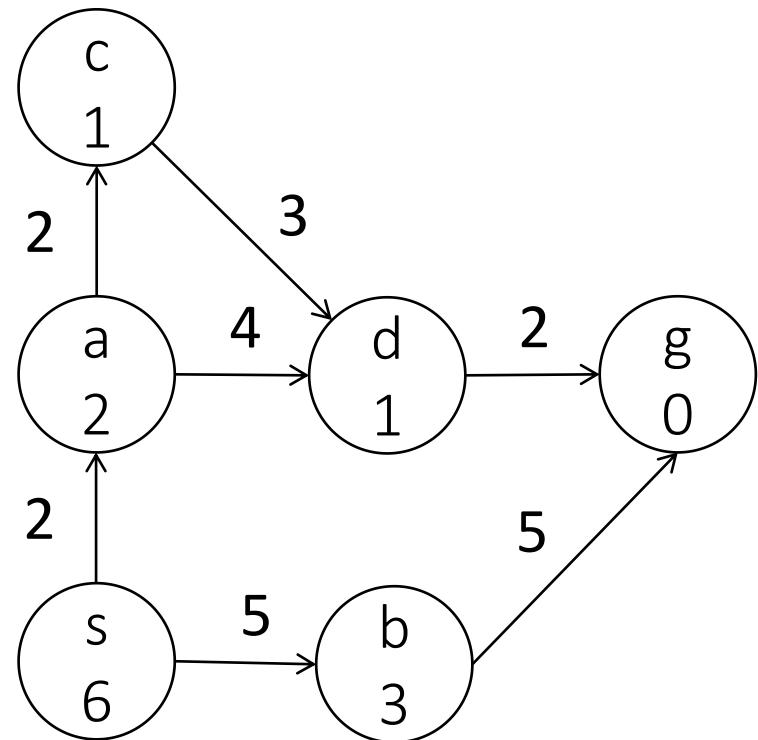
Path	g	h	f
$\langle c, a, s \rangle$	4	1	5
$\langle d, a, s \rangle$	6	1	7
$\langle b, s \rangle$	5	3	8



Example of A search

Q:

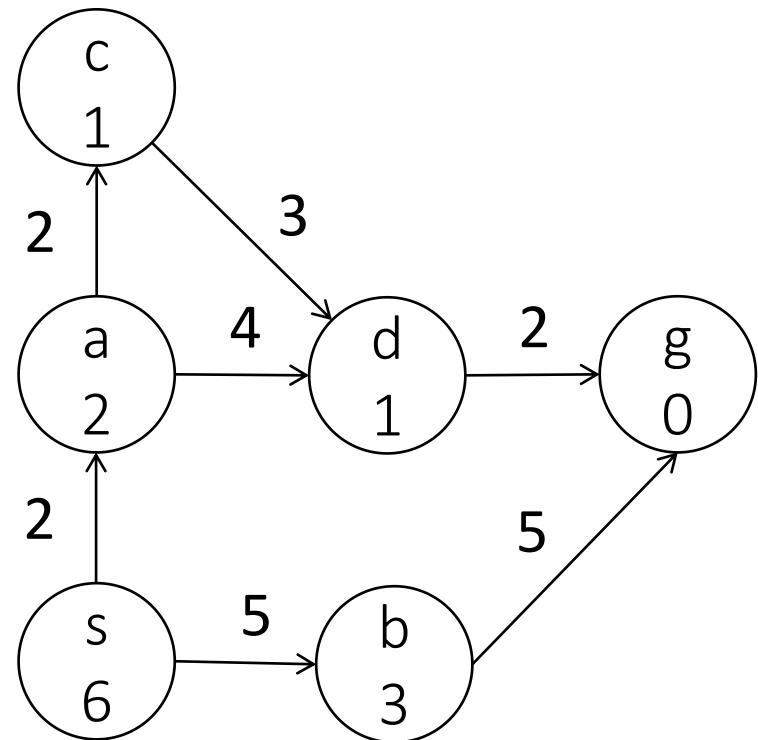
Path	g	h	f
$\langle d, c, a, s \rangle$	7	1	8
$\langle d, a, s \rangle$	6	1	7
$\langle b, s \rangle$	5	3	8



Example of A search

Q:

Path	g	h	f
$\langle g, d, a, s \rangle$	8	0	8
$\langle d, c, a, s \rangle$	7	1	8
$\langle b, s \rangle$	5	3	8



Uniform cost search vs A*

https://en.wikipedia.org/wiki/A*_search_algorithm

Proof of optimality of A*

Theorem. A* Search can find the optimal path.

Let w^* be the **cost of the optimal path P^*** .

