
ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 13: Filtering and Localization

Professor: Huan Zhang

https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025;

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Some slides are from the book’s website

https://publish.illinois.edu/safe-autonomy/
https://publish.illinois.edu/safe-autonomy/
https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com/
https://huan-zhang.com/
https://huan-zhang.com/

Outline of state estimation module

Problem. Estimate the current state 𝑥𝑡 of the system from knowledge
about past observations 𝑧0:𝑡, control inputs 𝑢0:𝑡, and map 𝑚

Bayes filter and its variations:

• Grid localization (previous lecture)

• Particle filter (this lecture)

• Kalman filter (this lecture)

Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥𝑖 , 𝑥𝑘 , 𝑒𝑡𝑐. Random state vector 𝑋𝑡

𝑝𝑘,𝑡: belief at time t for state 𝑥𝑘; discrete probability distribution

Algorithm Discrete_Bayes_filter(𝑝𝑘,𝑡−1 , 𝑢𝑡, 𝑧𝑡):

for all 𝑘 do:

 ҧ𝑝𝑘,𝑡 = σ𝑖 𝑝(𝑋𝑡 = 𝑥𝑘|𝑢𝑡,𝑋𝑡−1 = 𝑥𝑖) 𝑝𝑖,𝑡−1

 𝑝𝑘,𝑡 = 𝜂 𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘) ҧ𝑝𝑘,𝑡

end for

return {𝑝𝑘,𝑡}

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑘

𝑝′

1
𝑝1,𝑡−1

2
𝑝2,𝑡−1

3
𝑝3,𝑡−1

𝑝 𝑥𝑘|𝑢𝑡, 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡

Notation: 𝑏𝑒𝑙 𝑋𝑡 = 𝑥𝑘 ≔ 𝑝𝑘,𝑡

Prediction step with
motion model

correction step with
measurement model

Bayes Filter: Continuous Distributions

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡)

for all 𝑥𝑡 do:

𝑏𝑒𝑙 𝑥𝑡 = ∫ 𝑝(𝑥𝑡|𝑢𝑡,𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1

 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑏𝑒𝑙(𝑥𝑡)

end for

return 𝑏𝑒𝑙(𝑥𝑡)

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑡

𝑝′

1
𝑝1

2
𝑝2

3
𝑝3

𝑝 𝑥𝑡|𝑢𝑡 , 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡

5

Grid localization,
𝑏𝑒𝑙 𝑥𝑡 represented by a
histogram over grid 𝑝𝑀(𝑧|𝑥)

𝑝𝑀(𝑧|𝑥)

initial

correction

prediction

correction

prediction

• Belief represented by finite number of parameters or particles

• Advantages

• The representation is approximate and nonparametric and therefore can represent a

broader set of distributions e.g., bimodal distributions

• Can handle nonlinear transformations, e.g., under motion and measurements

• Related ideas: Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter,

Filtering: [Rubin, 88], [Gordon ‘93], [Kitagawa 96], Dynamic Bayesian Networks: [Kanazawa ‘95]

Particle Filters

Particle filtering algorithm
𝑋𝑡 ≔ {𝑥𝑡

[1]
, 𝑥𝑡

[2]
, … 𝑥𝑡

[𝑀]
} set of particles

Algorithm Particle_filter(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡):
ത𝑋𝑡 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

 sample 𝑥𝑡
[𝑚]

~𝑝𝐷 𝑥𝑡 𝑢𝑡, 𝑥𝑡−1
[𝑚]

)

 𝑤𝑡
[𝑚]

= 𝑝𝑀 𝑧𝑡 𝑥𝑡
𝑚

 Add ⟨ 𝑥𝑡
𝑚

, 𝑤𝑡
[𝑚]

⟩ to ത𝑋𝑡

for all 𝑚 in [M] do:

 draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

 add 𝑥𝑡
[𝑖]

 𝑡𝑜 𝑋𝑡

return 𝑋𝑡

ideally, 𝑥𝑡
[𝑚]

 is selected with probability prop. to 𝑝 𝑥𝑡 𝑧1:𝑡 , 𝑢1:𝑡)

