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Review: state estimation module

Problem. Estimate the current state x; of the system from knowledge
about past observations zg.¢, control inputs ugy.;, and map m

 Discrete Bayes Filter/Grid localization
e Particle filter
e Kalman filter



Review: Discrete Bayes Filter

Notation: bel(X; = xx) = Pk ¢

Finitely many states x;, xj, etc. Random state vector X;

Pk ¢ belief at time t for state xy; discrete probability distribution

Algorithm Discrete_Bayes_fiIter({pk,t_1}, U, Zt):

for all k do:
_ . _ Prediction step with
pk,t =N p(Zt |Xt — xk)ﬁk,t correction step with
measurement model
end for

return {py ¢}
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Grid localization,
bel(x;)represented by a
histogram over grid
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Review: Particle filtering algorithm

1] [2]

X = {xt[ yXg ...xiM]}set of particles

Algorithm Particle_filter(X;_1, u¢, z¢):
Xt = Xt - @

for all m in [M] do:

sample xt[m]~pp (e ue, xt[Tb

il oy (Zt|xt[m])
Add ( xim],wt[m]) to X,
for all min [M] do:
draw i with probability < Wt[i]
add xii] to X;
return X;
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ideally, xt[m] is selected with probability prop. to p(x; | z1.¢, Uq.¢)

X, is the temporary particle set

sampling new particles using motion model pp

calculates importance factor wy or weight according to measurement py,
before resampling particles in X, distributed ~ bel(x;)

after resampling particles X; distributed ~ bel(x;) =np (Zt‘xim]) bel(x;)

survival of fittest: moves/adds particles to parts of the state space with higher
probability, lower probability particles are eliminated
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Particle Filters
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Sensor Information: Importance Sampling

t p(s)
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Robot Motion
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Review: Discrete Kalman Filter

The Kalman filter estimates state of a Discrete Linear System with Gaussian noise
Note that we no longer have discrete states or measurements! No grids, particles, etc.

Intuitive insight: Assume the belief is represented as Gaussian distributions. Linear
transformation (addition, scaling) and multiplications over Gaussians are still Gaussians

Xy = AiXp_1 + Biug + € x,: State vector

Zp = Ctxt + 51: U;: Input vector
Z¢: Output vector
g ~N(0,Q.) : Process noise with covariance Q;
0;~N (0, R;) : Measurement noise with covariance R;
p(xe|xe—q,ue) = N(Arxp—q + Brug, Qp)
p(z¢|x;) = N(Cexe, Ry)



Review: Kalman Filter Algorithm

Kalman_Filter(us_1, Z¢—1, Us, Z¢):

Prediction: get fi; and X, (linear motion) Given bel(x;—1)~N (-1, Z¢-1)

— Apply motion model to find X; :
1L l_lt — At.ut—l + Btut Linear transformation of Gaussian bel(x;_;)

2 Xy = Atzt_lAI + Q; where x; = Ax¢—q + Beug + €5 & ~ N(0, Q)
. —_ — . => x_tNN(/It'Zt)
Correction: correct ft; and X4 (linear meas.)

— N T Niadl -1
1. K, =%.Cl(CE.C + Ry Given T~N (i3, £,)

2. Uy =y + Ki(z; — Crliy) Apply measurement model to find bel(x;):
— _ N Product of Gaussians x; and p(z¢| x;)
TR (I Ktct)zt Where p(z;|x;) is a Gaussian (variable is x; )
Return pe, 2+ =>bel(x¢) ~N (ue, )
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Kalman Filter Example

Demo: https://colab.research.google.com/drive/1gcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing
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https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing

Summary

e Grid localization

e Can represent arbitrary, multi-modal distributions; minimal assumption on dynamics and sensor
models

* High computational cost; impractical for high dimension; inaccurate if grid is coarse

 Particle Filters (Monte Carlo Localization)

* Model arbitrary distirbutions via samples; more scalable to higher-dimensional spaces than grid
localization; easy to implement and understand

* Approximation quality and time complexity depends on the number of particles; no guarantee
on approximation error, particle degeneracy problem
e Kalman filters
* Extremely efficient computationally; optimality guarantees; close form & well studied
e Gaussian distributions only (no multi-modal); known linear motion and measurement models
* Extension to nonlinear system possible (extended Kalman filters), yet EKF has its own limitations
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The SLAM Problem

SLAM: simultaneous localization and mapping

The task of building a map while estimating
the pose of the robot relative to this map

Robot does not have a map, unlike in localization

Why is SLAM hard?