Suppose for the sake of contradiction, that A* returns suboptimal P with $w(P) > w^*$

Find the first node n on the optimal path P^* that is **not** on P

When n 's parent x was expanded the path $\langle n, x, \dots \rangle$, $f(n)$ was added in Q but then n was not expanded later in the algorithm

Thus, we must have $f(n) > w(P)$, otherwise n would have been expanded (1)

But, $f(n) = g(n) + h(n)$

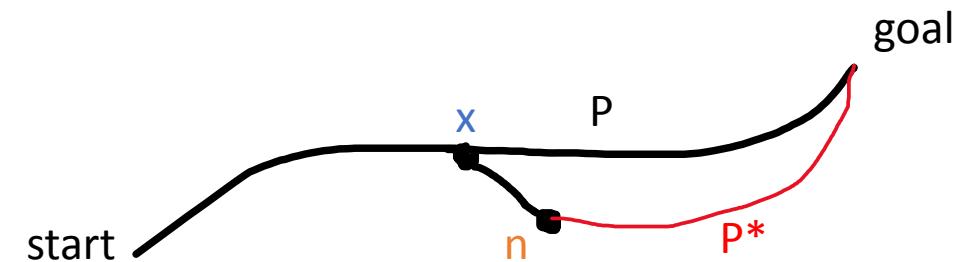
$$= g^*(n) + h(n) \quad [\text{since } n \text{ is on the optimal path}]$$

$$<= g^*(n) + h^*(n) \quad [\text{since } h \text{ is admissible}]$$

$$= w^* \quad [\text{since } w^* \text{ is the cost of the optimal path which goes through } n]$$

$$\Rightarrow f(n) < w(P) \quad (2) \quad [\text{since } w^* \text{ is the optimal cost } < w(P)]$$

(1) and (2) contradict.



Admissible heuristics

How to find admissible heuristics? i.e., a heuristic that never overestimates the cost-to-go.

Some examples

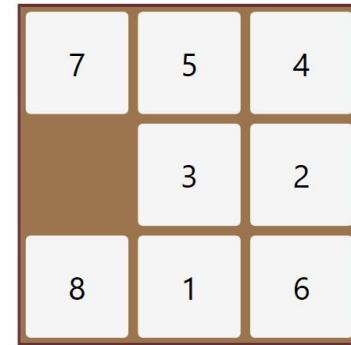
- $h(v) = 0$: this always works! However, it is not very useful, $A^* = \text{UCS}$
- $h(v) = \text{distance}(v, g)$ when vertices are physical locations
- $h(v) = \|\mathbf{v} - \mathbf{g}\|_p$, when vertices are points in a normed vector space

More generally

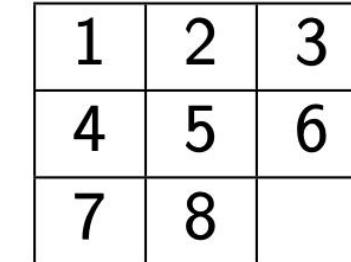
- Choose h as the optimal cost-to-go function for a relaxed problem, that is easy to compute
- Relaxed problem: ignore some of the constraints in the original problem
 - Ignore or under-approximate some of the obstacles
 - Allow less restrictive dynamics

Admissible heuristics for the 8-puzzle

Initial state:

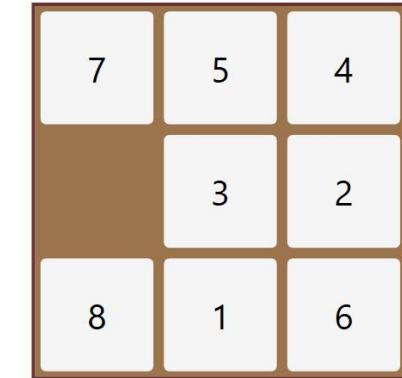


Goal state:



First, think about how to solve this game using search:

- What is the vertices on the graph?
- How to define the edges?
- What are the start and goal vertices?
- How the distance is defined?
- What heuristic to use?



Admissible heuristics for the 8-puzzle

Initial state:

7	5	4
	3	2
8	1	6

Goal state:

1	2	3
4	5	6
7	8	

Which of the following are admissible heuristics?

- $h = 0$
- $h = 1$
- $h = \text{number of tiles in the wrong position}$
- $h = \text{sum of (Manhattan) distance between tiles and their goal position}$

YES, always good (uniform cost search), but can be slow
not valid in goal state

YES, “teleport” each tile to the goal in one move

YES, move each tile to the goal ignoring other tiles.

