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Review: state estimation module

Problem. Estimate the current state 𝑥𝑡 of the system from knowledge 
about past observations 𝑧0:𝑡, control inputs 𝑢0:𝑡, and map 𝑚

• Discrete Bayes Filter/Grid localization

• Particle filter

• Kalman filter



Review: Discrete Bayes Filter

Finitely many states 𝑥𝑖 , 𝑥𝑘 , 𝑒𝑡𝑐. Random state vector 𝑋𝑡

𝑝𝑘,𝑡: belief at time t for state 𝑥𝑘; discrete probability distribution

Algorithm Discrete_Bayes_filter( 𝑝𝑘,𝑡−1 , 𝑢𝑡, 𝑧𝑡):

for all 𝑘 do:

 ҧ𝑝𝑘,𝑡 = σ𝑖 𝑝(𝑋𝑡 = 𝑥𝑘|𝑢𝑡,𝑋𝑡−1 = 𝑥𝑖) 𝑝𝑖,𝑡−1

 𝑝𝑘,𝑡 = 𝜂 𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘) ҧ𝑝𝑘,𝑡

end for

return {𝑝𝑘,𝑡} 

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑘

𝑝′

1
𝑝1,𝑡−1

2
𝑝2,𝑡−1

3
𝑝3,𝑡−1

𝑝 𝑥𝑘|𝑢𝑡, 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡

Notation: 𝑏𝑒𝑙 𝑋𝑡 = 𝑥𝑘 ≔ 𝑝𝑘,𝑡

Prediction step with 
motion model

correction step with 
measurement model
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Grid localization, 
𝑏𝑒𝑙 𝑥𝑡 represented by a 
histogram over grid 𝑝𝑀(𝑧|𝑥)

𝑝𝑀(𝑧|𝑥)

initial

correction

prediction

correction

prediction



Review: Particle filtering algorithm 
𝑋𝑡 ≔ {𝑥𝑡

[1]
, 𝑥𝑡

[2]
, … 𝑥𝑡

[𝑀]
} set of particles

Algorithm Particle_filter(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡):
ത𝑋𝑡 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

    sample 𝑥𝑡
[𝑚]

~𝑝𝐷 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1
[𝑚]

)

    𝑤𝑡
[𝑚]

= 𝑝𝑀 𝑧𝑡 𝑥𝑡
𝑚

    Add ⟨ 𝑥𝑡
𝑚

, 𝑤𝑡
[𝑚]

⟩ to ത𝑋𝑡

for all 𝑚 in [M] do:

   draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

    add 𝑥𝑡
[𝑖]

 𝑡𝑜 𝑋𝑡

return 𝑋𝑡

ideally,  𝑥𝑡
[𝑚]

 is selected with probability prop. to 𝑝 𝑥𝑡 𝑧1:𝑡 , 𝑢1:𝑡)

ത𝑋𝑡 is the temporary particle set

sampling new particles using motion model 𝑝𝐷

calculates importance factor 𝑤𝑡 or weight according to measurement 𝑝𝑀

before resampling particles in ത𝑋𝑡 distributed ~ 𝑏𝑒𝑙 𝑥𝑡  

after resampling particles 𝑋𝑡 distributed ~ 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡
[𝑚]

𝑏𝑒𝑙 𝑥𝑡

survival of fittest: moves/adds particles to parts of the state space with higher 
probability, lower probability particles are eliminated 



Particle Filters
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Review: Discrete Kalman Filter
The Kalman filter estimates state of a Discrete Linear System with Gaussian noise
Note that we no longer have discrete states or measurements! No grids, particles, etc.

