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ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 13: Filtering and Localization

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025;
Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Some slides are from the book’s website
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Outline of state estimation module

Problem. Estimate the current state x; of the system from knowledge
about past observations z,.;, control inputs ug.;, and map m

Bayes filter and its variations:

 Grid localization (previous lecture)
 Particle filter (this lecture)

e Kalman filter (this lecture)



Histogram Filter or Discrete Bayes Filter

Notation: bel(X; = xx) = Pk ¢

Finitely many states x;, xj, etc. Random state vector X;

Pk ¢ belief at time t for state xy; discrete probability distribution

Algorithm Discrete_Bayes_fiIter({pk,t_1}, U, Zt):

for all k do:
_ _ _ Prediction step with
pk,t =N p(Zt |Xt — xk)ﬁk,t correction step with
measurement model
end for

return {py ¢}
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Bayes Filter: Continuous Distributions

=

Algorithm Bayes_filter(bel(x;_1), u;, z;)

for all x; do:
bel(x;) = fp(xt|ut,xt;1)bel(xt—1)dxt—1
bel(x;) =np(z|x;) bel(x;)

end for

return bel(x;)

bel(x;_q1) bel(x;_,)

2\ Plxelug, 2) [ Xy
p2 'Q’

e p(xelue, 3) p(z¢|xt)




Grid localization,
bel(x;)represented by a
histogram over grid
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Particle-Based Representation Superposed on Bi-Modal Distribution
0.40 — True PDF

Particle Filters
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®* Belief represented by finite number of parameters or particles

®* Advantages

®* The representation is approximate and nonparametric and therefore can represent a
broader set of distributions e.g., bimodal distributions

® (Can handle nonlinear transformations, e.g., under motion and measurements

®* Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter,
Filtering: [Rubin, 88], [Gordon ‘93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa ‘95]
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Particle filtering algorithm

1] [2]

X = {xt[ yXg ...xiM]}set of particles

Algorithm Particle_filter(X;_1, u¢, z¢):
Xt = Xt - @

for all m in [M] do:

sample xt[m]~pp (e ue, xt[Tb

il oy (Zt|xt[m])
Add ( xim],wt[m]) to X,
for all min [M] do:
draw i with probability < Wt[i]
add xii] to X;
return X;
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ideally, xt[m] is selected with probability prop. to p(x; | z1.¢, Uq.¢)

X, is the temporary particle set

sampling new particles using motion model pp

calculates importance factor wy or weight according to measurement py,
before resampling particles in X, distributed ~ bel(x;)

after resampling particles X; distributed ~ bel(x;) =np (Zt‘xim]) bel(x;)

survival of fittest: moves/adds particles to parts of the state space with higher
probability, lower probability particles are eliminated



Importance Sampling

suppose we want to compute Pr(x € A) = E¢[I(x € A)]

but we can only sample according to density g

Ef[I(x € A)] = [ fO)I(x € A)dx

= [ %g(x)](x € A)dx, provided g(x) > 0

= fw()g(x)I(x € A)dx
=E [w(x)I(x € A)]
We need f(x) > 0= g(x) >0

The ratio w(x) = f(x) / g(x) is the weight of the sample

For the particle filter fis bel(x;) and g
corresponds to bel(x;)

— "~

w(x,) = bel(x,) / bel(x;) « p(z;|x;) Measurement model
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Monte Carlo Localization (MCL)

Xy = xt[l],xl[z], ...xt[M] particles
Algorithm MCL(X_1, u¢, z¢,m):
Xt — Xt — @

for all min [M] do:

xl[m] = sample_motion_model(u; xPﬂ)

Wt[m] = measurement_model(z, x[m]'m)

t
Add ( xl[m], Wt[m]) to X,

for all m in [M] do:
draw i with probability « Wt[i]
add xl[i] to X;

return X;

Plug in motion and
measurement models in the
particle filter
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Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion




Sensor Information: Importance Sampling
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Robot Motion
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ample-based Localization (sonar)
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Initial Distribution




After Incorporating Ten Ultrasound
Scans




After Incorporating 65 Ultrasound Scans




Estimated Path




Using Ceiling Maps for Localization




Vision-based Localization
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P(z|x)
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Under a Light:

Measurement z:

P(z|x):
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Next to a Light

Measurement z:

P(z|x):
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Elsewhere

Measurement z:

P(z|x):
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Global Localization Using Vision




Summary & Limitations

Particle filters implement Bayesian filter representing the posterior by a set of

weighted samples
 Forlocalization, the particles are propagated according to the motion model

* Then weighted according to measurement likelihood.
* |nare-sampling step, new particles are drawn with a probability proportional

weight
PF can track the pose of a mobile robot and to and globally localize the robot.

