

ECE 484: Principles of Safe Autonomy (Fall 2025)

Lecture 12: Filtering and Localization

Professor: Huan Zhang

<https://publish.illinois.edu/safe-autonomy/>

<https://huan-zhang.com>

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra's slides for Spring 2025;

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Some slides are from the book's website

Announcements

- GEM, F1-Tenth signup (check CampusWire)
- Safety Training required (Check CampusWire)

Outline of state estimation module

Problem. Estimate the current state x_t of the system from knowledge about past observations $z_{0:t}$, control inputs $u_{0:t}$, and map m

- Introduction: Localization problem, taxonomy
- Probabilistic models: motion and measurements
- Discrete Bayes Filter
- Histogram filter and grid localization
- Particle filter

Review of conditional probabilities

Random variable X takes values $x_1, x_2 \in \mathbb{R}^n$

$P(X = x)$ is written as $P(x)$

$P(X = x, Z = z)$ is written as $P(x, z)$

Conditional probability: $P(X = x | Z = z) = P(x|z) = \frac{P(x,z)}{P(z)}$ provided $P(z) > 0$

Bayes Rule $P(x|z) = \frac{P(z|x)P(x)}{P(z)}$, provided $P(z) > 0$

Evolution: probabilistic Markov Chain models

A probability distribution $\pi \in P(Q)$ over a finite set of states Q can be represented by a vector $\pi \in \mathbb{R}^{|Q|}$ where $\sum \pi_i = 1$

Recall deterministic discrete transitions for automata $D: Q \rightarrow Q$

Probabilistic discrete transitions give a probability distribution $D: Q \rightarrow \mathbf{P}(Q)$ according to which the next state is chosen, i.e., $D(q)$ is a particular probability distribution over Q

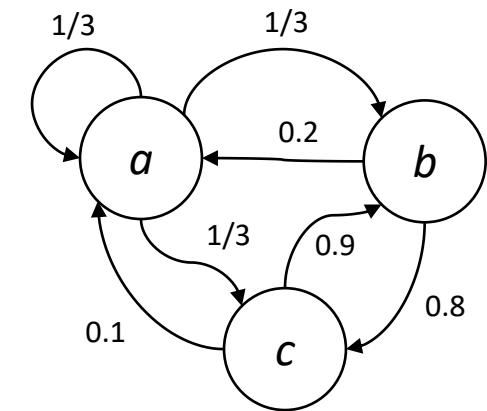
For the example on the right $p_D(X_{t+1} = b | X_t = a) = \frac{1}{3}$, i.e., $D(a) = [a: \frac{1}{3} \ b: \frac{1}{3} \ c: \frac{1}{3}]$ $D(b) = [a: \frac{1}{5} \ b: 0 \ c: \frac{4}{5}]$

Such a state machine model is called a **Markov chain**

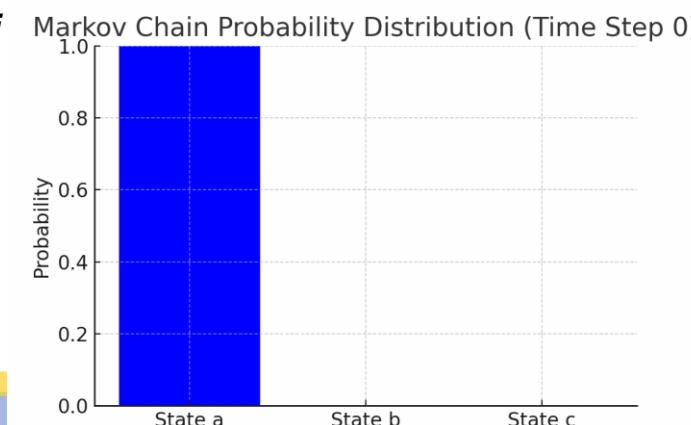
A probabilistic transition D can be represented by a matrix $D \in \mathbb{R}^{|Q| \times |Q|}$ where D_{ij} gives the probability of state i to transition to j

The evolution of the probability π over states can be represented as

$\pi_{t+1} = \pi_t D$ starting with an initial distribution $\pi_0 \in \mathbf{P}(Q)$



$$D = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{5} & 0 & \frac{4}{5} \\ \frac{1}{10} & \frac{9}{10} & 0 \end{bmatrix}$$



Evolution: probabilistic MDP models

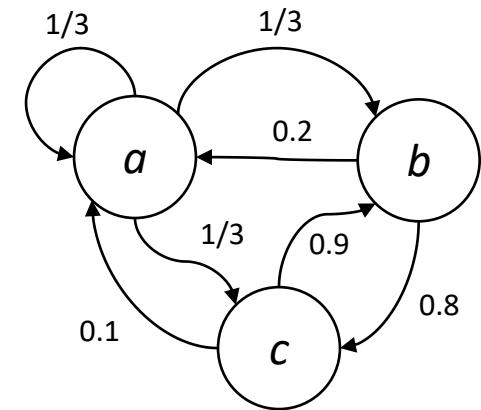
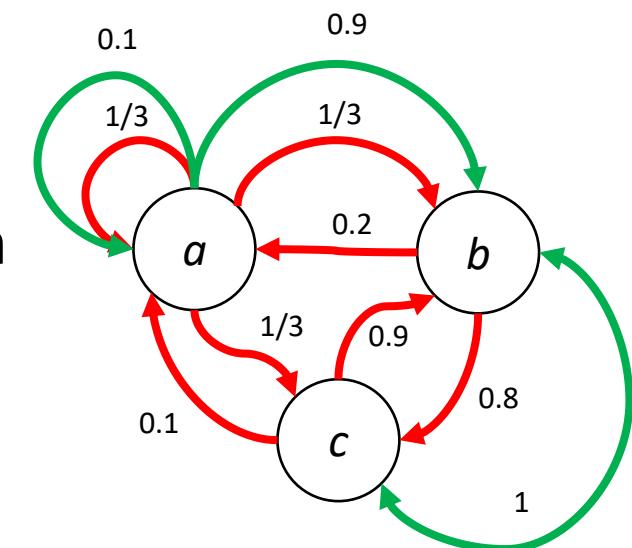
More generally, transitions depend on input in which case the transition function $D: Q \times U \rightarrow P(Q)$ also depends on the control action U