Intuitive insight: Assume the belief is represented as Gaussian distributions. Linear 
transformation (addition, scaling）and multiplications over Gaussians are still Gaussians

𝑥𝑡: State vector
ut: Input vector
𝑧𝑡: Output vector
𝜀𝑡 ~ 𝑁 0, Qt  : Process noise with covariance Qt  
𝛿𝑡~𝑁(0, 𝑅𝑡) : Measurement noise with covariance Rt

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡 = 𝑁(𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 , Qt)
𝑝 𝑧𝑡 𝑥𝑡 = 𝑁(𝐶𝑡𝑥𝑡 , 𝑅𝑡)

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜖𝑡 
𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡 



Review: Kalman Filter Algorithm

Kalman_Filter(𝜇𝑡−1, Σ𝑡−1, 𝑢𝑡 , 𝑧𝑡):

Prediction: get ഥ𝜇𝑡 and തΣ𝑡 (linear motion)
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
⊤ + 𝑄𝑡

Correction: correct ഥ𝜇𝑡 and തΣ𝑡 (linear meas.)
1. 𝐾𝑡  = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡
തΣ𝑡𝐶𝑡

⊤ + 𝑅𝑡
−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)

3. Σ𝑡  = 𝐼 − 𝐾𝑡𝐶𝑡
തΣ𝑡

Return 𝜇𝑡,Σ𝑡 

Given bel(𝑥𝑡−1)~𝑁(𝜇𝑡−1, Σ𝑡−1)
Apply motion model to find ഥ𝑥𝑡 :

Linear transformation of Gaussian bel(𝑥𝑡−1)
where 𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜖𝑡;  𝜀𝑡 ~ 𝑁 0, 𝑄t

=> ഥ𝑥𝑡~𝑁( ഥ𝜇𝑡, തΣ𝑡)

Given ഥ𝑥𝑡~𝑁( ഥ𝜇𝑡, തΣ𝑡)
Apply measurement model to find bel(𝑥𝑡):

Product of Gaussians ഥ𝑥𝑡 and  p(𝑧𝑡| 𝑥𝑡)
Where 𝑝 𝑧𝑡 𝑥𝑡  is a Gaussian (variable is 𝑥𝑡 ) 

=> bel 𝑥𝑡  ~𝑁(𝜇𝑡,Σ𝑡)



Kalman Filter Example
ti

m
e 

= 
1

ti
m

e
 =

 2

Demo: https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing

https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing


Summary

• Grid localization
• Can represent arbitrary, multi-modal distributions; minimal assumption on dynamics and sensor 

models
• High computational cost; impractical for high dimension; inaccurate if grid is coarse

• Particle Filters (Monte Carlo Localization)
• Model arbitrary distirbutions via samples; more scalable to higher-dimensional spaces than grid 

localization; easy to implement and understand
• Approximation quality and time complexity depends on the number of particles; no guarantee 

on approximation error, particle degeneracy problem

• Kalman filters
• Extremely efficient computationally; optimality guarantees; close form & well studied
• Gaussian distributions only (no multi-modal); known linear motion and measurement models
• Extension to nonlinear system possible (extended Kalman filters), yet EKF has its own limitations
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▪ SLAM: simultaneous localization and mapping

▪ The task of building a map while estimating 

the pose of the robot relative to this map

▪ Robot does not have a map, unlike in localization

▪ Why is SLAM hard?

Chicken and egg problem: 

a map is needed to localize the robot and 

a pose estimate is needed to build a map

The SLAM Problem
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Given:

• The robot’s controls

• Observations of nearby 
features

 Estimate:

• Map of features

• Path of the robot

A SLAM Solution

A robot moving though an 

unknown, static 

environment

Video from Miklós Tóth https://www.youtube.com/watch?v=v4flz0AtENk

https://www.youtube.com/@tothmiki91
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SLAM Applications
Indoors

Space

Undersea

Underground



Forms of SLAM

• State / history
• Online SLAM: 𝑝 𝑥𝑡 , 𝑚 𝑧1:𝑡, 𝑢1:𝑡)

• Full SLAM: 𝑝 𝑥1:𝑡 , 𝑚 𝑧1:𝑡 , 𝑢1:𝑡)

• Continuous or discrete correspondence variables
• 𝑝 𝑥𝑡 , 𝑚 𝑧1:𝑡, 𝑢1:𝑡)

• Many algorithms: EKFSLAM, GraphSLAM, FastSLAM



Online SLAM

m

zt-1
zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
control inputs (u), 
measurements(z). 