* Can we deal with kidnapped robot problem?
 Randomly insert samples with small probability
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Brief introduction to Kalman filter

How to estimate state if you have

- linear model of system and
measurement

- hard limit on computation

- Need stronger convergence
guarantees

Kalman Filter: State estimation
algorithm for linear systems with
Gaussian uncertainty

Nonparametricmethod
Heawy-comptiatien

Can-handle nonlinearmodels

- | tical on f
lictributi

Convergence guaranteesonhrunder




Gaussians .

2
p(x)~ N (u,o ):
1l
1 (x-p)
1 )
p(x) = e 7
\N27x o
Univariate .
-bs bs
p(x)~ N (p,X):
1 t -1
1 - —(x-p) X (x-p)
2
p(x) = . T, ¢
(27) p¥
Multivariate




Multivariate Gaussians

p(x)~ N (p,2):

t -1
1 S Txmw) B (xmp) Univariate Multivariate

p(x) = e Gaussians Gaussian
e—f(r—“)TE \F-1)

d /2
cov(x,y)
o2

(27)
Every single variable x; in x has a normal distribution N(u;, g;)
24

If the variables are uncorrelated then the covariance matrix X v
be a diagonal matrix with the diagonal terms {5/}

Interactive demo:
https://colab.research.google.com/drive/1Z6v83JRmJWKAVuUniS48GKuro18Kylqtt?usp=sharing

Random bivariate Gaussian distribution


https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing
https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing

Properties of Gaussians

Linear transformations of Gaussians are Gaussians
Gaussian are closed under linear transformations

Products of Gaussian densities is (proportionally) a Gaussian
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X ~ N (u,o

Y = aX + b
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Multivariate Gaussians

Y

X ~ N(p,2) |

'

= AX + B |

=

T
Y ~ N(Au + B, A4 )

X

X

L N(ﬂlazl)w

b= p(X ) - p(X )~ N

2 N(‘uz’zz)J

> )

2 1

\2 + X X+ 2 >
1 2

We stay in the “Gaussian world” as long as we start with Gaussians and perform only

linear transformations.
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Discrete Kalman Filter

The Kalman filter estimates state of a Discrete Linear System with Gaussian noise

Note that we no longer have discrete states or measurements! No grids, particles, etc.

Xy = AiXp_1 + Biug + € x,: State vector

Zp = Ctxt + 51: U;: Input vector
Z¢: Output vector
g ~N(0,Q.) : Process noise with covariance Q;
0;~N (0, R;) : Measurement noise with covariance R;
p(xe|xe—q,ue) = N(Arxp—q + Brug, Qp)
p(z¢|x;) = N(Cexe, Ry)



Kalman Filter Algorithm

Kalman_Filter(us_1, Z¢—1, Us, Z¢):
Prediction: get fi; and X, (linear motion)
1. [y = Aeple—1 + Brug
2. Iy = AZ AL +Q
Correction: correct jt; and X, (linear meas.)
1. K, =2%,C{(CZC +Ry)™
2. Mp = e + Ke(ze — Ceftr)
3 3 = (-KC)I,
Return pe,2¢

=

Given bel(x¢—1)~N(tt-1, Xt-1)
Apply motion model to find X; :
Linear transformation of Gaussian bel(x;_1)
where x; = A;x;_1 + Boug + €4 & ~ N(0,0Q,)
=> X_tNN(/It' Zt)

Given X;~N (i, 2¢)
Apply measurement model to find bel(x;):
Product of Gaussians x; and p(z¢| x;)

Where p(z;|x;) is a Gaussian (variable is x; )
=> bel(xy) ~N (e, Ze)



Kalman Filter represents the belief
bel(x;) by mean u; and
covariance X;

Kalman Filter Algorithm

Kalman_Filter(us_1, Z¢—1, Us, Z¢):

Prediction: Correction computes the Kalman
1. [y = Aus_q + Bruy gain K; to weight the impact of
2 X = Atzt—lAI + 0, new measurements against the

. predicted value

Correction:
1 Ky = 2,C¢ (G2 Gy + R)™ Higher measurement variance C;
2. P = [ + K (2 ~ Ceite) => |ower gain, less helpful
3 X, = (—-K.C)X,

Return pe,2¢ innovation = z; — C¢li; reflects

how large the deviation is from
prediction to actual observations
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Correction: Prediction:
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Kalman Filter Example

Demo: https://colab.research.google.com/drive/1gcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing

., Pprediction _ measurement | correction
sl . aish i assh
I
()]
.g 7 o1 p o1 |
4-) I\
1 measurement _ correction .
prediction



https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing
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