ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 15: Search and Planning

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025
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Announcements

e GEM and F1-tenth groups: please sign up
* Many F1-tenth teams still need to finish their safety training

* Please ensure that you show up at the time slot signed up (if late by
15minutes, TAs will leave)

* Project checkpoint: week of 11/14 (tentative, check CampusWire)



Final review of localization module

* Fundamentals: Conditional Probability, Bayes Rule, Conditional
Independence

e Motion model and measurement model

* Bayes Filters: prediction + correction steps
* Discrete Bayes Filter
 Particle Filter
* Kalman Filter

* Pros and cons of each type of filter

* SLAM will not appear in your exam, but you still need to know the key
concept of conditional independence and the decomposition of the
posterior
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Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,

etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Decisions and
planning
Programs and multi-
agent models of
pedestrians, cars,
etc.

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.




Decisions and
planning
Programs and multi-
agent models of
pedestrians, cars,
etc.




Search and planning problems appear in different
levels of autonomy stack

Global path planner --- invoked at each new checkpoint
 finds paths from every point in the map to next checkpoint
e dynamic programming
Road navigation
* For each path, the planner rolls out several discrete trajectories
that are parallel to the smoothed center of the lane
Freeform navigation (parking lots)

* Generate arbitrary trajectories (irrespective of road structure)
using modified A*

Junior: The Stanford Entry in the Urban Challenge, Thrun et al., 2008
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Outline

* Deterministic search
* Uninformed search
* Informed search
 Optimal search: A, A*

 Randomized search (next lecture)
* Probabilistic Maps
* Rapidly expanding random trees (RRT)



Planning as graph search

Search for collision free trajectories can be viewed abstractly as a
graph search problem, where the nodes represent blocks of free
space and the edges connect spatially adjacent nodes.

We can solve such problems using the graph search algorithms like
(uninformed) Breadth-First Search and Depth-First Search

Roadmaps are not arbitrary graphs: Some paths are more
preferable than others (e.g., shorter, faster, less costly in terms of
fuel/tolls/fees, more stealthy, etc.)

Good guesses for distances can be made, even without knowing
the full graph or the optimal paths

Can we utilize this information to find efficient paths, efficiently?

Making a Drone Smarter With Motion
Planning Nicholas Rehm

https://kmmille.github.io/FACTEST/



https://www.youtube.com/@NicholasRehm

Problem statement: find shortest path

Input: , , ,

* (finite) set of vertices

. x :(finite) set of edges
e —~ . associates to each edge to a positive weight
. , : start and end vertices.
A path is a sequence of vertices = .. suchthat , 44
= 3 . head = , end = /
Output: a path  with = and = , such that its 2 @ >

is minimal among all such paths

) , Bellman-Ford O(|V|x]|E|),..

Algorithms: Dijkstra O((|V|+|E|)log|V
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Example graph with imperfectly known
nformation
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The Graph Can be Large

Solving Rubik's cube as a graph problem

0

Number of states or vertices 92
43,252,003,274,489,856,000

Yet, maximum length of path to solution was
shown to be 20, regardless of the initial state.

T. Rokicki, working with Google, proved "God's
number" to be 20, in 2010.
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https://en.wikipedia.org/wiki/God%27s_algorithm

Search Algorithm Performance Metrics

Soundness: when a solution is returned, is it guaranteed to be correct path?
Completeness: is the algorithm guaranteed to find a solution when one exists?
Optimality: How close is the found solution to the best solution?

Space complexity: how much memory is needed?

Time complexity: what is the running time? Can it be used for online planning?

(s



Uniform cost search (Uninformed search)

- // maintains paths sorted by cost

// initialize queue with start

while #
pick (and remove) the path  with lowest cost w
if = then return // Reached the goal
foreach , . do // for all neighbors
add |, : // Add expanded paths
return : // nothing left to consider

Note no visited list; Use no information obtained from the environment
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Example of Uniform-Cost Search (s to g)

Path Cost
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Example of Uniform-Cost Search

Path

Cost
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Example of Uniform-Cost Search
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Example of Uniform-Cost Search

Path

ost

| U1 O




'f? o}

Example of Uniform-Cost Search

Path

Cost

6

7

Notice a path to goal <g, b, s> has been found but the algorithm does
not terminate, since the path is currently not at the head of Q
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Example of Uniform-Cost Search

Path

Cost

7

10

Another path to goal <g, d, a, s> has been found but the algorithm does
not terminate, since the path is currently not at the head of Q
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Example of Uniform-Cost Search

Path

Cost

8

10

Algorithm stops when smallest cost path in Q has head =g



Properties of Uniform Cost Search

UCS is an extension of BFS to the weighted-graph case (UCS = BFS if all
edges have the same cost)

UCS is sound, complete and optimal (assuming costs bounded away from
zero; zero or negative costs will cause infinite loops)

* Exercise: Prove the above claims
e Soundness: For any entry p in Q, is a path and head(p) = start

UCS is guided by path cost rather than path depth, so it may get in trouble
if some edge costs are very small

Worst-case time and space complexity /" where b is the branching
factor, is the optimal cost, and is such that all edge weights are no

smaller than
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Greedy or Best-First Search

UCS explores paths in all directions, with no bias towards the goal state
What if we try to get “closer” to the goal?

We need a measure of distance to the goal
It would be ideal to use the length of the shortest path...
but this is exactly what we are trying to compute!

We can estimate the distance to the goal through a heuristic function

~ 0. E.g., the Euclidean distance to the goal (as the crow flies)
is the estimate of the distance from to goal

A reasonable strategy is to always try to move in such a way to minimize the
estimated distance to the goal: this is the basic idea of the greedy (best-first)

search



Greedy/Best-first search

- // initialize queue with start
while #
pick
if = then return // Reached the goal
foreach , . do // for all neighbors
add : // Add expanded paths

return ; // nothing left to consider
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Example of Greedy search

Q:

Path

Cost

0

10

Heuristic values
(arbitrarily defined
for this example)
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Example of Greedy search

Q:

Path

Cost

2

5




'éoa

Example of Greedy search

Q: |path |Cost
4
6
5

Wl P[] =
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Example of Greedy search

Q: |Path |Cost
7

6
5

WP+




Example of Greedy search

Q: |Path |Cost
7

6
10

O+

Terminates with suboptimal path
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Remarks on greedy/best-first search

Greedy (Best-First) search is similar to Depth-First Search
keeps exploring until it has to back up due to a dead end

Not complete (why?) and not optimal, but is often fast and efficient,
depending on the heuristic function h

Exercise: Find a counter-example where path exists but bad heuristic function
makes the algorithm loop forever

Worst-case time and space complexity?



