ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 9
Control (part 2)

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu
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Announcements

* Field Trip to CSL Studio for F1 Tenth, GRAIC, and Drone projects (10/2, 11 am)
* No regular class in this class room on 10/2

* 1206 W Clark St, Urbana, IL 61801 o i B RN
) J@ P B22
% ©) Beckman Institute % 'CSLSl !
* Project group sign up will open the day after (10/3). [ o) o 3o 5
* Group limit: 4, with an exception of groups of 5 for GEM. [0 ool o | e 2
‘ Newmark Civil © % © z
L Na:g;rhm[ogy‘ [ % W:Stoughton'Street :% W:s
. . . 2] ~ Digital 8  Big (P
* Groups will be finalized the Tuesday after (10/7). . 2

e Students who do not sign up will be randomly assigned.

* Pay close attention to any announcements on Campuswire in case anything
changes
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Outline

* Modeling the control problem
 Differential Equations; solutions and their properties
* Bang-bang control

* Control design <
 PID
» State feedback
 MPC (brief)

* Requirements
* Stability
* Lyapunov theory and its relation to invariance



On-off control of a room heater with a thermostat

Bang-Bang Controller with Hysteresis Switching Logic (Bold Solid Lines)

70

A simple thermostat controller

if = then = off
else if < — then = 0on

This is called bang-bang control
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On-off control of a room heater with a thermostat

Bang-bang control is a feasible strategy
when the controlled variable is
observable

Disadvantages
* Usually not energy efficient

e Overshoots and undershoots because
of inertia and delays

e Causes excess stress on the actuators

e Can cause the system to become
unstable (to be defined later)

'60*
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Bang-Bang Controller with Hysteresis Switching Logic (Bold Solid Lines)
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Review: Rear Wheel Model (Bicycle model)

0
AY

Plant state: real wheel pose) = @ 3=

Control input: front wheel steering angle

Model parameters: car length ( speed (

4 3

-



Path following control

The path to be followed by a robot is

typically represented by a parameterized
curve (e.g., parameterized by time)

This path is computed by a higher-level
planner (e.g., using hybrid A*, RRT)

Each point in the path defines the desired
instantaneous pose of the vehicle

'éoa
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Path following control (Step 1) .

=L . . 1z

Desired instantaneous pose  ____-- 7

How to define error between actual B\ =
pose and desired pose inthe  .2-7

form of - () so that then we can

develop a control law
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Bang bang controller for bicycle model (Step 2)

Dynamics

Heading error: = —

Cross track error: e =% , -

(signed distance, depending on which side the bicyle is)
Combined error: =+

Bang-bang controller:

if >0then = else = —

Bang-Bang Control for Bicycle Model with Combined Errors

X Position




Proportional control |

6 20
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H e a d i n g e r ro r : — - Proportional Control for Bicycle Model

—— Trajectory
—=- Waypoint Path

Cross track error: € =+ , -, 013 o

Proportional controller = — + — !

Y Position

X Position



More complete path following control

Desired instantaneous pose

The error vector measured vehicle coordinates

e — [ ] ! ! ]
[ , ]define the coordinate errors in the vehicle’s reference frame: =1
along track error and cross track error "
* Along track error: distance ahead or behind the target in the
instantaneous direction of motion.
=CO0S — + — !
* Cross track error: portion of the position error orthogonal to the :
intended direction of motion :
- |
= —sin — + — .
(/ L
* Heading error
= — =

'60*
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A Proportional controller

Plant ° = + , Where is a small disturbance signal
The goal is the drive the plant state to a target steady state value, say

=70

Idea: Make the control input negatively proportional to the error: Negative feedback

