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Announcements

* Field Trip to CSL Studio for F1 Tenth, GRAIC, and Drone projects (10/2, 11 am)
* We will start in ECEB 1015 at 11 am to see presentations, then waIk to CSL studlo

* 1206 W Clark St, Urbana, IL 61801 | s d———
* Project group sign up will open the day after (10/3). ..} | ®

* Group limit: 4, with an exception of groups of 5 for GEM. ..., i e Foien oo
* Groups will be finalized the Tuesday after (10/7). = BT e ach Fge,

e Students who do not sign up will be randomly assigned. £ eeeeeeeeeeeeeee —
L

Midterm: 10/7, covering everything in safety, perception, control
* Go over homework questions, MP questions, and slides
* You can bring 1-page (letter-size) handwritten note (writing on both sides ok)
* Go to the review session hold by TAs

* Pay close attention to any announcements on Campuswire in case anything
changes
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Outline

* Modeling the control problem
» Differential Equations; solutions and their properties
* Bang-bang control

* Control design
* PID
» State feedback

* Linear systems <

* Requirements
 Stability, Asymptotic stability
* Designing controllers for stability
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Linear dynamical system

Linear system is a dynamical system x(t) = f(x) where the dynamical
function fis a linear function of the state and the inputs

x(t) = A(t)x(t) + B(t)u(t)
where A and B are (possibly time varying) matrices

For a given initial state x, € R™ and piece-wise continuous input signal

u: R - R" the space of solutions E(t, xy, 1) is a linear space



Solutions of Linear systems define a linear space

x(t) = At)x(t) + B(t)u(t)
u(t) continuous everywhere except D,
Theorem. Let £(t, xy, u) be the solution
1. Vxo,u, é(t,x9,u): R - R" is continuous and differentiable w.r.t.t € R\ D,
2. Vt,u, é(t, x,u) is continuous w.r.t x,
3. Vt,xg,u, E(t, x0,u) = E(t,x,,0) + E(t,0,u)
4

p Vt, X01,X02 € Rn, ul,uz: R - Rn, € R,
E(t, a1x91 + AoX0p, AUy + arUy) = a18(E, X1, Up) + a,E(E, Xg2, Up)

4o
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Example

States x: postion (Om), velocity (-2m/s),

Input u(t): Force = 6 Newtons e ION w(t) , 310
dt dt
o dx, (t
o w0 = 2o

-1 stiffness
k

—VVVVVN— m

W b _ | Zero state
friction A/x Complete
fa(t) °f
U \/\/\/_\X_/ >0 5 10 15 20 2
t()

Source: https://lpsa.swarthmore.edu/Transient/TransZIZS.html

— kxq(t)



Revisit: Free swinging pendulum

x € R? x4: angular position x,: angular velocity
No input u,; such models are called autonomous ODEs

f:R? > R?

x2=561

. n(x) k
Xy = lSlnx1 mxz

The dynamics equation can be written in vector form:

X
[x1]: J . 2 "
X —TSln(xl) ——X;

k: friction coefficient m: mass [: length

Not a linear system

4o

mgsin(x;)

mg
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Linear dynamical system and solutions

Linear models can be obtained by linearizing a nonlinear model around a

suitably chosen point A, = ) |x0

0x
X1 X2
X, |~ |—Zsin(x )—Ex
2l |77 1 X2

Linearize around x0.=(0,0):

: X2 0 1
lx.llz g k = g k [xll
Rl Tra TRl 1T Twl



Solutions of Linear time invariant system

A Linear Time Invariant (LTI) system is a linear system with constant coefficients
x(t) = Ax(t) + Bu(t)

Theorem. The solution of a LTI system is given by B

Nineteen Dubious Ways to
t Compute the Exponential of a

'S(t: X0, u) = X At 4 f pA(t-1) Bu(r) dt LMa::t;rrux Twenty-Five Years
to

: : At
I f t h e re I S n O I n u t t h e n t x O — x e Abstract. In principle, the exponential of a matrix could be computed in y ways. Methods involy-
) O ) — O ing approximation theory, differenti uations, the matrix eigenvalues, and the matri
aracteristic polynomial have been propos In practice, consideration of computational
d eff

factory.
ally published in 1978. An update, with a separate bibliog;
L . L L . "
Recall the definition of the Matrix exponential:
p * Key words. matrix, exponential, roundoff error, truncation error, condition
cation! N N

1 — 1
edt =1 + At +§(At)2 + .= ZF(At)k
! — k!