ത𝑋𝑡 is the temporary particle set

sampling new particles using motion model 𝑝𝐷

calculates importance factor 𝑤𝑡 or weight according to measurement 𝑝𝑀

before resampling particles in ത𝑋𝑡 distributed ~ 𝑏𝑒𝑙 𝑥𝑡

after resampling particles 𝑋𝑡 distributed ~ 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡
[𝑚]

𝑏𝑒𝑙 𝑥𝑡

survival of fittest: moves/adds particles to parts of the state space with higher
probability, lower probability particles are eliminated

Importance Sampling
suppose we want to compute 𝑃𝑓 𝑥 ∈ 𝐴 = 𝐸𝑓 𝐼 𝑥 ∈ 𝐴

but we can only sample according to density 𝑔

𝐸𝑓 𝐼 𝑥 ∈ 𝐴 = ∫ 𝑓 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= ∫
𝑓 𝑥

𝑔 𝑥
𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥, provided 𝑔 𝑥 > 0

= ∫ 𝑤 𝑥 𝑔 𝑥 𝐼 𝑥 ∈ 𝐴 𝑑𝑥

= 𝐸𝑔 𝑤(𝑥)𝐼 𝑥 ∈ 𝐴

We need 𝑓 𝑥 > 0 ⇒ 𝑔 𝑥 > 0

The ratio w(x) = f(x) / g(x) is the weight of the sample

w 𝑥𝑡 = 𝑏𝑒𝑙 𝑥𝑡 / 𝑏𝑒𝑙(𝑥𝑡) ∝ 𝑝 𝑧𝑡 𝑥𝑡 Measurement model

A

For the particle filter f is 𝑏𝑒𝑙 𝑥𝑡 and g
corresponds to 𝑏𝑒𝑙(𝑥𝑡)

Monte Carlo Localization (MCL)

𝑋𝑡 = 𝑥𝑡
[1]

, 𝑥𝑡
[2]

, … 𝑥𝑡
[𝑀]

 particles

Algorithm MCL(𝑋𝑡−1, 𝑢𝑡 , 𝑧𝑡,m):
ത𝑋𝑡 = 𝑋𝑡 = ∅

for all 𝑚 in [M] do:

 𝑥𝑡
[𝑚]

= 𝒔𝒂𝒎𝒑𝒍𝒆_𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑢𝑡 𝑥𝑡−1
[𝑚]

)

 𝑤𝑡
[𝑚]

= 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧𝑡 , 𝑥𝑡
𝑚 ,𝑚

)

 Add ⟨ 𝑥𝑡
𝑚

, 𝑤𝑡
[𝑚]

⟩ to ത𝑋𝑡

for all 𝑚 in [M] do:

 draw 𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑤𝑡
[𝑖]

 add 𝑥𝑡
[𝑖]

 𝑡𝑜 𝑋𝑡

return 𝑋𝑡

Plug in motion and
measurement models in the
particle filter

Particle Filters

)|(

)(

)()|(

)()|()(

xzp

xBel

xBelxzp

w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling


−

'd)'()'|()(, xxBelxuxpxBel

Robot Motion

)|(

)(

)()|(

)()|()(

xzp

xBel

xBelxzp

w

xBelxzpxBel






=



−

−

−

Sensor Information: Importance Sampling

Robot Motion


−

'd)'()'|()(, xxBelxuxpxBel

15

Sample-based Localization (sonar)

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Initial Distribution

35

After Incorporating Ten Ultrasound
Scans

36

After Incorporating 65 Ultrasound Scans

37

Estimated Path

Using Ceiling Maps for Localization

Vision-based Localization

P(z|x)

h(x)

z

Under a Light:
Measurement z: P(z|x):

Next to a Light
Measurement z: P(z|x):

Elsewhere
Measurement z: P(z|x):

Global Localization Using Vision

44

Summary & Limitations
Particle filters implement Bayesian filter representing the posterior by a set of
weighted samples

• For localization, the particles are propagated according to the motion model

• Then weighted according to measurement likelihood.

• In a re-sampling step, new particles are drawn with a probability proportional
weight

PF can track the pose of a mobile robot and to and globally localize the robot.