For the example below $p_D(X_{t+1} = b | X_t = a, U_t = \text{red}) = \frac{1}{3}$

Such a state machine model with inputs is called a **Markov Decision Process (MDP)**

The probabilistic transitions D can be represented by a collection of matrices $D: U \rightarrow \mathbb{R}^{|Q| \times |Q|}$ where $D_{ij}(u)$ gives the probability of state i to transition to j under action u

$p_D(x'|x, u)$ if transition probabilities are time invariant



Evolution and measurement: probabilistic models

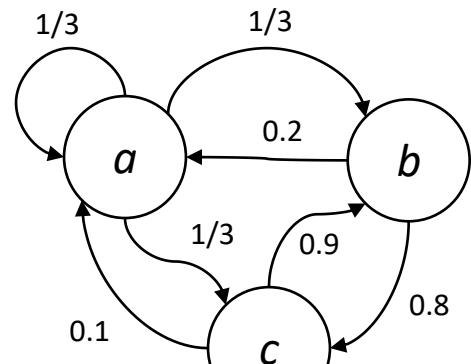
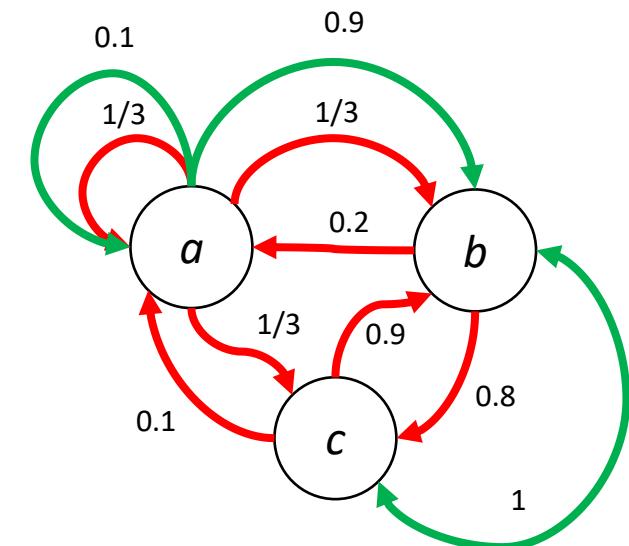
Even more generally, transitions depend on outputs and history

$p_D(X_t = x_t | X_0 = x_0, \dots, X_{t-1} = x_{t-1}, Z_1 = z_1, \dots, Z_{t-1} = z_{t-1}, U_1 = u_1, \dots, U_t = u_t)$ describes state evolution model

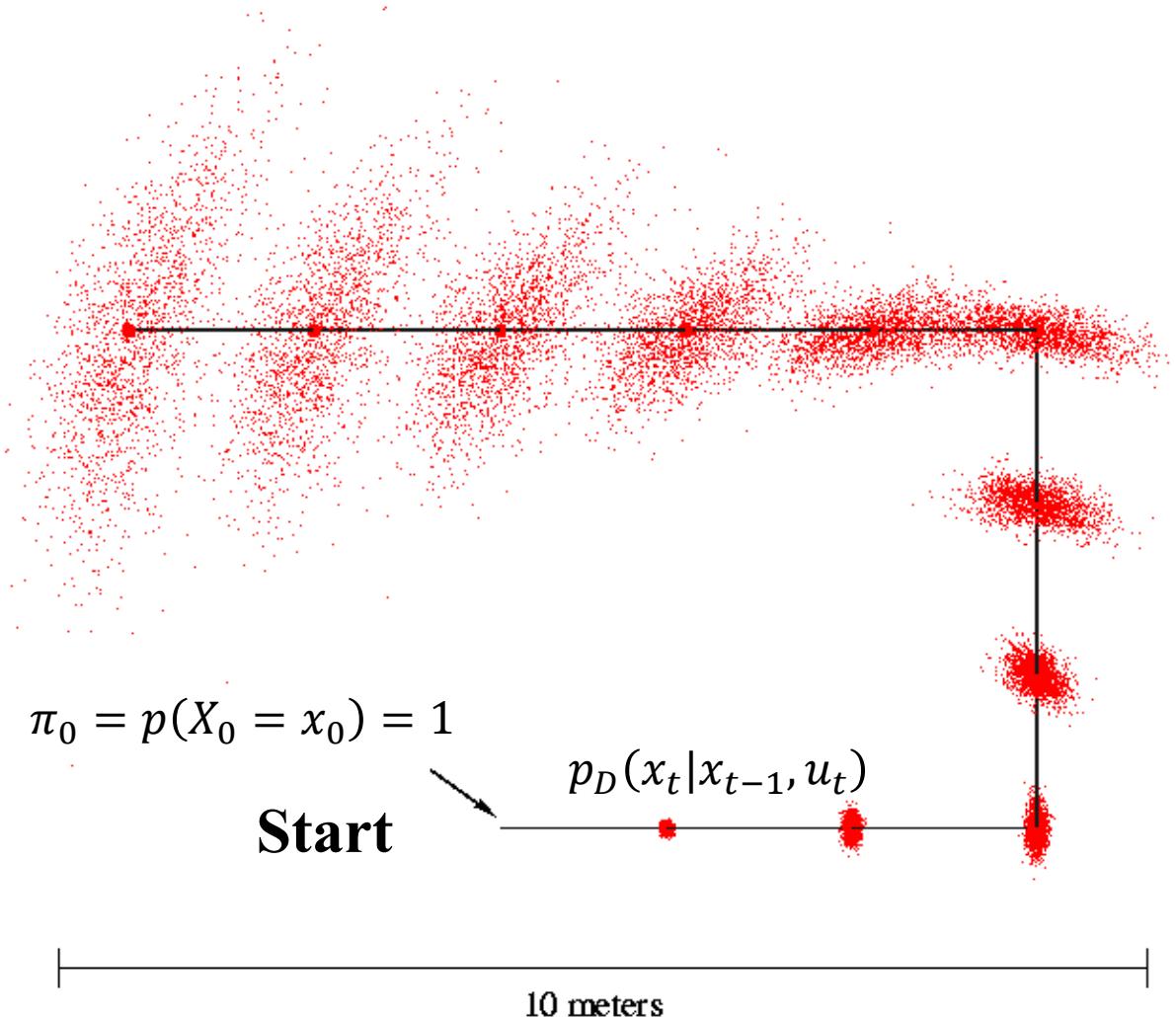
$p_D(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$ describes motion/state evolution model