Lecture Slides by Sayan Mitra mitras@illinois.edu




Example: Simple linear model of an economy

x: national income
y: rate of consumer spending
g: rate government expenditure

y N ﬁ(x - y B g) > 10-—‘\\ T\

[ |- [ 5 —[ (g SIVINFENES
IB _,B y ,B \ f"‘\\_\{

x(t) = Ax(t) + Bu(t) 0 \, ] SR R e




A=[—1/4

3

Example ZD LTI SyStemS (assuming no control u)

Try it yourself! https://colab.research.google.com/drive/1TXjVYI8fHWhhN72tPCEikMg5xXB2-QMI?usp=sharing
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https://colab.research.google.com/drive/1TXjVYI8fHWhhN72tPCEikMq5xXB2-QMI?usp=sharing
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Requirements: Equilibria and Stability

Consider a LTI system (closed system, without inputs)
x(t) = f(x(t)) = Ax(t), suppose xo, € R", t, =0

x* € R" is an equilibrium point (or stationary point) if
f(x*) =0.

For analysis we will assume 0 to be an equilibrium point
without loss of generality

&(xq, t) is the solution

|€(xg, t)]| norm gives a measure of how far the system is
from the equilibrium

-4+

System Trajectory with Arrows and Concentric Circles

—— Trajectory
x Start
x End




Revisit: Free swinging pendulum

x € R? x4: angular position x,: angular velocity
No input u,; such models are called autonomous ODEs

f:R? > R?

x2=561

. n(x) k
Xy = lSlnx1 mxz

The dynamics equation can be written in vector form:

X
[x1]: J . 2 "
X —TSln(xl) ——X;

k: friction coefficient m: mass [: length

Two equilibrium points: (0,0), (7, 0)

4o

mgsin(x;)

mg
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Lyapunov stability

An important class of requirement for control systems is to say
that the state stays bounded in some small region (&-ball)

For any &-ball, there is a corresponding 6-ball such that if the
system starts in the 6-ball then it forever stays in the ¢-ball.

Lyapunov stability: The system is stable (at the origin) if
Ve > 0368, >0suchthat |xy| < 6. =>Vt=0,[E(xy, t)| < e.

Exercise. How is Lyapunov stability related to invariants and
reachable states ?

Lecture Slides by Sayan Mitra mitras@illinois.edu




Asymptotic stability

A system is asymptotically stable (at the origin) if it is Lyapunov stable
andast — oo, |E(xy, t)| = O.

Lyapunov stable Asymptotically stable Unstable




Phase portrait of pendulum with friction

Recall that the pendulum has two equilibria. Is it stable, asymptotically stable, or unstable?

1.5 7

1.0 +

0.0
a
S
—0.5
—1.0
—1.5 7
—2.0




Butterfly
b et

All solutions converge to O but the
equilibrium point (0,0) is not
Lyapunov stable

Convergence is not the same as
asymptotic stability
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Verifying Stability for Linear Systems

Theorem 1. (Stability of linear systems) An LTI system x = Ax

1. is asymptotically stable iff all the eigenvalues of A have strictly
negative real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigenvalues of A have real parts that
are either zero or negative and the Jordan blocks corresponding to the
eigenvalues with zero real parts are of size 1.



Jordan decomposition™®

For every n x n matrix A, there exists a nonsingular n x n matrix P such that

Ji 0 0 0 | L 1 0 0
0O J 0 0 0 A 1 0
PAP'=J=| 0 0 J 0 Ji=| 0 0 4 0
0 0 0 Ji 0 0 0 A

where each J; is an upper triangular matrix called a Jordan block with diagonal
elements equal to the eigenvalue 4;

4o
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Jordan blocks of size 1
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Control design by Eigenvalue placement

Problem: Given a Linear Time Invariant (LTI) system x(t) = Ax(t) + Bu(t) we
would like to design a controller u(t) = g(x(t)) such that the closed loop system

is asymptotically stable.
We choose a full state feedback controller g(x(t)) = Kx(t) where K € R™**"

control signal control signal
® u(t) u(t)
y Controller | Controller
Sensor [ o — Plant =l g(x(t)) = Kx(t) > Plant
x(t
I ) x(t)

4o



Control design by Eigenvalue placement

Problem: Given a Linear Time Invariant (LTI) system x(t) = Ax(t) + Bu(t) we would like to
design a controller u(t) = g(x(t)) such that the closed loop system is asymptotically stable.