• Can we deal with kidnapped robot problem?
• Randomly insert samples with small probability

Brief introduction to Kalman filter

How to estimate state if you have

- linear model of system and
measurement

- hard limit on computation

- Need stronger convergence
guarantees

Kalman Filter: State estimation
algorithm for linear systems with
Gaussian uncertainty

Nonparametric method
Heavy computation
Can handle nonlinear models
Does not rely on analytical expression for
distributions
Convergence guarantees only under
assumptions on #partiles→ infty

Gaussians

2

2

)(

2

1

2

2

1

)(

:),(~)(









−

−

=

x

exp

Nxp

- 



Univariate

)()(

2

1

2/1
2/

1

)2(

1

)(

:)(~)(

μxΣμx

Σ

x

Σμx

−−−
−

=

t

ep

,Νp

d



Multivariate

Multivariate Gaussians

)()(

2

1

2/1
2/

1

)2(

1

)(

:)(~)(

μxΣμx

Σ

x

Σμx

−−−
−

=

t

ep

,Νp

d



Every single variable 𝑥𝑖 in 𝑥 has a normal distribution 𝑁(𝜇𝑖 , 𝜎𝑖)

If the variables are uncorrelated then the covariance matrix Σ will

be a diagonal matrix with the diagonal terms {𝜎𝑖
2}

Interactive demo:
https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing

https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing
https://colab.research.google.com/drive/1Z6v83JRmJWKAVuniS48GKuro18Ky1qtt?usp=sharing

),(~

),(~
22

2





abaNY

baXY

NX

+







+=

Properties of Gaussians















++

+

+









−− 2

2

2

1

22

2

2

1

2

1

12

2

2

1

2

2

212

222

2

111
1

,~)()(

),(~

),(~

















NXpXp

NX

NX

Linear transformations of Gaussians are Gaussians
Gaussian are closed under linear transformations

Products of Gaussian densities is (proportionally) a Gaussian

We stay in the “Gaussian world” as long as we start with Gaussians and perform only
linear transformations.

),(~

),(~
T

AABANY

BAXY

NX

+







+=







Multivariate Gaussians















++



+

+















−− 1

2

1

1

2

21

1

1

21

2

21

222

111 1

,~)()(

),(~

),(~







NXpXp

NX

NX

50

Discrete Kalman Filter

The Kalman filter estimates state of a Discrete Linear System with Gaussian noise

Note that we no longer have discrete states or measurements! No grids, particles, etc.

𝑥𝑡: State vector
ut: Input vector
𝑧𝑡: Output vector
𝜀𝑡 ~ 𝑁 0, Qt : Process noise with covariance Qt
𝛿𝑡~𝑁(0, 𝑅𝑡) : Measurement noise with covariance Rt

𝑝 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡 = 𝑁(𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 , Qt)
𝑝 𝑧𝑡 𝑥𝑡 = 𝑁(𝐶𝑡𝑥𝑡 , 𝑅𝑡)

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜖𝑡
𝑧𝑡 = 𝐶𝑡𝑥𝑡 + 𝛿𝑡

Kalman Filter Algorithm

Kalman_Filter(𝜇𝑡−1, Σ𝑡−1, 𝑢𝑡 , 𝑧𝑡):

Prediction: get ഥ𝜇𝑡 and തΣ𝑡 (linear motion)
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
⊤ + 𝑄𝑡

Correction: correct ഥ𝜇𝑡 and തΣ𝑡 (linear meas.)
1. 𝐾𝑡 = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡
തΣ𝑡𝐶𝑡

⊤ + 𝑅𝑡
−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)

3. Σ𝑡 = 𝐼 − 𝐾𝑡𝐶𝑡
തΣ𝑡

Return 𝜇𝑡,Σ𝑡

Given bel(𝑥𝑡−1)~𝑁(𝜇𝑡−1, Σ𝑡−1)
Apply motion model to find ഥ𝑥𝑡 :

Linear transformation of Gaussian bel(𝑥𝑡−1)
where 𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝜖𝑡; 𝜀𝑡 ~ 𝑁 0, 𝑄t

=> ഥ𝑥𝑡~𝑁(ഥ𝜇𝑡, തΣ𝑡)

Given ഥ𝑥𝑡~𝑁(ഥ𝜇𝑡, തΣ𝑡)
Apply measurement model to find bel(𝑥𝑡):