If state is complete, sufficient summary of the history then

- $p_D(x_t | x_{0:t-1}, z_{0:t-1}, u_{0:t-1}) = p_D(x_t | x_{t-1}, u_t)$ transition prob.
- $p_D(x' | x, u)$ if transition probabilities are time invariant



Example Motion Model without measurements



The state transition probabilities are defined by
 $x_{t+1} = f(x_t, u_t) + \omega_t$

where $\omega_t \sim N(0,1)$

Probabilistic measurements

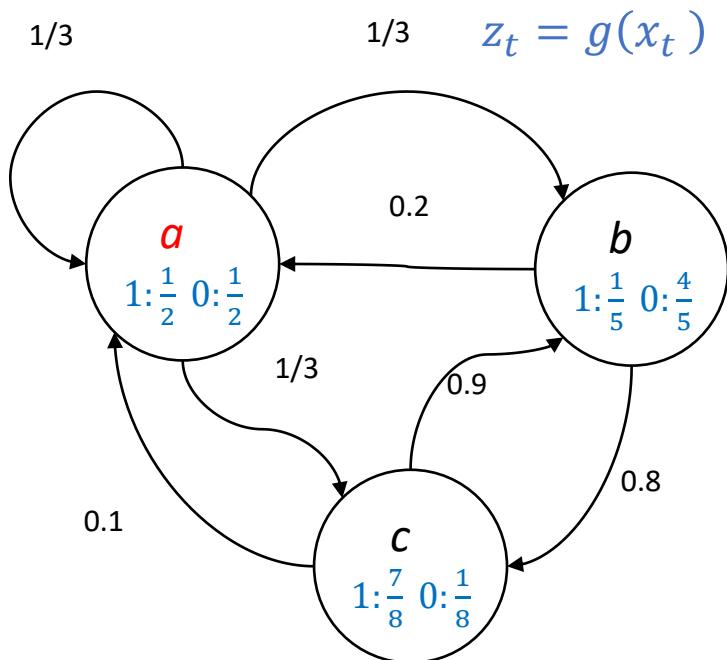
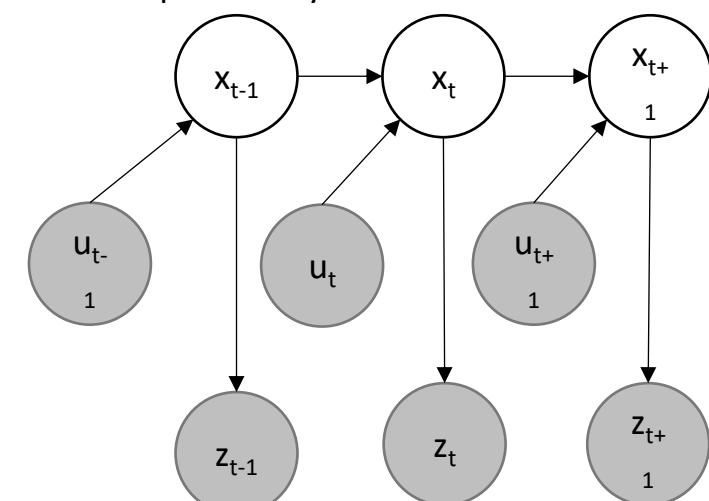
A **measurement model** gives the *output* or observation probability for a given state, e.g.:

$$p_M(z_t = 1 | x_t = a) = \frac{1}{2}$$

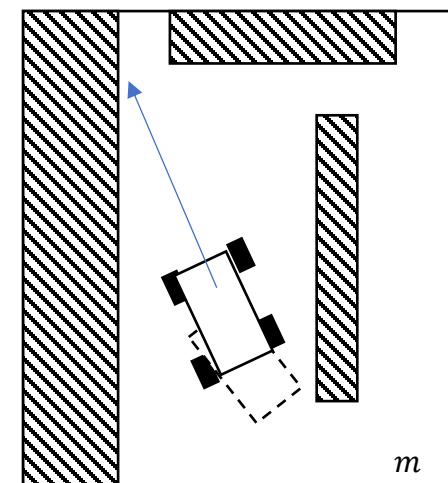
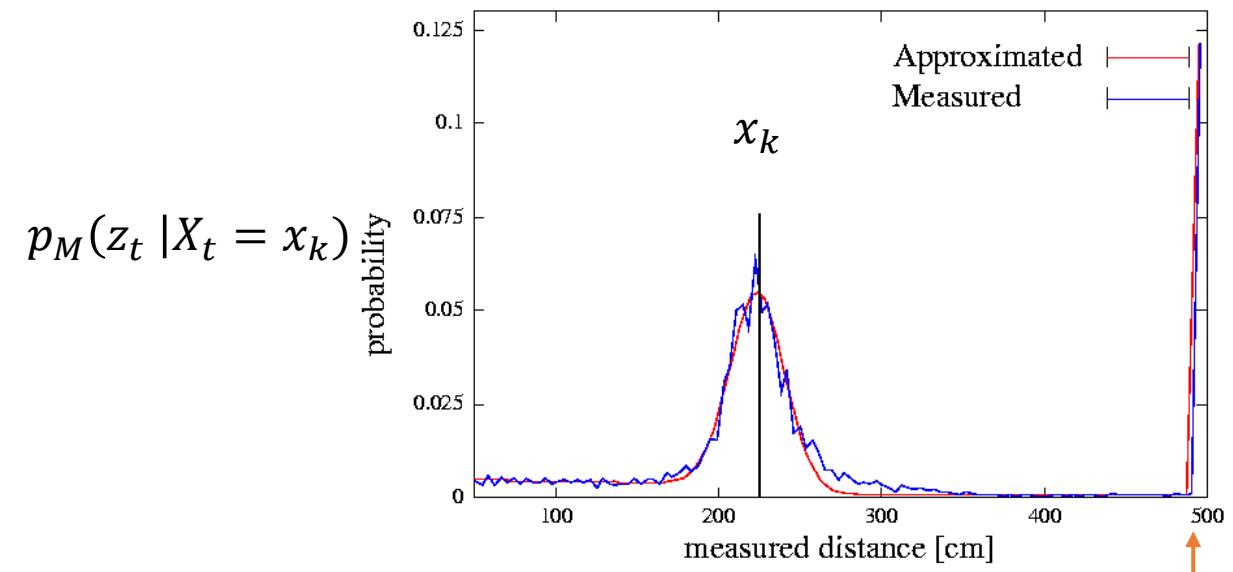
Generally, measurements can depend on history

$$p_M(z_t | x_{0:t}, z_{1:t-1}, u_{0:t-1})$$

- If state is complete $p_M(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$
- $p_M(z_t | x_t)$: **measurement probability**
- $p_M(z | x)$: **time invariant measurement probability**

