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Announcements
• Field Trip to CSL Studio for F1 Tenth, GRAIC, and Drone projects (10/2, 11 am)

• We will start in ECEB 1015 at 11 am to see presentations, then walk to CSL studio
• 1206 W Clark St, Urbana, IL 61801

• Project group sign up will open the day after (10/3). 
• Group limit: 4, with an exception of groups of 5 for GEM.

• Groups will be finalized the Tuesday after (10/7). 
• Students who do not sign up will be randomly assigned.

• Midterm: 10/7, covering everything in safety, perception, control
• Go over homework questions, MP questions, and slides
• You can bring 1-page (letter-size) handwritten note (writing on both sides ok)
• Go to the review session hold by TAs

• Pay close attention to any announcements on Campuswire in case anything 
changes



Outline

• Modeling the control problem 
• Differential Equations; solutions and their properties
• Bang-bang control

• Control design 
• PID
• State feedback

• Linear systems  

• Requirements
• Stability, Asymptotic stability
• Designing controllers for stability



Linear dynamical system

Linear system is a dynamical system ሶ𝑥 𝑡 = 𝑓 𝑥  where the dynamical 
function f is a linear function of the state and the inputs

ሶ𝑥 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)

where A and B are (possibly time varying) matrices

For a given initial state 𝑥0 ∈ ℝ𝑛 𝑎𝑛𝑑 piece-wise continuous input signal

𝑢: ℝ → ℝ𝑛  the space of solutions 𝜉 𝑡, 𝑥0, 𝑢  is a linear space
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Solutions of Linear systems define a linear space

ሶ𝑥 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢 𝑡

𝑢 𝑡  continuous everywhere except 𝐷𝑥

Theorem. Let 𝜉 𝑡, 𝑥0, 𝑢  be the solution 

1. ∀𝑥0, 𝑢, 𝜉 𝑡, 𝑥0, 𝑢 : ℝ → ℝ𝑛 is continuous and differentiable w. 𝑟. 𝑡. 𝑡 ∈ ℝ ∖ 𝐷𝑥

2. ∀𝑡, 𝑢, 𝜉 𝑡, 𝑥0, 𝑢  is continuous w.r.t 𝑥0

3. ∀𝑡, 𝑥0, 𝑢, 𝜉 𝑡, 𝑥0, 𝑢 = 𝜉 𝑡, 𝑥0, 𝟎 + 𝜉 𝑡, 0, 𝑢

4. ∀𝑡, 𝑥01, 𝑥02 ∈ ℝ𝑛, 𝑢1,𝑢2: ℝ → ℝ𝑛, 𝑎1, 𝑎2 ∈ ℝ, 

𝜉 𝑡, 𝑎1𝑥01 + 𝑎2𝑥02, 𝑎1𝑢1 + 𝑎2𝑢2 = 𝑎1𝜉 𝑡, 𝑥01, 𝑢1 + 𝑎2𝜉 𝑡, 𝑥02, 𝑢2
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Example

Complete

Zero input

Zero state

States 𝑥: postion (0m), velocity (-2m/s), 
Input u(t): Force = 6 Newtons

stiffness

friction

Source: https://lpsa.swarthmore.edu/Transient/TransZIZS.html

𝑚
𝑑𝑥2(𝑡)

𝑑𝑡
 = 𝑢(𝑡) − 𝑏

𝑑𝑥1(𝑡)

𝑑𝑡
− 𝑘𝑥1(𝑡)

𝑥2(𝑡) =
𝑑𝑥1(𝑡)

𝑑𝑡

Complete

Zero state



Revisit: Free swinging pendulum 
𝑥 ∈ ℝ2 𝑥1: angular position 𝑥2: angular velocity
No input 𝑢; such models are called autonomous ODEs
𝑓: ℝ2 → ℝ2

𝑥2 = ሶ𝑥1

ሶ𝑥2 = −
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

The dynamics equation can be written in vector form:

ሶ𝑥1

ሶ𝑥2
= 

𝑥2

−
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

𝑘: friction coefficient 𝑚: mass 𝑙: length

𝑙

𝑥1

𝑚

𝑚𝑔𝑚𝑔𝑠𝑖𝑛 𝑥1

Not a linear system



Linear dynamical system and solutions

Linear models can be obtained by linearizing a nonlinear model around a 

suitably chosen point 𝐴𝑥0
=

𝜕𝑓(𝑥)

𝜕𝑥
ȁ𝑥0

ሶ𝑥1

ሶ𝑥2
= 

𝑥2

−
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

Linearize around x0=(0,0):