Error: — —

Proportional controller: =— , the constant is called controller gain

Using proportional (P) negative feedback

- + +

Consider a constant disturbance (e.g., room energey loss)
=— + -+

What is the steady state value? Trick: set RHS =0

Set — + + =0
= = —+

ﬁ

r—b

: Set point

Controller

g=-Ke

Model of

room
temperature




Proportional controller example Set point

— —
: : : Controller
With constant disturbance  we rewrite the ODE —
== + +  with = —+
Model of
_ froom
~ ( N ) temperature
The solution of this ODE (Transient behavior) is:
= + = B
( 0 ) General solution of first-order linear DE
Rewrite: = +
_ _ Setting t=0
- O + 1 - 0 = +

"goz



: Set point

Proportional Controller — ] -
: . f g=-Ke
Transient behavior of the control system
= 0 ~ 4 1-- 5, =—+ Model of
room
The proportional controller uses negative feedback to track the desired temperature
setpoint smoothly
Steady state error may not be O
Larger proportional gain ~ more reactive the controller and faster the Exponential Convergence for Different K_P Values

70

= e

system converges to the target state

o
oo
T

Larger  implies smaller steady state tracking error ol

For systems with delays and inertia high proportional gain can cause
oscillations or overshoots

[e)]
N
T

Temperature (°C)

KP=0.2
- KP=05
— KP=1.0
/ KP=20
60} ; -=-- Steady-State (70°C)
0 2 4 6 8 10
Time (seconds)

621
There may be actuator limits that prevent

= =— — to be a feasible control input

(e.g., the room loses energy very fast and heater power insufficient)

(s



The PID controller

Error: difference of desired and measured

Proportional action

<«— Process

Proportional +
— + + Integral action

0

Proportional +
Integral +
Derivative action

Tune , ,  fortherequired performance

P (Proportional): Corrects based on the current error

Time _

Reacts to errors quickly (may lead to oscillations), may not be sufficient to
remove steady state error

https://www.realpars.com/blog/pid-vs-advanced-control-methods

F

“ ” PI Controller Tuning Map
I (Integral): Corrects based on the accumulated past error (“memory”). ] ' ' T

Removes steady state error

D (Derivative): Predicts future error based on the rate of change.

bl
7
1

Fiazes
£ies
BresasEecces

Dampens oscillations, reduce overshoots, but derivatives can be sensitive to

Incroasing Cantrollor Gainoar Decreasing Praportional Band

Increasing Proportional Action

noise i
PD control: =0 "L CE e | |
E < Increasing Integral Action
P I CO ntrol : — O Dapreasing Reset Time (Sme/repeat] or Increasing Resst Bate (epeatftimea)

https://www.yokogawa.com/library/resources/white-papers/pid-tuning-in-distributed-control-systems/

(e



PID controller tuning

PID Controller Response for Different Configurations PID Control for Bicycle Model
T T
S o e o s o e e e o —— Trajectory
—==- Waypoint Path
4 4 % Waypoints M
65 f
O e /'\A
@) 2
< 60y ~— P Only ‘Q/\
g — P <222
>
B — PD
5557 — PID § 07 %
g‘ === Desired State (70°C) o
o &
501 >
-2 YA
’{Q\
45 !Q
-4
0 2 4 6 8 10 %K
Time (seconds)
6 U
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

X Position




Linear systems
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Linear dynamical system and solutions

Linear system is a dynamical system where the dynamical function fis a
linear function of the state and the inputs

- £ ()
where A and B are (possibly time varying) matrices

Linear models can be obtained by linearizing a nonlinear model around

a suitably chosen point o= o

Linear systems are amenable to efficient control design and analysis

For a given initial state | ;0 (.) ( , )the
solutionis a function ., o, o, :



Example: Simple linear model of an economy

: national income
. rate of consumer spending
: rate government expenditure

20 1 MCome (X)
‘\ spending ()

= =+ | Lyapunoy function (V)
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Solutions of Linear systems define a linear space
= + -—- Eq.(2)

continuous everywhere except

Theorem™*.Let |, o, o, be the solution for (2) with points of discontinuity,

1 0 0 , , , y 0 0y . - is continuous and differentiable

2 0 , , N - is continuous

3. linearity/superposition: , g , 0Ly 02 , 1, 2 , , 1 2 , , 00 1 01t
200 11+t 22 =1 +0 o 2 F 2 o0 o020 2

4. decomposition: , g 0 , , o, 0 0 = 20 0 T 00,

Zero state

_ g Lecture Slides by Sayan Mitra mitras@illinois.edu
{ o.