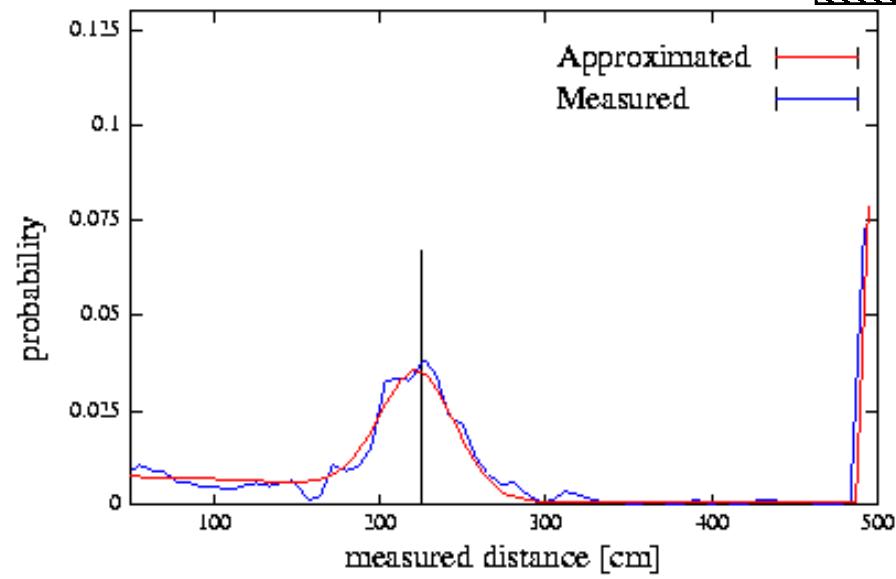


Example Proximity Sensor Measurement Models



Laser sensor

max-range
spike



Sonar sensor

Motion and measurement models

$p_D(x_t | x_{0:t-1}, z_{0:t-1}, u_{1:t})$ describes motion/state evolution model

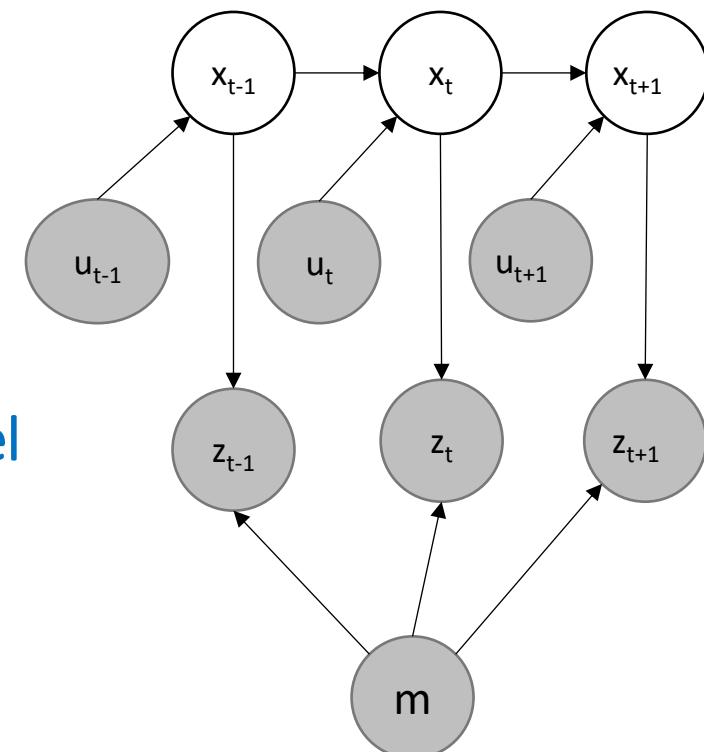
If state is complete (sufficient summary of the history) then

- $p_D(x_t | x_{0:t-1}, z_{0:t-1}, u_{0:t-1}) = p_D(x_t | x_{t-1}, u_t)$ **motion model**
- $p_D(x' | x, u)$ if transition probabilities are time invariant

$p_M(z_t | x_{0:t}, z_{0:t-1}, u_{0:t-1}, m)$ describes measurement

If state is complete

- $p_M(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}, m) = p_M(z_t | x_t, m)$ **measurement model**
- $p_M(z | x, m)$: time invariant measurement probability



Beliefs

Belief: Robot's knowledge about the state

True state x_t is not directly measurable or observable and the robot must infer or estimate state from measurements and this distribution of states is called the *belief*

$$bel(x_t) = p(x_t | z_{1:t}, u_{1:t})$$

Posterior distribution over state at time t given all past measurements and control. This will be calculated in two steps:

Initially: $bel(x_0) = \pi_0$

1. Prediction: $\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$ based on past measurements and control u
2. Correction: $bel(x_t)$ from $\overline{bel}(x_t)$ based on most recent measurement z_t

Bayes Filter: Prediction and Correction

Algorithm $\text{Bayes_filter}(\text{bel}(x_{t-1}), \textcolor{teal}{u_t}, \textcolor{teal}{z_t})$ iteratively calculates $\text{bel}(x_t)$ given $\text{bel}(x_{t-1})$, the recent control $\textcolor{teal}{u_t}$, and the measurement $\textcolor{teal}{z_t}$

$\text{bel}(x_{t-1})$: $P(Q)$ is a probability distribution over Q

$\overline{\text{bel}}(x_t) = p(x_t | \text{bel}(x_{t-1}), \textcolor{red}{z_{1:t-1}}, u_{1:t}) = p(x_t | \text{bel}(x_{t-1}), \textcolor{teal}{u_t})$ is the intermediate belief which uses only prediction but not the most recent measurement