ሶ𝑥1

ሶ𝑥2
= 

𝑥2

−
𝑔

𝑙
𝑥1 −

𝑘

𝑚
𝑥2

 = 
0 1

−
𝑔

𝑙
−

𝑘

𝑚

𝑥1

𝑥2
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Solutions of Linear time invariant system
A Linear Time Invariant (LTI) system is a linear system with constant coefficients

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  

Theorem. The solution of a LTI system is given by 

𝜉 𝑡, 𝑥0, 𝑢 = 𝑥0e𝐴𝑡 + න
𝑡0

𝑡

e𝐴(𝑡−𝜏)𝐵𝑢 𝜏 𝑑𝜏

If there is no input then  𝜉 𝑡, 𝑥0, 𝟎 = 𝑥0e𝐴𝑡

Recall the definition of the Matrix exponential:

𝑒𝐴𝑡 = 1 + 𝐴𝑡 +
1

2!
𝐴𝑡 2 + … = ෍

0

∞
1

𝑘!
𝐴𝑡 𝑘
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Example: Simple linear model of an economy

𝑥: national income 

𝑦: rate of consumer spending 

𝑔: rate government expenditure

 ሶ𝑥 = 𝑥 − 𝛼𝑦

 ሶ𝑦 = 𝛽 𝑥 − 𝑦 − 𝑔

ሶ𝑥
ሶ𝑦

=
1 −𝛼
𝛽 −𝛽

𝑥
𝑦  −

0
𝛽

𝑔

0 2 4 6 8 10 12 14

time(t)

− 5

0

5

10

15

20

x
,y
,V

income (x)

spending (y)

Lyapunov function (V )

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  



𝐴= 
−1/4 −2/5

3 −1/4
𝐴= 

1/4 −2/5
3 −1/4

𝐴= 
1/2 −2/5

3 −1/4

Example 2D LTI systems (assuming no control u)

𝐴= 
−1/4 −2/5

3 −1/2

Try it yourself! https://colab.research.google.com/drive/1TXjVYI8fHWhhN72tPCEikMq5xXB2-QMI?usp=sharing

https://colab.research.google.com/drive/1TXjVYI8fHWhhN72tPCEikMq5xXB2-QMI?usp=sharing
https://colab.research.google.com/drive/1TXjVYI8fHWhhN72tPCEikMq5xXB2-QMI?usp=sharing
https://colab.research.google.com/drive/1TXjVYI8fHWhhN72tPCEikMq5xXB2-QMI?usp=sharing


Requirements: Equilibria and  Stability

Consider a LTI system (closed system, without inputs) 

ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 = 𝐴𝑥(𝑡), suppose 𝑥0 ∈ ℝ𝑛, 𝑡0 = 0 

𝑥∗ ∈ ℝ𝑛 is an equilibrium point (or stationary point) if 
𝑓 𝑥∗ = 0.

For analysis we will assume 0 to be an equilibrium point 
without loss of generality

𝜉 𝑥0, 𝑡  is the solution

ȁ𝜉 𝑥0, 𝑡 ȁ norm gives a measure of how far the system is 
from the equilibrium
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Revisit: Free swinging pendulum 
𝑥 ∈ ℝ2 𝑥1: angular position 𝑥2: angular velocity
No input 𝑢; such models are called autonomous ODEs
𝑓: ℝ2 → ℝ2

𝑥2 = ሶ𝑥1

ሶ𝑥2 = −
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

The dynamics equation can be written in vector form:

ሶ𝑥1

ሶ𝑥2
= 

𝑥2

−
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

𝑘: friction coefficient 𝑚: mass 𝑙: length

𝑙

𝑥1

𝑚

𝑚𝑔𝑚𝑔𝑠𝑖𝑛 𝑥1

Two equilibrium points: 0,0 , (𝜋, 0)



𝜔CW

CCW u
p

ri
g

h
t

d
o

w
n

𝜃



Lyapunov stability

An important class of requirement for control systems is to say 

that the state stays bounded in some small region (𝜀-ball) 

For any 𝜀-ball, there is a corresponding 𝛿-ball such that if the 

system starts in the 𝛿-ball then it forever stays in the 𝜀-ball.

Lyapunov stability: The system is stable (at the origin) if 

 ∀𝜀 > 0 ∃ 𝛿𝜀 > 0 such that 𝑥0 ≤ 𝛿𝜀 ⇒ ∀ t ≥ 0, 𝜉 𝑥0, 𝑡 ≤ 𝜀.

Exercise. How is Lyapunov stability related to invariants and 

reachable states ?
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𝜀



Asymptotic stability

A system is asymptotically stable (at the origin) if it is Lyapunov stable 

and as t → ∞, 𝜉 𝑥0, 𝑡 → 𝟎.