Linear time invariant system

+

SIAM ReviEw (© 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 1, pp. 3-000

Nineteen Dubious Ways to

M at rlX ex pO ne ntlf | . 10,0) Compute the Exponential of a

1 Matrix, Twenty-Five Years
Later*

— _ 2
=1+ +2| + ...

Cleve Molert
Charles Van Loant

0

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involv-
ing approximation theory, differential equations, the matrix eigenvalues, and the matrix
characteristic polynomial have been proposed. In practice, consideration of computational
stability and efficiency indicates that some of the methods are preferable to others, but
that none are completely satisfactory.

Most of this paper was originally published in 1978. An update, with a separate bibliog-

Theorem. (Solution of linear systems)

Key words. matrix, exponential, roundoff error, truncation error, condition
AMS subject classifications. 15A15, 65F15, 65F30, 65199

PIl. S0036144502418010

» O O — Oe I e

0
Zero state
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Example

States X: postion (Om), velocity (-2m/s),

Input u(t): Force f,(t) = 6 Newtons 2 _ _ 1
fa(t)_,__ ) — 1
7 stiffness
k
—"VVVVVN— m 0
e Ceree el M- Zero state
f/riction Complete

-5 1 1 1 1
a 5 10 15 20 2
t. (s)

Source: https://lpsa.swarthmore.edu/Transient/TransZIZS.html




Deriving the solution of Linear time invariant system™

|
+

A and B are not function of t.

Solution of the system can be explicitly derived. How to do that?

Consider the decomposition property, we solve two problems:

| 0 | ) | | O — | O + 101

We assume =0 for simplicity, so no g term anymore

"goz
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Deriving the solution of Linear time invariant system™
First set input u(t) to O (we do this due to the decomposition)
dx(t)
dt

= Axz(t), z(t = 0) = zg

Due to linearity, the solution is in this form:
z(t) = o(t)zg = (E + ¢l + Got®+. ..+ Pt +. .. JE

Taylor expansion of @(t)

Substitute into the differential equation:

%(ﬁf’{f]mn} = A9(t) zo

() + 20 t+... 41, tn_1+. . }ILE.;]. = {A + Agq it + Jﬂld}gfig-l—. oAt }i-[]



Deriving the solution of Linear time invariant system™

S (@(0)z0) = AB(t)

(b1 + 2o t+... 4+, t" 14+, )azg = (A + Adrt + Adat®+... +Adpt™+...) g

Now we want to solve ®(t), by comparing the terms:

¢ = A
1 1
= S Ad — —A
2= 5A0 =g
1.1
¢3—§A¢’2——T~‘1
by = — A"




Deriving the solution of Linear time invariant system™

¢ = A
1 1
— —Ap; = —A
@2 5 P 51
1 . | R
¢3—§A¢’2——T~4
| -
";'ﬁ'n:EA
At 1 2,2 1 3,3 1 L 37l
p(t) = e =E+At—5At+—|At+...+—Tﬁlt+
. 3! n!
0 0 = oo |+ 0

This part done
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Deriving the solution of Linear time invariant system™

Consider the decomposition property, we solve two problems:

' 0 ' ' y ' 0; — y 0; + 101
Now the second part

Now for ,0, ,assume x,=0, solve — = +
Rearrange: _ _
Multiply a common factory: - - _ -

Note the perfect differential: — - — -
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Deriving the solution of Linear time invariant system™

Integration on both sides:

Since x(0) = O: _ _



Deriving the solution of Linear time invariant system™

Define Matrix exponential:

1 ) 1
=1+ + — + .= —
2! !
0
Theorem. 00 =@ ot o€
Zero state
Here® : = is the state-transition matrix

'éo