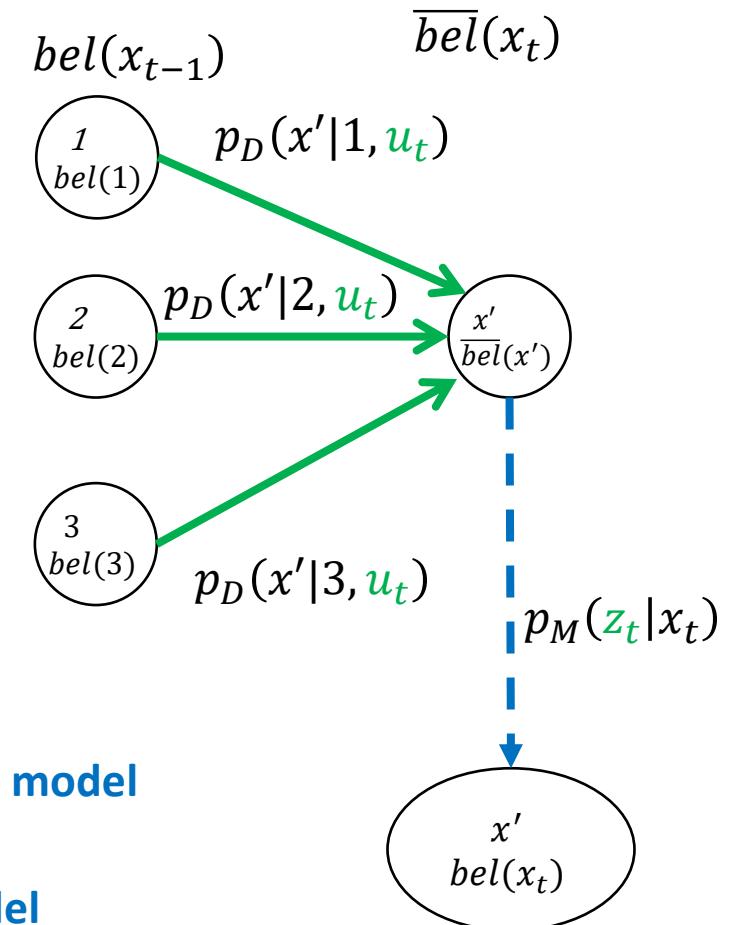
For discrete distributions for each $x' \in Q$ the beliefs can be calculated as

$$\overline{\text{bel}}(X_t = x') = \sum_{x \in Q} p_D(X_t = x' | X_{t-1} = x, U_t = \textcolor{teal}{u_t}) \text{bel}(X_{t-1} = x) \quad \text{motion model}$$

$$\text{bel}(X_t = x') = \eta p_M(Z_t = \textcolor{teal}{z_t} | X_t = x') \overline{\text{bel}}(X_t = x') \quad \text{measurement model}$$

where η is a normalizing constant to make $\text{bel}(x_t) \in \mathbf{P}(Q)$

Recall Bayes rule $P(x|z) = \frac{P(z|x)P(x)}{P(z)}$, provided $P(z) > 0$



Histogram Filter or Discrete Bayes Filter

Notation: $bel(X_t = x_k) := p_{k,t}$

Finitely many states $x_i, x_k, \text{etc.}$ Random state vector X_t

$p_{k,t}$: belief at time t for state x_k ; discrete probability distribution

Algorithm Discrete_Bayes_filter($\{p_{k,t-1}\}, u_t, z_t$):

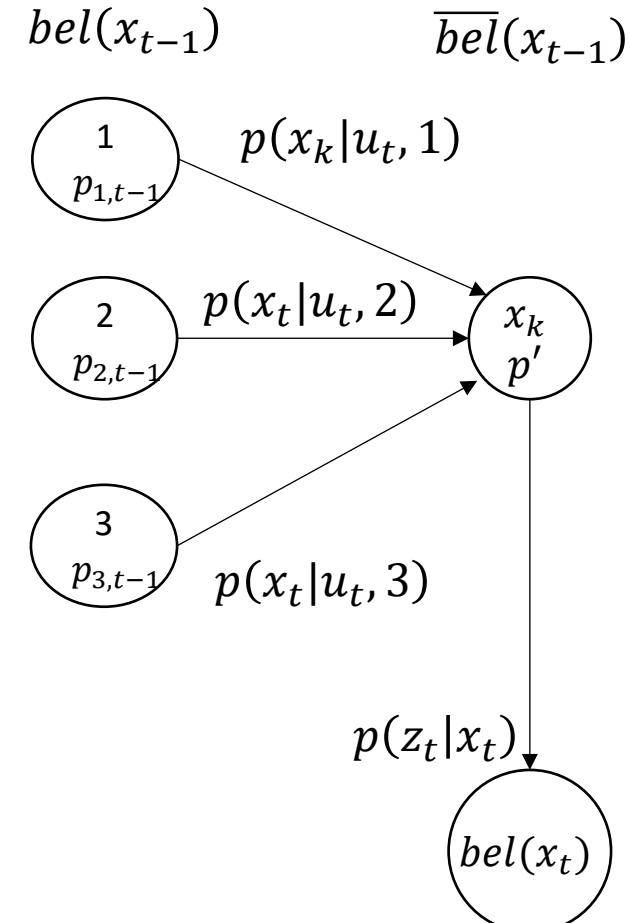
for all k do:

$$\bar{p}_{k,t} = \sum_i p(X_t = x_k | u_t, X_{t-1} = x_i) p_{i,t-1}$$

$$p_{k,t} = \eta p(z_t | X_t = x_k) \bar{p}_{k,t}$$

end for

return $\{p_{k,t}\}$



Bayes Filter: Continuous Distributions

```
Algorithm Bayes_filter( $bel(x_{t-1})$ ,  $u_t$ ,  $z_t$ )
```

```
for all  $x_t$  do:
```