Which heuristic is better? A partial order of heuristic functions

Some heuristics are better than others

- $h = 0$ is an admissible heuristic, but is not very useful
- $h = h^*$ is also an admissible heuristic, and it is the “best” possible one (it give us the optimal path directly, no searches/backtracking)

Partial order

- We say that h_1 **dominates** h_2 if $h_1(v) \geq h_2(v)$ for all vertices v
- h^* dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

Choosing the right heuristic

- In general, we want a heuristic that is as close to h^* as possible
- However, such a heuristic may be too complicated to compute
- There is a tradeoff between complexity of computing h and the complexity of the search

Consistent heuristics

- An additional useful property for A* heuristics is called **consistency**
 - A heuristic $h : X \rightarrow \mathbb{R}_{\geq 0}$ is said **consistent** if
$$h(u) \leq w(e = (u, v)) + h(v), \forall (u, v) \in E$$
 - In other words, a consistent heuristics satisfies a triangle inequality
- If h is a consistent heuristics, then $f = g + h$ is non-decreasing along paths:
$$f(v) = g(v) + h(v) = g(u) + w(e = (u, v)) + h(v) \geq g(u) + h(u) = f(u)$$
- Hence, the values of f on the sequence of nodes expanded by A* is non-decreasing: the **when we expand path P with the lowest $f(P)$, P is the optimal path to $\text{head}(P)$**
- With consistent heuristics, A* is not only optimal (finds the best path), but also has optimal efficiency (explores fewest node)

A* search

open set and closed set

```
 $Q \leftarrow \langle start \rangle$                                 // initialize queue with start
while  $Q \neq \emptyset$ :
    pick (and remove) path  $P$  with lowest estimated cost  $f(P) = g(P) + h(\text{head}(P))$  from  $Q$ 
    if  $\text{head}(P) = \text{goal}$  then return  $P$                       // Reached the goal
    foreach vertex  $v$  such that  $(\text{head}(P), v) \in E$ , do
        add  $\langle v, P \rangle$  to  $Q$  ;                                // Add expanded paths
    return FAILURE ;                                         // nothing left to consider
```


Review

- Deterministic search
 - Uniform Cost Search (uninformed search)
 - Informed search
 - Greedy/Best-first search
 - **A, A* search**
 - Admissible heuristics
 - design of heuristics
- How to transform a planning problem in to a search problem?
- Know how to apply each search algorithm
- Soundness, completeness, optimality
- Design of heuristics

A* to Continuous State Spaces

Applying A* to vehicles

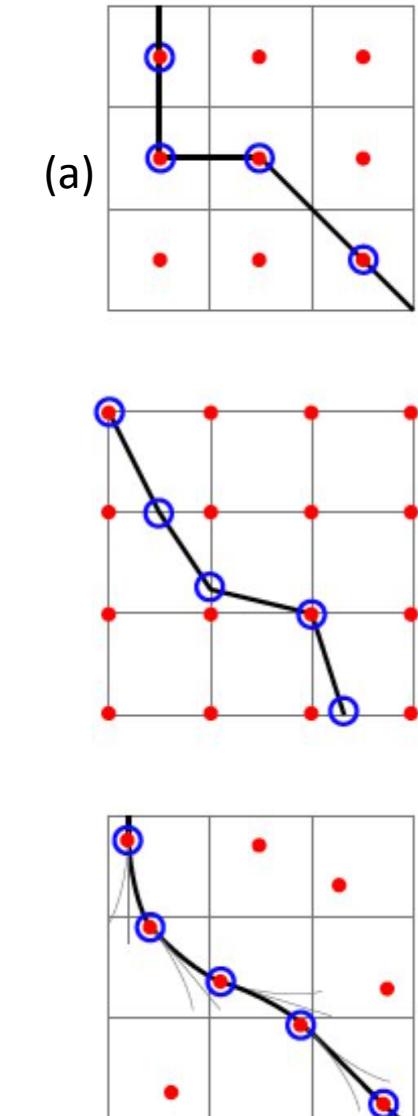
Vehicle models have continuous state spaces and kinematic constraints

We could represent vehicle state in a *uniform* discrete grid, for example, a 4D grid: x, y, θ (*heading*), *dir* (fwd,rev)

A path (a) over this discrete grid can be a starting plan

But, the discrete path (a) may not be executable by the vehicle dynamics

*Hybrid A**: An extension of the traditional A* algorithm that operates on a continuous state space and incorporates kinematic (e.g., non-holonomic) constraints



Montemerlo, Michael, et al. "Junior: The stanford entry in the urban challenge." *Journal of field Robotics* 25.9 (2008): 569-597.