Product of Gaussians ഥ𝑥𝑡 and p(𝑧𝑡| 𝑥𝑡)
Where 𝑝 𝑧𝑡 𝑥𝑡 is a Gaussian (variable is 𝑥𝑡)

=> bel 𝑥𝑡 ~𝑁(𝜇𝑡,Σ𝑡)

Kalman Filter Algorithm

Kalman_Filter(𝜇𝑡−1, Σ𝑡−1, 𝑢𝑡 , 𝑧𝑡):

Prediction:
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
⊤ + 𝑄𝑡

Correction:
1. 𝐾𝑡 = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡
തΣ𝑡𝐶𝑡

⊤ + 𝑅𝑡
−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)

3. Σ𝑡 = 𝐼 − 𝐾𝑡𝐶𝑡
തΣ𝑡

Return 𝜇𝑡,Σ𝑡

Kalman Filter represents the belief
𝑏𝑒𝑙 𝑥𝑡 by mean 𝜇𝑡 and
covariance Σ𝑡

Correction computes the Kalman
gain 𝐾𝑡 to weight the impact of
new measurements against the
predicted value

Higher measurement variance 𝐶𝑡
=> lower gain, less helpful

innovation = 𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡 reflects
how large the deviation is from
prediction to actual observations

Prediction:
1. ഥ𝜇𝑡 = 𝐴𝑡𝜇𝑡−1 + 𝐵𝑡𝑢𝑡

2. തΣ𝑡 = 𝐴𝑡Σ𝑡−1𝐴𝑡
⊤ + 𝑄𝑡

Correction:
1. 𝐾𝑡 = ഥΣ𝑡C𝑡

⊤ 𝐶𝑡
തΣ𝑡𝐶𝑡

⊤ + 𝑅𝑡
−1

2. 𝜇𝑡 = ҧ𝜇𝑡 + 𝐾𝑡(𝑧𝑡 − 𝐶𝑡 ҧ𝜇𝑡)
3. Σ𝑡 = 𝐼 − 𝐾𝑡𝐶𝑡

തΣ𝑡

Apply control action

Get sensor measurement

initial belief

measurement and
uncertainty

belief after
measurement

Kalman Filter Example
ti

m
e

=
1

ti
m

e
 =

 2

Demo: https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing

https://colab.research.google.com/drive/1qcINZgx8ebwWtRQROh3z8cpvtmuE4Dt0?usp=sharing

	Default Section
	Slide 1: ECE 484: Principles of Safe Autonomy (Fall 2025) Lecture 13: Filtering and Localization
	Slide 2: Outline of state estimation module
	Slide 3: Histogram Filter or Discrete Bayes Filter
	Slide 4: Bayes Filter: Continuous Distributions

	Grid localization
	Slide 5: Grid localization, b e l open paren x sub t , , close paren represented by a histogram over grid

	Monte Carlo Localization
	Slide 6: Particle Filters
	Slide 7: Particle filtering algorithm
	Slide 8: Importance Sampling
	Slide 9: Monte Carlo Localization (MCL)
	Slide 10: Particle Filters
	Slide 11: Sensor Information: Importance Sampling
	Slide 12: Robot Motion
	Slide 13: Sensor Information: Importance Sampling
	Slide 14: Robot Motion
	Slide 15: Sample-based Localization (sonar)
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Initial Distribution
	Slide 35: After Incorporating Ten Ultrasound Scans
	Slide 36: After Incorporating 65 Ultrasound Scans
	Slide 37: Estimated Path
	Slide 38: Using Ceiling Maps for Localization
	Slide 39: Vision-based Localization
	Slide 40: Under a Light:
	Slide 41: Next to a Light
	Slide 42: Elsewhere
	Slide 43: Global Localization Using Vision
	Slide 44: Summary & Limitations
	Slide 45: Brief introduction to Kalman filter
	Slide 46: Gaussians
	Slide 47: Multivariate Gaussians
	Slide 48: Properties of Gaussians
	Slide 49: Multivariate Gaussians
	Slide 50: Discrete Kalman Filter
	Slide 51: Kalman Filter Algorithm
	Slide 52: Kalman Filter Algorithm
	Slide 53
	Slide 54: Kalman Filter Example