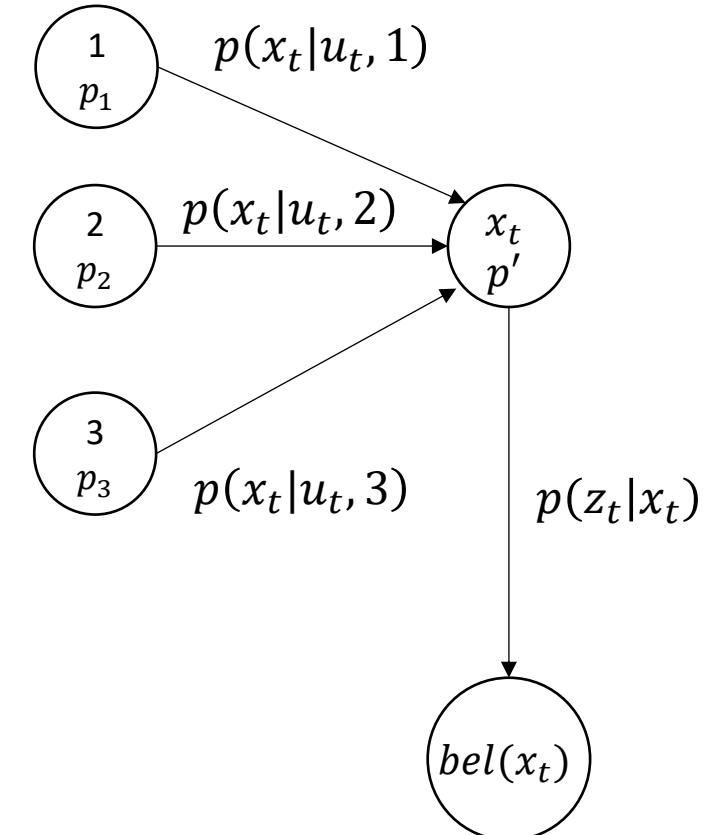
$$\overline{bel}(x_t) = \int p(x_t|u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$$

$$bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$$

```
end for
```

```
return  $bel(x_t)$ 
```

$bel(x_{t-1})$ $\overline{bel}(x_{t-1})$



Grid Localization

Solves global localization in some cases kidnapped robot problem using Bayes filter

Can process raw sensor data

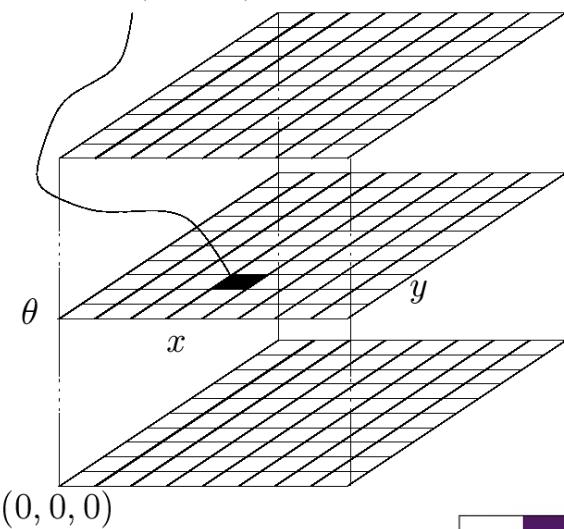
- No need for feature extraction

Non-parametric method, i.e., does not rely on specific form of probability distributions

- In particular, not bound to unimodal distributions (unlike Extended Kalman Filter)

Grid localization with bicycle model + landmarks

$bel(X_t = \langle x, y, \theta \rangle)$

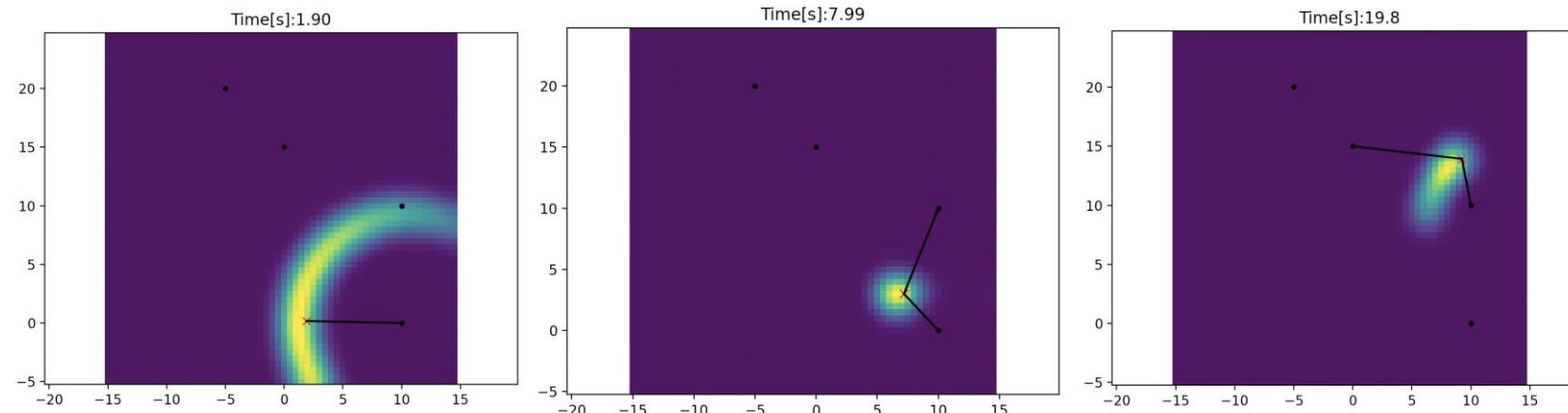


The state space Q is a quantization of position and orientation $q = \langle x, y, \theta \rangle$

