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Outline of state estimation module

Problem. Estimate the current state 𝑥𝑡 of the system from knowledge 
about past observations 𝑧0:𝑡, control inputs 𝑢0:𝑡, and map 𝑚

Bayes filter and its variations:

• Grid localization (previous lecture)

• Particle filter (this lecture)

• Kalman filter (this lecture)



Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥𝑖 , 𝑥𝑘 , 𝑒𝑡𝑐. Random state vector 𝑋𝑡

𝑝𝑘,𝑡: belief at time t for state 𝑥𝑘; discrete probability distribution

Algorithm Discrete_Bayes_filter( 𝑝𝑘,𝑡−1 , 𝑢𝑡, 𝑧𝑡):

for all 𝑘 do:

 ҧ𝑝𝑘,𝑡 = σ𝑖 𝑝(𝑋𝑡 = 𝑥𝑘|𝑢𝑡,𝑋𝑡−1 = 𝑥𝑖) 𝑝𝑖,𝑡−1

 𝑝𝑘,𝑡 = 𝜂 𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘) ҧ𝑝𝑘,𝑡

end for

return {𝑝𝑘,𝑡} 

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑘

𝑝′

1
𝑝1,𝑡−1

2
𝑝2,𝑡−1

3
𝑝3,𝑡−1

𝑝 𝑥𝑘|𝑢𝑡, 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡

Notation: 𝑏𝑒𝑙 𝑋𝑡 = 𝑥𝑘 ≔ 𝑝𝑘,𝑡

Prediction step with 
motion model

correction step with 
measurement model



Bayes Filter: Continuous Distributions

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡)

for all 𝑥𝑡 do:

𝑏𝑒𝑙 𝑥𝑡 = ∫ 𝑝(𝑥𝑡|𝑢𝑡,𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 

 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑏𝑒𝑙(𝑥𝑡)

end for

return 𝑏𝑒𝑙(𝑥𝑡)

 

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑡

𝑝′

1
𝑝1

2
𝑝2

3
𝑝3

𝑝 𝑥𝑡|𝑢𝑡 , 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡
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Grid localization, 
𝑏𝑒𝑙 𝑥𝑡 represented by a 
histogram over grid 𝑝𝑀(𝑧|𝑥)

𝑝𝑀(𝑧|𝑥)

initial

correction

prediction

correction

prediction



• Belief represented by finite number of parameters or particles

• Advantages

• The representation is approximate and nonparametric and therefore can represent a 

broader set of distributions e.g., bimodal distributions 

• Can handle nonlinear transformations, e.g., under motion and measurements

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, 

Filtering: [Rubin, 88], [Gordon ‘93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa ‘95]

Particle Filters



Particle filtering algorithm 
𝑋𝑡 ≔ {𝑥𝑡

[1]
, 𝑥𝑡

[2]
, … 𝑥𝑡

[𝑀]
} set of particles

Algorithm Particle_filter(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡):
ത𝑋𝑡 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

    sample 𝑥𝑡
[𝑚]

~𝑝𝐷 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1
[𝑚]

)

    𝑤𝑡
[𝑚]

= 𝑝𝑀 𝑧𝑡 𝑥𝑡
𝑚

    Add ⟨ 𝑥𝑡
𝑚

, 𝑤𝑡
[𝑚]

⟩ to ത𝑋𝑡

for all 𝑚 in [M] do:

   draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

    add 𝑥𝑡
[𝑖]

 𝑡𝑜 𝑋𝑡

return 𝑋𝑡

ideally,  𝑥𝑡
[𝑚]

 is selected with probability prop. to 𝑝 𝑥𝑡 𝑧1:𝑡 , 𝑢1:𝑡)

ത𝑋𝑡 is the temporary particle set

sampling new particles using motion model 𝑝𝐷

calculates importance factor 𝑤𝑡 or weight according to measurement 𝑝𝑀

before resampling particles in ത𝑋𝑡 distributed ~ 𝑏𝑒𝑙 𝑥𝑡  

after resampling particles 𝑋𝑡 distributed ~ 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡
[𝑚]

