
ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 15: Search and Planning

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com
huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com/


Announcements

• GEM and F1-tenth groups: please sign up
• Many F1-tenth teams still need to finish their safety training
• Please ensure that you show up at the time slot signed up (if late by 

15minutes, TAs will leave)
• Project checkpoint: week of 11/14 (tentative, check CampusWire)



Final review of localization module

• Fundamentals: Conditional Probability, Bayes Rule, Conditional 
Independence

• Motion model and measurement model
• Bayes Filters: prediction + correction steps

• Discrete Bayes Filter
• Particle Filter
• Kalman Filter

• Pros and cons of each type of filter
• SLAM will not appear in your exam, but you still need to know the key 

concept of conditional independence and the decomposition of the 
posterior



Autonomy 
pipeline

Control

Dynamical models of 
engine, powertrain, 
steering, tires, etc.

Decisions and 
planning

Programs and multi-
agent models of 

pedestrians, cars, 
etc. 

Perception

Programs for object 
detection, lane 
tracking, scene 

understanding, etc.

Sensing

Physics-based 
models of camera, 

LIDAR, RADAR, GPS, 
etc.

GEM platform



Control

Dynamical models of 
engine, powertrain, 
steering, tires, etc.

Decisions and 
planning

Programs and multi-
agent models of 

pedestrians, cars, 
etc. 

Perception

Programs for object 
detection, lane 
tracking, scene 

understanding, etc.

Sensing

Physics-based 
models of camera, 

LIDAR, RADAR, GPS, 
etc.



Search and planning problems appear in different 
levels of autonomy stack
Global path planner --- invoked at each new checkpoint

• finds paths from every point in the map to next checkpoint
• dynamic programming 

Road navigation
• For each path, the planner rolls out several discrete trajectories 

that are parallel to the smoothed center of the lane

Freeform navigation (parking lots)
• Generate arbitrary trajectories (irrespective of road structure) 

using modified A*

Junior: The Stanford Entry in the Urban Challenge, Thrun et al., 2008



Outline

• Deterministic search
• Uninformed search
• Informed search
• Optimal search: A, A*

• Randomized search (next lecture)
• Probabilistic Maps
• Rapidly expanding random trees (RRT)



Planning as graph search

Search for collision free trajectories can be viewed abstractly as a 
graph search problem, where the nodes represent blocks of free 
space and the edges connect spatially adjacent nodes.

We can solve such problems using the graph search algorithms like 
(uninformed) Breadth-First Search and Depth-First Search

Roadmaps are not arbitrary graphs: Some paths are more 
preferable than others (e.g., shorter, faster, less costly in terms of 
fuel/tolls/fees, more stealthy, etc.) 

Good guesses for distances can be made, even without knowing 
the full graph or the optimal paths

Can we utilize this information to find efficient paths, efficiently?
https://kmmille.github.io/FACTEST/

Making a Drone Smarter With Motion 
Planning Nicholas Rehm

https://www.youtube.com/@NicholasRehm


Problem statement: find shortest path
Input: ⟨�,  �, �,  푠푡��푡,  푔표��⟩

• �: (finite) set of vertices 

• �  ⊆  �  ×  �: (finite) set of edges

• � :  �  → ℝ>0: associates to each edge � to a positive weight � � 
• 푠푡��푡,  푔표��  ∈  �: start and end vertices. 

A path is a sequence of vertices � = �0 …�� such that  ��, ��+1 ∈ � 

� � =  �=0
�−1� ��, ��+1   head � = �0 end � = ��

Output: a path � with ℎ��� � = 푠푡��푡 and ��� � = 푔�표�, such that its 
� �  is minimal among all such paths 

Algorithms: Dijkstra O((|V|+|E|)log|V|) , Bellman-Ford O(|V|x|E|),..

s

c

s

d

b

g

2 3
4 2

2
5 5



Example graph with imperfectly known 
information



The Graph Can be Large

Number of states or vertices 
43,252,003,274,489,856,000

Yet, maximum length of path to solution was 
shown to be 20, regardless of the initial state.

T. Rokicki, working with Google, proved "God's 
number" to be 20, in 2010.

Solving Rubik's cube as a graph problem

https://en.wikipedia.org/wiki/God%27s_algorithm


Search Algorithm Performance Metrics

Soundness: when a solution is returned, is it guaranteed to be correct path?
Completeness: is the algorithm guaranteed to find a solution when one exists?
Optimality: How close is the found solution to the best solution? 
Space complexity: how much memory is needed?
Time complexity: what is the running time? Can it be used for online planning?