White nodes to be determined (x,m)



Full SLAM

m

zt-1
zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
control inputs (u), measurements(z). 

White nodes to be determined (x,m)
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SLAM: 
Simultaneous Localization and Mapping

• Full SLAM:

• Online SLAM:

Integration of the marginals typically done one at a time 

),|,(
:1:1:1 ttt

uzmxp

121:1:1:1:1:1
...),|,(),|,(

−  =
ttttttt

dxdxdxuzmxpuzmxp 

Estimates most recent pose and map!

Estimates entire path and map!
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Representations

Grid maps or scans

 

 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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Why is SLAM a hard problem?
SLAM: robot path and map are both unknown 

Robot path error correlates errors 

in the map
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Why is SLAM a hard problem?

• In the real world, the mapping between observations and landmarks is 
unknown

• Picking wrong data associations can have catastrophic consequences

• Pose error correlates data associations

Robot pose

uncertainty
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Data Association Problem

• A data association is an assignment of observations to landmarks

• In general there are more than 
(n observations, m landmarks) possible associations

• Also called “assignment problem”
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▪ A particle filter can be used to solve both problems

▪ Localization: state space  x, y, 

▪ SLAM: state space  x, y, , map 

▪ for landmark maps =  l1, l2, …, lm

▪ for grid maps =  c11, c12, …, c1n, c21, …, cnm

▪ Problem: The number of particles needed to represent a posterior 

grows exponentially with the dimension of the state space!

Localization vs. SLAM 𝑋𝑡 = 𝑥𝑡
[1]

, 𝑥𝑡
[2]

, … 𝑥𝑡
[𝑀]

 particles

Particle_filter(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡):
ത𝑋𝑡 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

    sample 𝑥𝑡
[𝑚]

~𝑝𝐷 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1
[𝑚]

)

    𝑤𝑡
[𝑚]

= 𝑝𝑀 𝑧𝑡 𝑥𝑡
𝑚

    ത𝑋𝑡 = ത𝑋𝑡 + ⟨ 𝑥𝑡
𝑚

, 𝑤𝑡
[𝑚]

⟩

for all 𝑚 in [M] do:

   draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

    add 𝑥𝑡
[𝑖]

 𝑡𝑜 𝑋𝑡

return 𝑋𝑡



• Naïve implementation of particle filters to SLAM will be crushed by the 
curse of dimensionality

25
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▪ Is there a dependency between the dimensions of the state space?

▪ If so, can we use the dependency to solve the problem more 

efficiently?

▪ In the SLAM context

▪ The map depends on the poses of the robot.

▪ We know how to build a map given the position of the sensor is 

known.

Dependencies



Conditional Independence

• A and B are conditionally independent given C if 

 P(A, B | C) = P(A|C) P(B|C)

• Conditional independence enables us to factor a high-dimensional 
distribution P(A, B | C) as a product of two lower-dimensional 
distributions

27



Conditional Independence

• A and B are conditionally independent given C if 

 P(A, B | C) = P(A|C) P(B|C)

Example: A mobile robot estimating its position using two sensors (sonar and 
laser rangefinder):

x = Robot's true position

z1 = Sonar measurement

z2 = Laser rangefinder measurement

P(z1,z2∣x)=P(z1∣x)⋅P(z2∣x)

Given the robot's true position x, each sensor's reading depends only on that 
position, not on what the other sensor reads.

28
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Knowledge of the robot’s true path renders landmark positions 

conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls

x1 x2 xt

u1 ut-1

l2

l1

z1

z2

x3

u1

z3

zt

Landmark 2

x0

u0 
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Factored Posterior (Landmarks)

Factorization first introduced by Murphy in 1999

poses map observations & movements

P(A , B | C, D) = P(B | C, D) P(A|B, C, D)
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Factored Posterior (Landmarks)

SLAM posterior

Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Factored Posterior: using conditionally independence

Robot path posterior

(localization problem) Conditionally 

independent 

landmark positions
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Rao-Blackwellization

▪ This factorization is also called Rao-Blackwellization

▪ Given that the second term can be computed efficiently, particle 

filtering becomes possible!