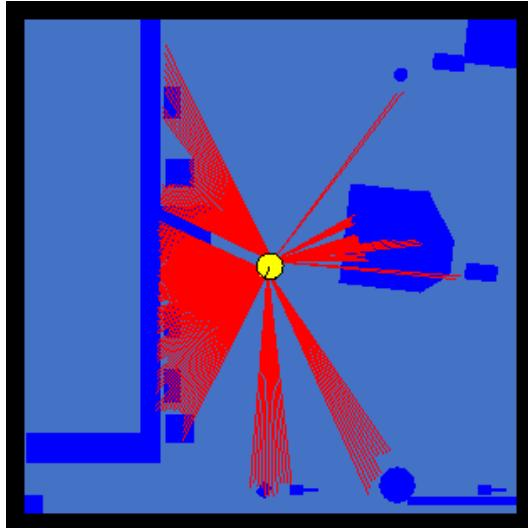
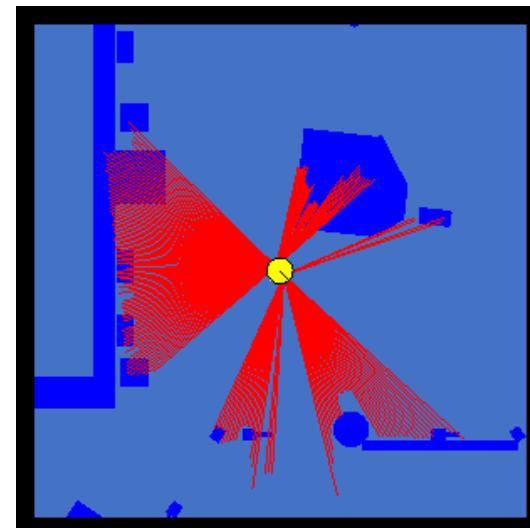
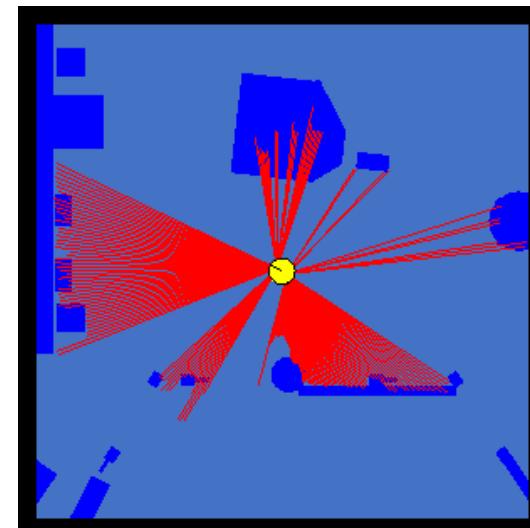
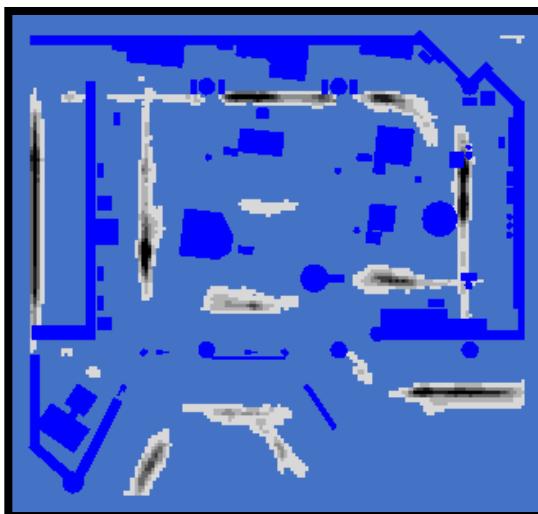
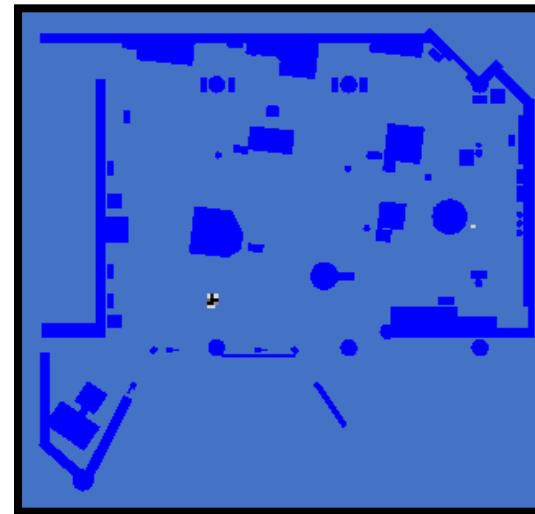
A belief is a probability distribution over states $bel(q_t) \in P(Q)$

Prediction: Fixing an (steering) input u_t compute the new intermediate belief over Q using motion model $p_D(q_{t+1}|q_t, u_{t+1})$

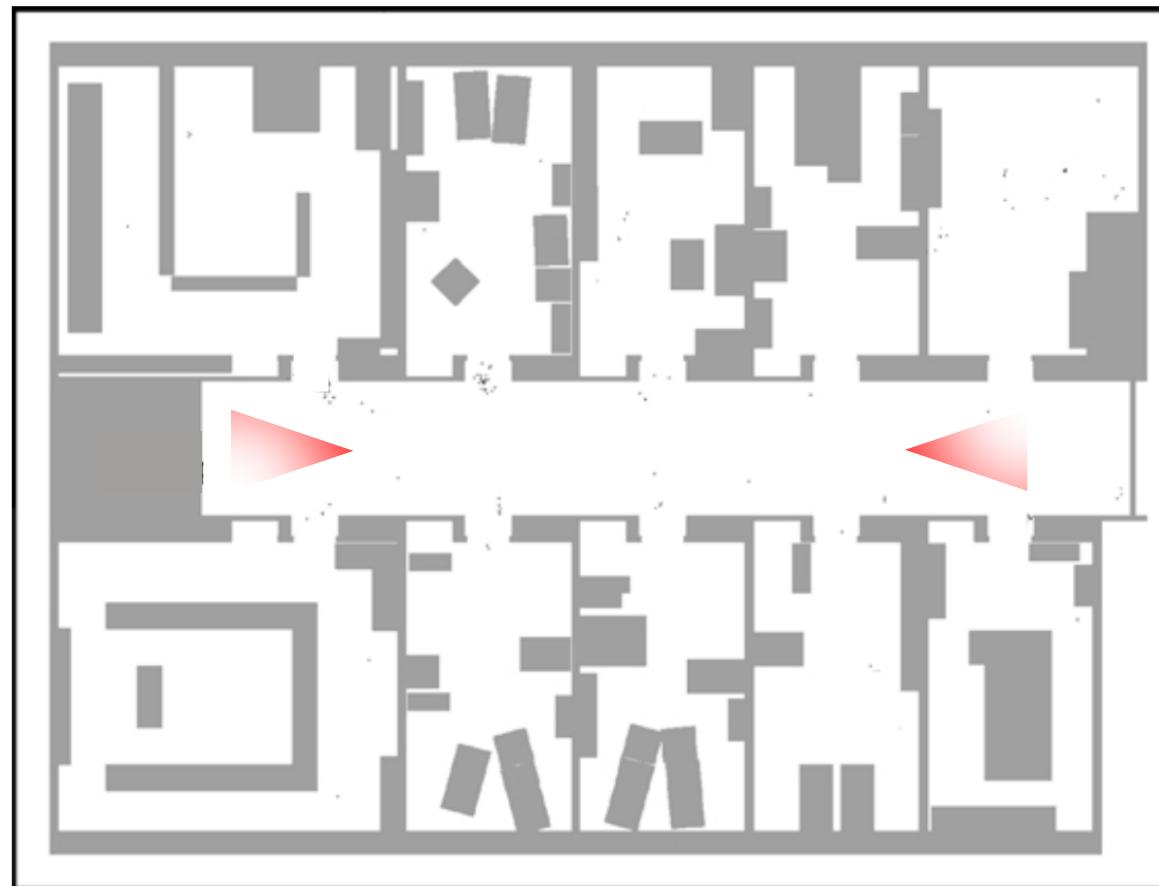
Correction: Update intermediate belief with received distance to landmark z_{t+1} based on measurement model p_M