Chicken and egg problem:

a map is needed to localize the robot and
a pose estimate is needed to build a map

13



A SLAM Solution

A robot moving though an
unknown, static
environment

Given:

e The robot’s controls

e Observations of nearby
features

Estimate:

* Map of features

e Path of the robot

Video from Miklés Toth https://www.youtube.com/watch?v=v4flzOAtENk
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https://www.youtube.com/@tothmiki91

SLAM Applications
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Forms of SLAM

e State / history
* Online SLAM: p(x¢, m |Z1.¢, Uq.t)
e Full SLAM: p(xl:t,‘m |Zl:t' ul:t)

e Continuous or discrete correspondence variables

* p(x¢, m|z1.¢, uqt)

* Many algorithms: EKFSLAM, GraphSLAM, FastSLAM



Online SLAM

Shaded known:
control inputs (u),
measurements(z).

White nodes to be determined (x,m)

want to calculate
p(xt: mlzl:t: ul:t)




Full SLAM

Shaded known:
control inputs (u), measurements(z).

White nodes to be determined (x,m)

want to calculate
p(X1.6, M|Z1.¢, Ug.t)

Continuous
unknowns: x;.;,m
Discrete unknowns:
Relationship of
detected objects to
new objects

p(X1:¢, Ct, M| Z1.¢, Ug:t)

c;: corrsnpondence
variable
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SLAM:

Simultaneous Localization and Mapping

* Full SLAM:

Integration of the marginals typically done one at a time

Estimates entire path and map!

,u“) = J‘J‘ J’p(xlzt,m |Z1:t’u1:r) dx 1a’x , dx -

Estimates most recent pose and map!

19



Representations

i

Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

Landmark—based

blagping

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...

(({éigh
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Why is SLAM a hard problem?
SLAM: robot path and map are both unknown

Robot path error correlates errors
In the map

21



Why is SLAM a hard problem?
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* In the real world, the mapping between observations and landmarks is
unknown

* Picking wrong data associations can have catastrophic consequences
* Pose error correlates data associations

fﬁ.‘fi\é 0}
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Data Association iroblem
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e A data association is an assignment of observations to landmarks

n
* In general there are more than (m>
(n observations, m landmarks) possible associations

* Also called “assignment problem”

4o
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Localization vs. SLAM

A particle filter can be used to solve both problems

Localization: state space <x, y, 6>

SLAM: state space <X, y, 6 map>
® for landmark maps = </, I,, ..., |.,>

" for grid maps = <C;;, Cy,

RN 4 Cln, C21, s

., Com>

X = xil],xgz], ...xiM] particles

Particle_filter(X;_1, u¢, z¢):
Xt - Xt = @
for all m in [M] do:

sample xim]"'pp (¢, xfﬂ)

wl™ = pu (21"

Xe =X+ xtm]»Wt[m])
forallmin [M] do:

draw i with probability « Wt[i]
add xP] to X;

return X;

Problem: The number of particles needed to represent a posterior
grows exponentially with the dimension of the state space!

24



* Naive implementation of particle filters to SLAM will be crushed by the
curse of dimensionality
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Dependencies

" Is there a dependency between the dimensions of the state space?

" If so, can we use the dependency to solve the problem more
efficiently?

" In the SLAM context
" The map depends on the poses of the robot.

" We know how to build a map given the position of the sensor is
known.

26
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Conditional Independence

* A and B are conditionally independent given C if
P(A,B | C) =P(A|C) P(B|C)

e Conditional independence enables us to factor a high-dimensional
distribution P(A, B | C) as a product of two lower-dimensional
distributions

27
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Conditional Independence

* A and B are conditionally independent given C if
P(A,B | C)=P(A|C) P(B|C)

Example: A mobile robot estimating its position using two sensors (sonar and
laser rangefinder):

X = Robot's true position

z, = Sonar measurement

z, = Laser rangefinder measurement
P(z,,2,1x)=P(z,1x)-P(z,Ix)

Given the robot's true position x, each sensor's reading depends only on that
position, not on what the other sensor reads.

28



Mapping using Landmarks

Landmark 1 —

observations —

Landmark 2 —

Knowledge of the robot’s true path renders landmark positions
conditionally independent

(((—29



Factored Posterior (Landmarks)

poses map observations & movements

‘o

p(wlitallim | Zl:tauo:t—l) —
P(ml:t ‘ Zl:tyuO:t—l) 'p(ll:m | ajl:tvz]_:t)

P(A,B ) =P(B ) P(A|B )

Factorization first introduced by Murphy in 1999

30




Factored Posterior (Landmarks)

poses map observations & movements

‘o

p(wlitallim | Zl:tauo:t—l) —
] P(ml:t ‘ Zl:taUO:t—l) ’p(ll:m | ajl:tvz]_it)

SLAM posterior ‘
Robot path posterior

landmark positions

Does this help to solve the problem?
Factorization first introduced by Murphy in 1999

) 6 31
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Factored Posterior: using conditionally independence

p(fbl:tall:m ‘ Zl:taUO:t—l)
— p(ml:t | Zl:tauo:t—l) ’p(ll:m | CUl:taZl:t)
M
= p(x1:¢ ]| 21:4v0:t—1) - H p(l; | T1:¢, 21:¢)

Lo |

Robot path posterior

(localization problem) Conditionally
iIndependent

landmark positions
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Rao-Blackwellization

P(T1:4,01:m | 214 U0t—1) =
M

p(z1:¢ | 21:6v0:e—1) - || (L | ®1:4, 21:¢)
i=1

" This factorization is also called Rao-Blackwellization

" Given that the second term can be computed efficiently, particle
filtering becomes possible!