David H. Blackwell (1919-2010)

Independently developed dynamic programming. 
Several results including the Blackwell renewal 
theorem and the Rao-Blackwell theorem in statistics.

University of Illinois at Urbana-Champaign (BA, MA, 
PhD 1941)

photo from stat.illinois

https://www.merriam-webster.com/dictionary/dynamic
https://stat.illinois.edu/news/2020-07-17/david-h-blackwell-profile-inspiration-and-perseverance
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FastSLAM

▪ Rao-Blackwellized particle filtering based on landmarks     

[Montemerlo et al., 2002]

▪ Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)

▪ Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, 

Landmark 1 Landmark 2 Landmark M…x, y, 
Particle #1

Landmark 1 Landmark 2 Landmark M…x, y, 
Particle #2

Particle N

…

https://en.wikipedia.org/wiki/David_Blackwell
https://en.wikipedia.org/wiki/David_Blackwell
https://en.wikipedia.org/wiki/David_Blackwell
https://en.wikipedia.org/wiki/David_Blackwell
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FastSLAM – Prediction (Motion model)

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Correction (Measurement model )

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  -  Video

https://www.youtube.com
/watch?v=6xRu7Xgmwcc

https://www.youtube.com
/watch?v=ATj-DrwrHx0

https://www.youtube.com/watch?v=6xRu7Xgmwcc
https://www.youtube.com/watch?v=6xRu7Xgmwcc
https://www.youtube.com/watch?v=ATj-DrwrHx0
https://www.youtube.com/watch?v=ATj-DrwrHx0
https://www.youtube.com/watch?v=ATj-DrwrHx0
https://www.youtube.com/watch?v=ATj-DrwrHx0
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Data Association Problem

• A robust SLAM must consider possible data associations 

• Potential data associations depend also on the pose of the robot 

▪ Which observation belongs to which landmark?



41

Multi-Hypothesis Data Association

• Data association is done on a per-
particle basis

• Robot pose error is factored out of 
data association decisions
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Per-Particle Data Association

Was the observation

generated by the red

or the purple landmark?

P(observation|red) = 0.3 P(observation|purple) = 0.7

▪ Two options for per-particle data association

▪ Pick the most probable match

▪ Pick a random association weighted by 
the observation likelihoods

▪ If the probability is too low, generate a new landmark
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FastSLAM  Complexity

• Update robot particles based on control ut-1

• Incorporate observation zt into Kalman filters

• Resample particle set

N = Number of particles

M = Number of map features

O(N)
Constant time per particle

O(N•log(M))
Log time per particle

O(N•log(M))

O(N•log(M))
Log time per particle

Log time per particle

See https://robots.stanford.edu/papers/Thrun03g.pdf for tricks of log time

https://robots.stanford.edu/papers/Thrun03g.pdf
https://robots.stanford.edu/papers/Thrun03g.pdf
https://robots.stanford.edu/papers/Thrun03g.pdf
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Results – Victoria Park
• 4 km traverse

• < 5 m RMS position error

• 100 particles

Dataset courtesy of University of Sydney

Blue = GPS

Yellow = FastSLAM
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Results – Victoria Park

Dataset courtesy of University of Sydney

https://www.youtube.com/watch?v=BIOJSNHYSbc



Conclusions FastSLAM
• Maintain set of particles

• Each particle contains s sampled robot path and a map

• Each feature in the map represented by local gaussian

• Result is linear in size of map and number of particles

• Trick is to represent map as a set of separate Gaussians instead of a 
giant joint distribution
• Possible because of conditional independence given a path

• Rao-Blackwellization

• Update rule similar to conventional particle filter

• Each particle can be based on a different data association
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