Grid-based Localization



Ambiguity in global localization arising from locally symmetric environment



Grid localization

```
Algorithm Grid_localization ( $\{p_{k,t-1}\}, u_t, z_t, m$ )
```

```
for all  $k$  do:
```

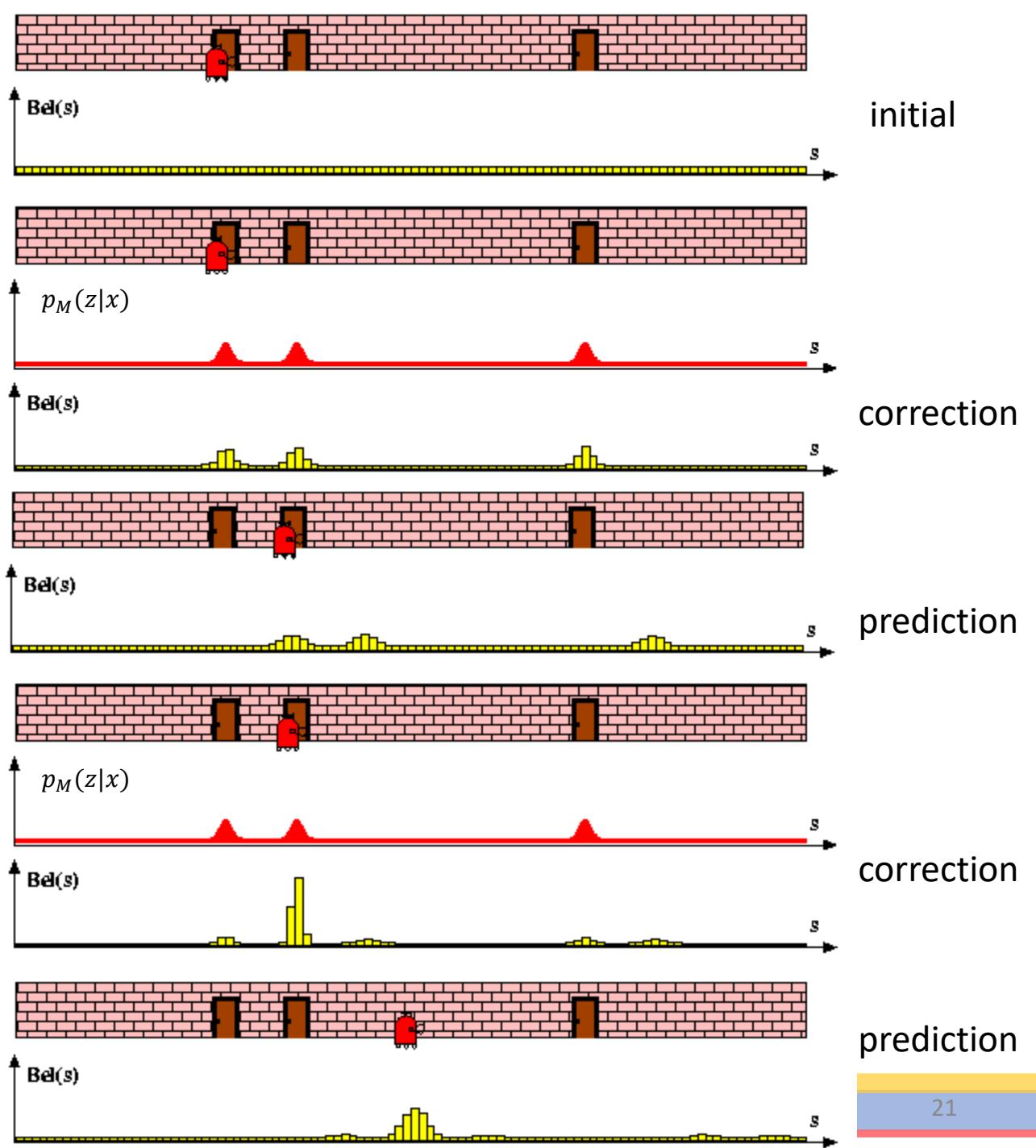
$$\bar{p}_{k,t} = \sum_i p_{i,t-1} \mathbf{motion_model}(\text{mean}(x_k), u_t, \text{mean}(x_i))$$

$$p_{k,t} = \eta \bar{p}_{k,t} \mathbf{measurement_model}(z_t, \text{mean}(x_k), m)$$

```
end for
```

```
return  $bel(x_t)$ 
```


Grid localization,
 $bel(x_t)$ represented by a
histogram over grid



Summary

- Key variable: Grid resolution
- Two approaches
 - Topological: break-up pose space into regions of significance (landmarks)
 - Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs
- Important to compensate for coarseness of resolution
 - Evaluating measurement/motion based on the center of the region may not be enough. *If motion is updated every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naïve implementation will not have any state transition!*
- Computation
 - Motion model update for a 3D grid required a 6D operation, measurement update 3D
 - With fine-grained models, the algorithm cannot be run in real-time
 - Some calculations can be cached (ray-casting results)