Hybrid A* Search

```
O = {( $x_0, y_0, \theta_0, g=0, h=0$ )}    // open list  
C = {}                                // closed list
```

While O $\neq \{\}$:

n = (x, y, θ) node with min cost $f(n) = g(n) + h(n)$ in O

If n = goal, **return** the path.

C = C \cup {n}

For each motion primitive {m}:

s = (x', y', θ') = **motion**(x, y, θ , m)

$g(s) = g(n) + \text{cost}(n, s)$ // Calculate cost

$h(s) = \text{heuristic}(s, \text{goal})$

$f(s) = g(s) + h(s)$

If s \notin C or $g(s)$ is lower than previously recorded cost:

Add/update s in O with g(s), h(s)

Return failure if O is empty

Input: Source node x_0, y_0, θ_0 , goal node
Motion primitives

Junior: The Stanford Entry in the Urban Challenge

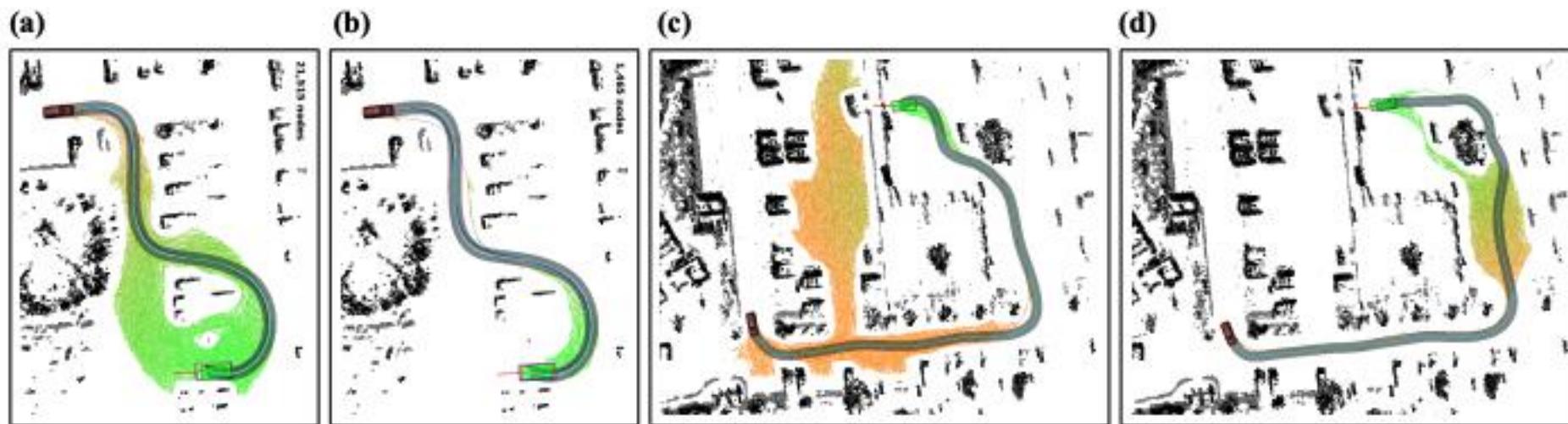


Figure 16: Hybrid-state A* heuristics. (a) Euclidean distance in 2-D expands 21,515 nodes. (b) The non-holonomic-without-obstacles heuristic is a significant improvement, as it expands 1,465 nodes, but as shown in (c), it can lead to wasteful exploration of dead-ends in more complex settings (68,730 nodes). (d) This is rectified by using the latter in conjunction with the holonomic-with-obstacles heuristic (10,588 nodes).

<http://robots.stanford.edu/papers/junior08.pdf>

Properties of Hybrid A*

- **Soundness**
 - sound when the heuristic function is admissible and consistent.
 - However, soundness may be compromised if motion primitives do not accurately represent feasible trajectories.
- **Completeness:**
 - Hybrid A* is not strictly complete due to the continuous state space.
 - Completeness can be approximated with dense discretization of the state space.
- **Optimality:**
 - Hybrid A* is not guaranteed to find the optimal path since it approximates the continuous space with motion primitives.
 - The quality of the solution depends on the choice of motion primitives and heuristics.
- **Feasibility:**
 - The generated path is kinematically feasible, respecting vehicle constraints (e.g., turning radius)

Summary

A* algorithm combines cost-to-come $g(v)$ and a heuristic function $h(v)$ for cost-to-go to find shortest path

- informed search

Heuristic function must be *admissible* $h(v) \leq h^*(v)$

- Never over-estimate the actual cost to go
- Dominant and consistent heuristics are preferable

Hybrid A* extends A* to continuous state spaces and incorporates kinematic constraints