Step 1. We choose a full state feedback controller g(x(t)) = —Kx(t) where K € R™"

x(t) = Ax(t) — BKx(t) = (A — BK)x(t)
control signal
x(t) = A, x(t) where A,; = A — BK u(t)

Controller
=l g(x(t)) = Kx(t) > Plant

Step 2. Choose K such that Re(A1(4,;)) < 0.
x(t)

4o



Control design by Eigenvalue placement

0 v 1 0 ki1 0 1% :
A= [1 %] B = 1 1] supposeu = [ kzz] lle and v is a parameter > 1/3
oo [0 vl 1 k11 0]_[0 v]_[kll ] —k11
Aa=A-BK =, 1/2] 11 [ kool =11 172] T lkyy kool = |1 —kys %— -
Closed | t ' [ “a ]
osed loop system x = 1 X
Do 1—kyy 5~k

How to find eigen values of A.;?

Solve the roots of characteristic equation det(Al — A,;) = 0
A + kll —v

det [—1 thir A= 4k

] =0 22+ (2kyy +kyy —3) A+ (kazkay — 5kay — v+ vkyy ) = 0

Sum of the roots of a quadratic =-b/a = — (2k11 + kyp — %) and we want this to be <0

1

Product of the roots of a quadratic =c/a = (k22k11 — §k11 - v+ vkll) and we want this to be >0

1

For Stab|l|ty (Zkll + k22 — _) < 0 and (kZZkll > k 11—V + vkll) >0 e.g. kll' k22 =2

4o

Phase Portrait of the Closed-Loop System

SRS NNNNNN NN A A A
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A path following controller

Noise p(t) = [x(2), y(t),6(1)] Disturbance

Control input is given by u = [a, 6] I s | ot 1

u(t) = [a, 6]

where a is the acceleration and
0 is the steering angle. sensor | controler p—b  plant
_ 55_ ‘
6 system output
u=K 5" ‘_
g Heading error

K, 0 0 ] br

@



Control design by eigenvalue placement

After linearization and coordinate transformations dynamics become

0O 0 O 1 0]
. ] [0 0 v 0 0[65‘
0O 0 O 0 1.
i - [ds
a1 _[Ks O 0
State feedback control law: [5] “lo Kk, K, [gzl
O 0 O 1 0], K 0 0
K 0 0 .
°A—BK=00v]—OOOSK K:_O 0 —v
o o ol lo 1l' n 70 0 K, Kg

det(Al — A+ BK) = (A® + 22(Ky + K;) + A(K,,v + K, Kg) + K, K,,v)

By Theorem 1 (Stability of linear systems) choose the gains so that the eigenvalues have negative real
parts



Final thoughts: It is possible to make the system Unstable by
Switching between two stable linear models

Each of the modes of a walking robot are asymptotically stable /ji'f«“\:s\;:\
P\
s it possible to switch between them to make the system unstable?,//’f/ ‘\ \




By switching between two stable LTI systems
the overall system becomes unstable =z

//k

=
Systems obtained by confﬁﬁﬁr

two or more ODEs is called a
hybrid system or a hybrid
automaton V

Stability analysis of hybrid
systems in an area of ongoing
research




Hybrid dynamics

[ )
e a»
u x o
\ y
é p

Physical plant

dx
pramPACED) System dynamics

x[t + 1] = f(x[t] u[t])

x = [v,Sx,Sy,6,P]  Statevariables

u = [a, vg] Control inputs

o .
Decision and control software
/v{ speed up }\
merge left merge right
A
close to speeding
front car v
cruise slow down
\_ Yy

31
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summary

 Solutions of linear systems define a linear subspace, i.e., follows
superposition: &(t, a,x; + a,x,, a,uy + a,uy) = a,E(t, xq,uq) + A, E(t, x5, up)

e Solution computed by calculating Matrix exponentials

* Lyapunov stability -> bounded state
* Remember relationship to invariance and reachability

e Asymptotic stability -> bounded and convergence
* We can check stability by computing eigenvalues

e State feedback controllers can be designed by choosing the controller

gains to give appropriate eigen values
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