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Announcements
• Field Trip to CSL Studio for F1 Tenth, GRAIC, and Drone projects (10/2, 11 am)

• No regular class in this class room on 10/2
• 1206 W Clark St, Urbana, IL 61801

• Project group sign up will open the day after (10/3). 
• Group limit: 4, with an exception of groups of 5 for GEM.

• Groups will be finalized the Tuesday after (10/7). 
• Students who do not sign up will be randomly assigned.

• Pay close attention to any announcements on Campuswire in case anything 
changes



Outline
• Modeling the control problem 

• Differential Equations; solutions and their properties
• Bang-bang control

• Control design  
• PID
• State feedback
• MPC (brief)

• Requirements
• Stability
• Lyapunov theory and its relation to invariance



On-off control of a room heater with a thermostat

� � = � � � ,  � �  
� � = � � �  

A simple thermostat controller 

� � �  : 

if � � ≥ �� then � �  = off

else if � � ≤ �� − � then � �  = on

This is called bang-bang control
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On-off control of a room heater with a thermostat

Bang-bang control is a feasible strategy 
when the controlled variable is 
observable

Disadvantages

• Usually not energy efficient

• Overshoots and undershoots because 
of inertia and delays 

• Causes excess stress on the actuators

• Can cause the system to become 
unstable (to be defined later)
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Review: Rear Wheel Model (Bicycle model)
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Control input: front wheel steering angle �:ℝ = δ�

Model parameters: car length (�  speed (��  

�:ℝ4 → ℝ3

�� = � ��, � 

 
��
��
��

 =  
�� 푐표���
�� �����
��
�
�����

 



Path following control

The path to be followed by a robot is 
typically represented by a parameterized 
curve (e.g., parameterized by time)

This path is computed by a higher-level 
planner (e.g., using hybrid A*, RRT)

Each point in the path defines the desired 
instantaneous pose � �  of the vehicle

PlantSensor Controller

Input/waypoint

control signal
� � 

system output

Feedback

Noise Disturbance

� � = [� � , � � , � � ]



Path following control (Step 1)

Desired instantaneous pose � � 

How to define error between actual 
pose �� �  and desired pose � �  in the 
form of �� � − �(�) so that then we can 
develop a control law

� � = [� � , � � , � � ]

�� � = [�� � , �� � , �� � ]



Bang bang controller for bicycle model (Step 2)

Dynamics  
��
��
��
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� 푐표���
� �����
�
�
�����

 

Heading error: �ℎ = �� − �
Cross track error: e� =±    ��, �� −  �, �   
(signed distance, depending on which side the bicyle is)
Combined error: � = �ℎ + ���

Bang-bang controller: 
if � > 0 then � = ���� else � = −����



Proportional control

Dynamics  
��
��
��

 =  
� 푐표���
� �����
�
�
�����

 

Heading error: �ℎ = �� − �
Cross track error: e� =±    ��, �� −  �, �   
Proportional controller � = −�ℎ�ℎ + −����



More complete path following control
Desired instantaneous pose � � 

The error vector measured vehicle coordinates 
e � = [�� � , �� � , �� � , �� � ]

[��, ��] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 

�� =cos  �� �   � � − �� �  +���  �� �   � � − �� �  

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion

�� =−sin  �� �   � � − �� �  +푐표�  �� �   � � − �� �  

• Heading error
�� = � � − �� � 
�� = � � − �� � 

� � = [� � , � � , � � , � � ]

�� � = [�� � , �� � , �� � , �� � ]

��

��

��
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A Proportional controller
Plant � � = � � + � � , where � �  is a small disturbance signal
The goal is the drive the plant state to a target steady state value, say �� = 70∘

Idea: Make the control input negatively proportional to the error: Negative feedback
Error: � � = � � − ��

Proportional controller: � � =− ��� � , the constant  �� is called controller gain
Using proportional (P) negative feedback
 � � =− ��� � =− �� � � − �� 
 � � =− ��� � + ���� + � � 
Consider a constant disturbance ��� (e.g., room energey loss)
 � � =− ��� � + ���� + ���

What is the steady state value? Trick: set RHS = 0
Set − ��� � + ���� + ��� = 0
 � � = ��� : =

���
��

+ ��
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Proportional controller example
With constant disturbance ��� we rewrite the ODE

 � � =− ��� � + ���� + ��� with ��� = ���
��

+ ��

 � � = ��(��� −  � � )

The solution of this ODE (Transient behavior) is:

 � � = ��� +  (� 0 − ���)�−���

Rewrite:

 � � = � 0 �−��� + ��� 1 − �−��� 

General solution of first-order linear DE
� � = ��� + ��−���

Setting  t=0
� 0 = ��� + �

Controller
g=-Ke

� � = � � 

Model of 
room 

temperature� � 

��: Set point 



Proportional Controller
Transient behavior of the control system

 � � = � 0 �−��� + ��� 1 − �−��� ; ��� = ���
��

+ ��

The proportional controller uses negative feedback to track the desired 
setpoint smoothly

Steady state error may not be 0

Larger proportional gain �� more reactive the controller and faster the 

system converges to the target state ��

Larger �� implies smaller steady state tracking error

For systems with delays and inertia high proportional gain can cause 
oscillations or overshoots

There may be actuator limits that prevent  
 � � =− ��� � =− �� � � − ��  to be a feasible control input

(e.g., the room loses energy very fast and heater power insufficient)

Controller
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The PID controller
Error: difference of desired and measured � � = �� − � � 

� � = ��� � + ��  
0

�
� � �� + ��

�� � 
��

Tune ��, ��, �� for the required performance 

P (Proportional): Corrects based on the current error 

Reacts to errors quickly (may lead to oscillations), may not be sufficient to 
remove steady state error

I (Integral): Corrects based on the accumulated past error (“memory”).