𝑏𝑒𝑙 𝑥𝑡

survival of fittest: moves/adds particles to parts of the state space with higher 
probability, lower probability particles are eliminated 



Importance Sampling
suppose we want to compute 𝑃𝑓 𝑥 ∈ 𝐴 = 𝐸𝑓 𝐼 𝑥 ∈ 𝐴  

but we can only sample according to density 𝑔

𝐸𝑓 𝐼 𝑥 ∈ 𝐴 = ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫
𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= 𝐸𝑔 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0 

The ratio w(x) = f(x) / g(x) is the weight of the sample 

w 𝑥𝑡  = 𝑏𝑒𝑙 𝑥𝑡  / 𝑏𝑒𝑙(𝑥𝑡) ∝  𝑝 𝑧𝑡 𝑥𝑡   Measurement model

A

For the particle filter f is 𝑏𝑒𝑙 𝑥𝑡  and g 
corresponds to 𝑏𝑒𝑙(𝑥𝑡)



Monte Carlo Localization (MCL)

𝑋𝑡 = 𝑥𝑡
[1]

, 𝑥𝑡
[2]

, … 𝑥𝑡
[𝑀]

 particles

Algorithm MCL(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡,m):
ത𝑋𝑡 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

   𝑥𝑡
[𝑚]

= 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢𝑡 𝑥𝑡−1
[𝑚]

)

   𝑤𝑡
[𝑚]

= 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧𝑡 , 𝑥𝑡
𝑚 ,𝑚

)

   Add ⟨ 𝑥𝑡
𝑚

, 𝑤𝑡
[𝑚]

⟩ to ത𝑋𝑡

for all 𝑚 in [M] do:

   draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

   add 𝑥𝑡
[𝑖]

 𝑡𝑜 𝑋𝑡

return 𝑋𝑡 

Plug in motion and 
measurement models in the 
particle filter



Particle Filters



)|(

)(

)()|(

)()|()(

xzp

xBel

xBelxzp

w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling




−

'd)'()'|()( , xxBelxuxpxBel

Robot Motion



)|(

)(

)()|(

)()|()(

xzp

xBel

xBelxzp

w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling



Robot Motion


−

'd)'()'|()( , xxBelxuxpxBel



15

Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten Ultrasound 
Scans
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After Incorporating 65 Ultrasound Scans
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Estimated Path



Using Ceiling Maps for Localization



Vision-based Localization

P(z|x)

h(x)

z



Under a Light: 
Measurement z: P(z|x):



Next to a Light
Measurement z: P(z|x):



Elsewhere
Measurement z: P(z|x):



Global Localization Using Vision
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Summary & Limitations
Particle filters implement Bayesian filter representing the posterior by a set of 
weighted samples

• For localization, the particles are propagated according to the motion model

• Then weighted according to measurement likelihood.

• In a re-sampling step, new particles are drawn with a probability proportional 
weight

PF can track the pose of a mobile robot and to and globally localize the robot.

• Can we deal with kidnapped robot problem?
• Randomly insert samples with small probability



Brief introduction to Kalman filter

How to estimate state if you have

- linear model of system and 
measurement

- hard limit on computation

- Need stronger convergence 
guarantees

Kalman Filter: State estimation 
algorithm for linear systems with 
Gaussian uncertainty

Nonparametric method
Heavy computation
Can handle nonlinear models 
Does not rely on analytical expression for 
distributions
Convergence guarantees only under 
assumptions on #partiles→ infty



Gaussians
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Multivariate Gaussians
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Every single variable 𝑥𝑖  in 𝑥 has a normal distribution 𝑁(𝜇𝑖 , 𝜎𝑖)

If the variables are uncorrelated then the covariance matrix Σ will 

be a diagonal matrix with the diagonal terms {𝜎𝑖
2}

Interactive demo:
https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing

https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing
https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing
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Linear transformations of Gaussians are Gaussians
Gaussian are closed under linear transformations

Products of Gaussian densities is (proportionally) a Gaussian



We stay in the “Gaussian world” as long as we start with Gaussians and perform only 
linear transformations.