𝜀𝜀
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Lyapunov stable   Asymptotically stable   Unstable



Phase portrait of pendulum with friction
Recall that the pendulum has two equilibria. Is it stable, asymptotically stable, or unstable? 



Butterfly 

ሶ𝑥2

ሶ𝑥1
= 

2𝑥1𝑥2

𝑥1
2 − 𝑥2

2

All solutions converge to 0 but the 
equilibrium point (0,0) is not 
Lyapunov stable

Convergence is not the same as 
asymptotic stability



Verifying Stability for Linear Systems

Theorem 1. (Stability of linear systems) An LTI system ሶ𝑥 = 𝐴𝑥

1. is asymptotically stable iff all the eigenvalues of A have strictly 

negative real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigenvalues of A have real parts that 

are either zero or negative and the Jordan blocks corresponding to the 

eigenvalues with zero real parts are of size 1.



Jordan decomposition*

For every n x n matrix A, there exists a nonsingular n x n matrix P such that 

where each 𝐽𝑖  is an upper triangular matrix called a Jordan block with diagonal 
elements equal to the eigenvalue 𝜆𝑖 



ሶ𝑥2

ሶ𝑥1
= 

−1/4 −2/5
3 −1/4

λ1=−0.25−i1.10
λ2=−0.25+i1.10

ሶ𝑥2

ሶ𝑥1
= 

1/4 −2/5
3 −1/4

λ1=+i0.1066
λ2=-i0.1066
Jordan blocks of size 1

ሶ𝑥2

ሶ𝑥1
= 

1/2 −2/5
3 −1/4

λ1=0.125+i1.029
λ2=-0.125-i1.029

ሶ𝑥2

ሶ𝑥1
= 

−1/4 −2/5
3 −1/2

λ1=−0.375−i1.088
λ2=−0.375+i1.088



Control design by Eigenvalue placement

Problem: Given a Linear Time Invariant (LTI) system ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  we 

would like to design a controller 𝑢 𝑡 = 𝑔 𝑥 𝑡  such that the closed loop system 

is asymptotically stable.

We choose a full state feedback controller  𝑔 𝑥 𝑡 = 𝐾𝑥(𝑡) where 𝐾 ∈ ℝ𝑛×𝑛

PlantSensor
Controller 

g

control signal
𝑢 𝑡

𝑥(𝑡)

𝑦(𝑡)

Plant
Controller 

𝑔 𝑥 𝑡 = 𝐾𝑥(𝑡)

control signal
𝑢 𝑡

𝑥(𝑡)



Control design by Eigenvalue placement
Problem: Given a Linear Time Invariant (LTI) system ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡  we would like to 

design a controller 𝑢 𝑡 = 𝑔 𝑥 𝑡  such that the closed loop system is asymptotically stable.

Step 1. We choose a full state feedback controller  𝑔 𝑥 𝑡 = −𝐾𝑥(𝑡) where 𝐾 ∈ ℝ𝑛×𝑛

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 − 𝐵𝐾𝑥 𝑡 = 𝐴 − 𝐵𝐾 𝑥 𝑡

ሶ𝑥 𝑡 = 𝐴𝑐𝑙𝑥 𝑡  where 𝐴𝑐𝑙 = 𝐴 − 𝐵𝐾

Step 2. Choose 𝐾 such that 𝑅𝑒 𝜆 𝐴𝑐𝑙 < 0. 

Plant
Controller 

𝑔 𝑥 𝑡 = 𝐾𝑥(𝑡)

control signal
𝑢 𝑡

𝑥(𝑡)



Control design by Eigenvalue placement

𝐴 =
0 𝑣

1
1

2

 𝐵 =
1 0
1 1

 𝑠𝑢𝑝𝑝𝑜𝑠𝑒 𝑢 =
𝑘11 0

0 𝑘22

𝑥1

𝑥2
  and v is a parameter > 1/3

𝐴𝑐𝑙 = 𝐴 − 𝐵𝐾 =
0 𝑣
1 1/2

−
1 0
1 1

𝑘11 0
0 𝑘22

=
0 𝑣
1 1/2

−
𝑘11 0
𝑘11 𝑘22

=
−𝑘11 𝑣

1 − 𝑘11
1

2
− 𝑘22

Closed loop system ሶ𝑥 =
−𝑘11 𝑣

1 − 𝑘11
1

2
− 𝑘22

𝑥

How to find eigen values of 𝐴𝑐𝑙?