Removes steady state error

D (Derivative): Predicts future error based on the rate of change.

Dampens oscillations, reduce overshoots, but derivatives can be sensitive to 
noise

PD control: �� = 0

PI control: �� = 0

https://www.realpars.com/blog/pid-vs-advanced-control-methods

https://www.yokogawa.com/library/resources/white-papers/pid-tuning-in-distributed-control-systems/



PID controller tuning



Linear systems



Linear dynamical system and solutions

Linear system is a dynamical system where the dynamical function f is a 
linear function of the state and the inputs
� � = � � � � + � � �(�)
where A and B are (possibly time varying) matrices
Linear models can be obtained by linearizing a nonlinear model around 
a suitably chosen point ��0 = ��

��
​ �0

Linear systems are amenable to efficient control design and analysis
For a given initial state �0 ∈ ℝ�, �0 ∈ ℝ ��� �(. ) ∈ 푃�(ℝ, ℝ�) the 
solution is a function � . , �0, �0, � : ℝ → ℝ�
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Example: Simple linear model of an economy

�: national income 
�: rate of consumer spending 
�: rate government expenditure

 � = �  − ��
 � = � � − � − � 

  �� =  1 −�
� −�  

�
�   −  0� �
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Solutions of Linear systems define a linear space
� � = � � � � + � � � �     ---     Eq. (2)

� �   continuous everywhere except ��

Theorem*. Let � �, �0, �0, �  be the solution for (2) with points of discontinuity , ��

1. ∀�0 ∈ ℝ, �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� , � ⋅ , �0, �0, � : ℝ → ℝ� is continuous and differentiable ∀ � ∈ ℝ ∖ ��

2. ∀�, �0 ∈ ℝ,  � ∈ 푃� ℝ,ℝ� , � �, �0, ⋅ , � : ℝ� → ℝ� is continuous

3. linearity/superposition: ∀�, �0 ∈ ℝ, �01, �02 ∈ ℝ�, �1,�2 ∈ 푃� ℝ,ℝ� , �1, �2 ∈ ℝ,  � �, �0, �1�01 +
�2�02, �1�1 + �2�2 = �1� �, �0,  �01,  �1 + �2� �, �0,  �02,  �2 

4. decomposition: ∀�, �0 ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �, �0,  �0,  � = � �, �0,  �0,  � + � �, �0,  0,  � 
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Linear time invariant system

� � = �� � + �� � 

Matrix exponential:
��� = 1 + �� +

1
2!

 �� 2 +  … =  
0

∞
1
�!

 �� �

Theorem. (Solution of linear systems) 

� �, �0, �0, � = �0e� �−�0 +  
�0

�
e� �−� �� � ��
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Zero input Zero state



Example

Complete

Zero input

Zero state

States x: postion (0m), velocity (-2m/s), 
Input u(t): Force fa(t) = 6 Newtons

stiffness

friction

Source: https://lpsa.swarthmore.edu/Transient/TransZIZS.html

�
��2 � 

��
  = � � − �

��1 � 
��

− ��1 � 

�2 � =
��1 � 

��

Complete
Zero state



Deriving the solution of Linear time invariant system*

� � = �� � + �� � 

A and B are not function of t.

Solution of the system � can be explicitly derived. How to do that?

Consider the decomposition property, we solve two problems:

∀� ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �,  �0,  � = � �,  �0,  � + � �, 0,  � 
We assume �0=0 for simplicity, so no �0 term anymore



Deriving the solution of Linear time invariant system*

Due to linearity, the solution is in this form:

Taylor expansion of Φ(t)

Substitute into the differential equation:

First set input u(t) to 0 (we do this due to the decomposition)



Deriving the solution of Linear time invariant system*

Now we want to solve Φ(t), by comparing the terms:
 



Deriving the solution of Linear time invariant system*

∀� ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �,  �0,  � = � �,  �0,  � + � �, 0,  � 

This part done



Deriving the solution of Linear time invariant system*

Consider the decomposition property, we solve two problems:

∀� ∈ ℝ,  �0 ∈ ℝ�, � ∈ 푃� ℝ,ℝ� ,  � �,  �0,  � = � �,  �0,  � + � �, 0,  � 

Now for � �, 0,  � , assume x0 = 0, solve

Rearrange:

Multiply a common factory:

Note the perfect differential:

�� � 
��

= �� �   +  �� � 

�� � 
��

− �� � =   �� � 

�−�� �� � 
��

− �−���� � =  �−�� �� � 

�
��

 �−��� �  =  �−�� �� � 

Now the second part



Deriving the solution of Linear time invariant system*

Integration on both sides:

Since x(0) = 0:

 
0

� �
��

 �−��� �  =   
0

�
�−�� �� � ��

�−��� � − ��0� 0 =   
0

�
�−�� �� � ��

� � =  ���  
0

�
�−�� �� � ��

� � =   
0

�
�� �−�  �� � ��

�
��

 �−��� �  =  �−�� �� � 



Deriving the solution of Linear time invariant system*

� � = �� � + �� � 

Define Matrix exponential:

��� = 1 + �� +
1
2!

 �� 2 +  … =  
0

∞
1
�!

 �� �

Theorem. � �, �0, � = Φ � �0 +  0
� e� �−� �� � ��

Here Φ � : = ��� is the state-transition matrix

Zero stateZero input