),(~

),(~
T

AABANY

BAXY

NX

+







+=







Multivariate Gaussians















++



+

+















−− 1

2

1

1

2

21

1

1

21

2

21

222

111 1

,~)()(

),(~

),(~







NXpXp

NX

NX



50

Discrete Kalman Filter

The Kalman filter estimates state of a Discrete Linear System with Gaussian noise

Note that we no longer have discrete states or measurements! No grids, particles, etc.

𝑥𝑡: State vector
ut: Input vector
𝑧𝑡: Output vector
𝜀𝑡 ~ 𝑁 0, Qt  : Process noise with covariance Qt  
𝛿𝑡~𝑁(0, 𝑅𝑡) : Measurement noise with covariance Rt

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡 = 𝑁(𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 , Qt)
𝑝 𝑧𝑡 𝑥𝑡 = 𝑁(𝐶𝑡𝑥𝑡 , 𝑅𝑡)

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜖𝑡 
𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡 



Kalman Filter Algorithm

Kalman_Filter(𝜇𝑡−1, Σ𝑡−1, 𝑢𝑡 , 𝑧𝑡):

Prediction: get ഥ𝜇𝑡 and തΣ𝑡 (linear motion)
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
⊤ + 𝑄𝑡

Correction: correct ഥ𝜇𝑡 and തΣ𝑡 (linear meas.)
1. 𝐾𝑡  = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡
തΣ𝑡𝐶𝑡

⊤ + 𝑅𝑡
−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)

3. Σ𝑡  = 𝐼 − 𝐾𝑡𝐶𝑡
തΣ𝑡

Return 𝜇𝑡,Σ𝑡 

Given bel(𝑥𝑡−1)~𝑁(𝜇𝑡−1, Σ𝑡−1)
Apply motion model to find ഥ𝑥𝑡 :

Linear transformation of Gaussian bel(𝑥𝑡−1)
where 𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜖𝑡;  𝜀𝑡 ~ 𝑁 0, 𝑄t

=> ഥ𝑥𝑡~𝑁( ഥ𝜇𝑡, തΣ𝑡)

Given ഥ𝑥𝑡~𝑁( ഥ𝜇𝑡, തΣ𝑡)
Apply measurement model to find bel(𝑥𝑡):

Product of Gaussians ഥ𝑥𝑡 and  p(𝑧𝑡| 𝑥𝑡)
Where 𝑝 𝑧𝑡 𝑥𝑡  is a Gaussian (variable is 𝑥𝑡 ) 

=> bel 𝑥𝑡  ~𝑁(𝜇𝑡,Σ𝑡)



Kalman Filter Algorithm

Kalman_Filter(𝜇𝑡−1, Σ𝑡−1, 𝑢𝑡 , 𝑧𝑡):

Prediction:
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
⊤ + 𝑄𝑡

Correction:
1. 𝐾𝑡  = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡
തΣ𝑡𝐶𝑡

⊤ + 𝑅𝑡
−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)

3. Σ𝑡  = 𝐼 − 𝐾𝑡𝐶𝑡
തΣ𝑡

Return 𝜇𝑡,Σ𝑡 

Kalman Filter represents the belief 
𝑏𝑒𝑙 𝑥𝑡  by mean 𝜇𝑡 and 
covariance Σ𝑡

Correction computes the Kalman 
gain 𝐾𝑡 to weight the impact of 
new measurements against the 
predicted value

Higher measurement variance 𝐶𝑡  
=> lower gain, less helpful 

innovation = 𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡 reflects 
how large the deviation is from 
prediction to actual observations



Prediction:
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
⊤ + 𝑄𝑡

Correction:
1. 𝐾𝑡  = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡
തΣ𝑡𝐶𝑡

⊤ + 𝑅𝑡
−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)
3. Σ𝑡  = 𝐼 − 𝐾𝑡𝐶𝑡

തΣ𝑡

Apply control action

Get sensor measurement

initial belief

measurement and 
uncertainty

belief after 
measurement



Kalman Filter Example
ti

m
e 

= 
1

ti
m

e
 =

 2

Demo: https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing

https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing
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