Solve the roots of characteristic equation det 𝜆𝐼 − 𝐴𝑐𝑙 = 0

𝑑𝑒𝑡
𝜆 + 𝑘11 −𝑣

−1 + 𝑘11 𝜆 −
1

2
+ 𝑘22

= 0  𝜆2 + 2𝑘11 + 𝑘22 −
1

2
𝜆 + 𝑘22𝑘11 −

1

2
𝑘11 − 𝑣 + 𝑣𝑘11 = 0 

Sum of the roots of a quadratic = -b/a  = − 2𝑘11 + 𝑘22 −
1

2
 and we want this to be < 0 

Product of the roots of a quadratic = c/a = 𝑘22𝑘11 −
1

2
𝑘11 − 𝑣 + 𝑣𝑘11  and we want this to be > 0 

For stability − 2𝑘11 + 𝑘22 −
1

2
< 0 and 𝑘22𝑘11 −

1

2
𝑘11 − 𝑣 + 𝑣𝑘11 > 0 e.g. k11, 𝑘22 = 2  



A path following controller

Control input is given by 𝑢 = 𝑎, 𝛿
where a is the acceleration and 
𝛿 is the steering angle. 

 𝑢 = 𝐾

𝛿𝑠

𝛿𝑛

𝛿𝜃

𝛿𝑣

 𝐾 =
𝐾𝑠 0 0 𝐾𝑣

0 𝐾𝑛 𝐾𝜃 0

PlantSensor Controller

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

control signal
𝑢 𝑡 = [𝑎, 𝛿]

system output

Feedback

Noise
Disturbance

𝜃𝐵

𝛿𝑠: along track error 

𝛿𝑛

𝛿𝜃

cross track error 

Heading error 



Control design by eigenvalue placement

• After linearization and coordinate transformations dynamics become

•

ሶ𝛿𝑠
ሶ𝛿𝑛
ሶ𝛿𝜃

=
0 0 0
0 0 𝑣
0 0 0

𝛿𝑠
𝛿𝑛
𝛿𝜃

+
1 0
0 0
0 1

𝑎
𝛿

• State feedback control law: 
𝑎
𝛿

 = 
𝐾𝑠 0 0
0 𝐾𝑛 𝐾𝜃

𝛿𝑠
𝛿𝑛
𝛿𝜃

• 𝐴 − 𝐵𝐾 =
0 0 0
0 0 𝑣
0 0 0

−
1 0
0 0
0 1

𝐾𝑠 0 0
0 𝐾𝑛 𝐾𝜃

= −
𝐾𝑠 0 0
0 0 −𝑣
0 𝐾𝑛 𝐾𝜃

• det 𝜆𝐼 − 𝐴 + 𝐵𝐾 = (𝜆3 + 𝜆2 𝐾𝜃 + 𝐾𝑠 + 𝜆 𝐾𝑛𝑣 + 𝐾𝑠𝐾𝜃 + 𝐾𝑠𝐾𝑛𝑣)

By Theorem 1 (Stability of linear systems) choose the gains so that the eigenvalues have negative real 
parts



Run

Walk

Each of the modes of a walking robot are asymptotically stable
 
Is it possible to switch between them to make the system unstable?

Final thoughts: It is possible to make the system Unstable by 

Switching between two stable linear models



Run

Walk

By switching between two stable LTI systems 
the overall system becomes unstable

Systems obtained by combining 
two or more ODEs is called a 
hybrid system or a hybrid 
automaton

Stability analysis of hybrid 
systems in an area of ongoing 
research



Hybrid dynamics

31

merge left

cruise

merge right

speed up

close to 
front car

slow down

speeding

Decision and control software 

 

Physical plant

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢  

𝑥 = [𝑣, 𝑠𝑥 , 𝑠𝑦 , 𝛿, 𝜓]

𝑢 = [𝑎, 𝑣𝛿]

State variables

Control inputs

𝑥 𝑡 + 1 = 𝑓 𝑥 𝑡 , 𝑢[𝑡]

System dynamics



Summary

• Solutions of linear systems define a linear subspace, i.e., follows 
superposition: 𝜉 𝑡, 𝑎1𝑥1 + 𝑎2𝑥2, 𝑎1𝑢1 + 𝑎2𝑢2 = 𝑎1𝜉 𝑡, 𝑥1, 𝑢1 + 𝑎2𝜉 𝑡, 𝑥2, 𝑢2

• Solution computed by calculating Matrix exponentials 

• Lyapunov stability -> bounded state
• Remember relationship to invariance and reachability

• Asymptotic stability -> bounded and convergence

• We can check stability by computing eigenvalues

• State feedback controllers can be designed by choosing the controller 
gains to give appropriate eigen values
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