Uniform cost search (Uninformed search)

� ← ⟨푠푡��푡⟩   //  maintains paths sorted by cost
// initialize queue with start

while � ≠ ∅:  
     pick (and remove) the path � with lowest cost w �  
     if ℎ��� � =  푔표�� then return � ;   // Reached the goal 
     foreach ���푡�� � 푠��ℎ 푡ℎ�푡  ℎ��� � ,  � ∈  �,  do  // for all neighbors 
          add ⟨�,  �⟩ 푡표 � ;   // Add expanded paths 
return 퐹퐴퐼���� ; // nothing left to consider

Note no visited list; Use no information obtained from the environment



Example of Uniform-Cost Search (s to g)

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨푠⟩ 0



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, 푠⟩ 2
⟨�, 푠⟩ 5



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, �, 푠⟩ 4
⟨�, 푠⟩ 5

⟨�, �, 푠⟩ 6



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, 푠⟩ 5
⟨�, �, 푠⟩ 6
⟨�, �, �, 푠⟩ 7



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost

⟨�, �, 푠⟩ 6
⟨�, �, �, 푠⟩ 7
⟨푔, �, 푠⟩ 10

Notice a path to goal <g, b, s> has been found but the algorithm does 
not terminate, since the path is currently not at the head of Q



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost
⟨�, �, �, 푠⟩ 7
⟨푔, �, �, 푠⟩ 8

⟨푔, �, 푠⟩ 10

Another path to goal <g, d, a, s> has been found but the algorithm does 
not terminate, since the path is currently not at the head of Q



Example of Uniform-Cost Search

Q:

a

c

s

d

b

g

2 3

4 2

2
5

5

Path Cost
⟨�, �, �, 푠⟩ 8

⟨푔, �, �, �, 푠⟩ 9

⟨푔, �, 푠⟩ 10

Algorithm stops when smallest cost path in Q has head = g



Properties of Uniform Cost Search
UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all 
edges have the same cost) 
UCS is sound, complete and optimal (assuming costs bounded away from 
zero; zero or negative costs will cause infinite loops) 

• Exercise: Prove the above claims
• Soundness: For any entry p in Q, is a path and head(p) = start

UCS is guided by path cost rather than path depth, so it may get in trouble 
if some edge costs are very small
Worst-case time and space complexity � ��∗/� , where b is the branching 
factor, �∗ is the optimal cost, and � is such that all edge weights are no 
smaller than



Greedy or Best-First Search
UCS explores paths in all directions, with no bias towards the goal state
What if we try to get “closer” to the goal? 
We need a measure of distance to the goal

It would be ideal to use the length of the shortest path... 
but this is exactly what we are trying to compute! 

We can estimate the distance to the goal through a heuristic function
 ℎ :  �  → ℝ≥0. E.g., the Euclidean distance to the goal (as the crow flies)

ℎ �  is the estimate of the distance from � to goal

A reasonable strategy is to always try to move in such a way to minimize the 
estimated distance to the goal: this is the basic idea of the greedy (best-first) 
search



Greedy/Best-first search

� ← ⟨푠푡��푡⟩   // initialize queue with start

while � ≠ ∅:  
     pick  ��� ��푚표��  푡ℎ� ��푡ℎ � ��푡ℎ �표��푠푡 ℎ����푠푡�� �표푠푡 ℎ ℎ��� �   푓�표푚 � 
     if ℎ��� � =  푔표�� then return �  // Reached the goal 

     foreach ���푡�� � 푠��ℎ 푡ℎ�푡  ℎ��� � ,  � ∈  �,  do  // for all neighbors 

          add ⟨�,  �⟩ 푡표 � ;   // Add expanded paths 
return 퐹퐴퐼���� ; // nothing left to consider



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨푠⟩ 0 10

Heuristic values 
(arbitrarily defined 
for this example)



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨�, 푠⟩ 2 2

⟨�, 푠⟩ 5 3



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h

⟨�, �, 푠⟩ 4 1

⟨�, 푠⟩ 5 3

⟨�, �, 푠⟩ 6 4



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h
⟨�, �, �, 푠⟩ 7 4

⟨�, 푠⟩ 5 3

⟨�, �, 푠⟩ 6 4



Example of Greedy search

Q:

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Path Cost h
⟨�, �, �, 푠⟩ 7 4

⟨푔, �, 푠⟩ 10 0

⟨�, �, 푠⟩ 6 4

Terminates with suboptimal path



Remarks on greedy/best-first search

Greedy (Best-First) search is similar to Depth-First Search
keeps exploring until it has to back up due to a dead end

Not complete (why?) and not optimal, but is often fast and efficient, 
depending on the heuristic function h 

Exercise: Find a counter-example where path exists but bad heuristic function 
makes the algorithm loop forever

Worst-case time and space complexity?