=
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David H. Blackwell (1919-2010)

Independently developed dynamic programming.
Several results including the Blackwell renewal
theorem and the Rao-Blackwell theorem in statistics.

photo from stat.illinois

University of lllinois at Urbana-Champaign (BA, MA,
PhD 1941)
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https://www.merriam-webster.com/dictionary/dynamic
https://stat.illinois.edu/news/2020-07-17/david-h-blackwell-profile-inspiration-and-perseverance

FastSLAM

= Rao-Blackwellized particle filtering based on landmarks
[Montemerlo et al., 2002]

" Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
" Each particle therefore has to maintain M EKFs

Particle #1 Landmark 1 | Landmark 2 8 Landmark M

Particle #2 X, Y, 0 Landmark 1 | Landmark 2 8 Landmark M

Particle N Landmark 1 | Landmark 2 8 Landmark M

(((H—:%S


https://en.wikipedia.org/wiki/David_Blackwell
https://en.wikipedia.org/wiki/David_Blackwell
https://en.wikipedia.org/wiki/David_Blackwell
https://en.wikipedia.org/wiki/David_Blackwell

FastSLAM — P

redict]

on (Motion model)

‘ J Landmark #1
G— ) Filter

Particle #1

Land k #2
> " Fittr

Particle #2

Particle #3
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FastSLAM — Correction (Measurement model )
| Land k #1
o=k " Filter
Particle #1 )
Landmark #2
Filter
Particle #2
Particle #3
37
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FastSLAM — Sensor U

Particle #1

Particle #2

Particle #3

.2

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM - Video
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https://www.youtube.com

/watch?v=6xRu7Xgmwcc

https://www.youtube.com
/watch?v=ATj-DrwrHx0



https://www.youtube.com/watch?v=6xRu7Xgmwcc
https://www.youtube.com/watch?v=6xRu7Xgmwcc
https://www.youtube.com/watch?v=ATj-DrwrHx0
https://www.youtube.com/watch?v=ATj-DrwrHx0
https://www.youtube.com/watch?v=ATj-DrwrHx0
https://www.youtube.com/watch?v=ATj-DrwrHx0
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Data Association Problem

= Which observation belongs to which landmark?

XF\Q%X%\

| /,Q\*
/
/

1
1
1
1, /

&

* A robust SLAM must consider possible data associations

* Potential data associations depend also on the pose of the robot
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Multi-Hypothesis Data Association

e Data association is done on a per-
particle basis

* Robot pose error is factored out of
data association decisions

4o
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Per-Particle Data Association

-

Was the observation

&

N

generated by the red

N

Z

or the purple landmark??

P(observation|red) = 0.3

P(observation|purple) = 0.7

= Two options for per-particle data association

= Pick the most probable match

= Pick a random association weighted by
the observation likelihoods

= If the probability is too low, generate a new landmark

4o
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FastSLAM Complexity
O(N)

* Update robot particles based on control Uy; ¢ ciant time per particle

* Incorporate observation z, into Kalman filters  Q(Nelog(M))

Log time per particle

O(N¢log(M))

Log time per particle

e Resample particle set

N = Number of particles O(Nelog(M))
M = Number of map features Log time per particle

See https://robots.stanford.edu/papers/Thrun03g.pdf for tricks of log time

i'fé (0}
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https://robots.stanford.edu/papers/Thrun03g.pdf
https://robots.stanford.edu/papers/Thrun03g.pdf
https://robots.stanford.edu/papers/Thrun03g.pdf

Results — Victoria Park

* 4 km traverse
* <5 m RMS position error
* 100 particles

Yellow = FastSLAM Dataset courtesy of University of Sydney

gy A s




Results — Victoria Park

https://www.youtube.com/watch?v=BIOJSNHYSbc

6 o Dataset courtesy of University of Sydney
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Conclusions FastSLAM

* Maintain set of particles
* Each particle contains s sampled robot path and a map
e Each feature in the map represented by local gaussian
e Resultis linear in size of map and number of particles

 Trick is to represent map as a set of separate Gaussians instead of a
giant joint distribution
* Possible because of conditional independence given a path
* Rao-Blackwellization

e Update rule similar to conventional particle filter
* Each particle can be based on a different data association
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