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Announcements
• GEM, F1-Tenth signup (check CampusWire) 

• Safety Training required (Check CampusWire)



Outline of state estimation module

Problem. Estimate the current state 𝑥𝑡 of the system from knowledge 
about past observations 𝑧0:𝑡, control inputs 𝑢0:𝑡, and map 𝑚

• Introduction: Localization problem, taxonomy

• Probabilistic models: motion and measurements

• Discrete Bayes Filter

• Histogram filter and grid localization

• Particle filter



Review of conditional probabilities

Random variable X takes values x1, x2 ∈ ℝn

P X = x  is written as P x  

P X = x, Z = z  is written as P x, 𝑧  

Conditional probability: P X = x Z = z) = P x z =
P x,𝑧

P(z)
 provided P z > 0

Bayes Rule P x z =
P z x P x

P(z)
, provided P z > 0



Evolution: probabilistic  Markov Chain models
A probability distribution 𝜋 ∈ 𝑃 𝑄  over a finite set of states Q can be represented by 
a vector 𝜋 ∈ ℝ|𝑄| where ∑𝜋𝑖 = 1

Recall deterministic discrete transitions for automata 𝐷: 𝑄 → 𝑄

Probabilistic discrete transitions give a probability distribution 𝐷: 𝑄 → 𝑷(𝑄) 
according to which the next state is chosen, i.e., 𝐷 𝑞  is a particular probability 
distribution over Q

For the example on the right 𝑝𝐷 𝑋𝑡+1 = 𝑏 𝑋𝑡 = 𝑎) =
1

3
, i.e., 𝐷(𝑎)  =

 [𝑎:
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 𝑏:

1

3
 𝑐:
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3
] 𝐷(𝑏)  =  [𝑎:

1

5
 𝑏: 0 𝑐:

4

5
]

Such a state machine model is called a Markov chain

A probabilistic transition 𝑫 can be represented by a matrix  𝑫 ∈ ℝ 𝑄 ×|𝑄| where 𝐷𝑖𝑗 
gives the probability of state 𝑖 to transition to 𝑗 

The evolution of the probability  𝜋 over states can be represented as

 𝜋𝑡+1 = 𝜋𝑡𝑫 starting with an initial distribution 𝜋0 ∈ 𝑷(𝑄)
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Evolution: probabilistic  MDP models
More generally, transitions depend on input in which case the 
transition function 𝐷: 𝑄 × 𝑈 → 𝑃(𝑄) also depends on the control 
action 𝑈

For the example below 𝑝𝐷 𝑋𝑡+1 = 𝑏 𝑋𝑡 = 𝑎, 𝑈𝑡 = 𝑟𝑒𝑑) =
1

3

Such a state machine model with inputs is called a Markov 
Decision Process (MDP)

The probabilistic transitions 𝑫 can be represented by a collection 
of matrices  𝑫: 𝑈 → ℝ 𝑄 ×|𝑄| where 𝐷𝑖𝑗(𝑢) gives the probability 

of state 𝑖 to transition to 𝑗 under action u

𝑝𝐷 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant
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Evolution and measurement: probabilistic  models
Even more generally, transitions depend on outputs and history

𝑝𝐷 𝑋𝑡 = 𝑥𝑡 𝑋0 = 𝑥0, … 𝑋𝑡−1 = 𝑥𝑡−1,𝑍1 = 𝑧1, … 𝑍𝑡−1 = 𝑧𝑡−1,, 𝑈1 =

𝑢1, … 𝑈𝑡 = 𝑢𝑡,) describes state evolution model

𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) describes motion/state evolution model

If state is complete, sufficient summary of the history then

• 𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧0:𝑡−1, 𝑢0:𝑡−1) = 𝑝𝐷 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) transition prob. 

• 𝑝𝐷 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant
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Start

Example Motion Model without measurements

𝑝𝐷 𝑥𝑡|𝑥𝑡−1, 𝑢𝑡

The state transition 
probabilities are defined by
𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡 + 𝜔𝑡

where 𝜔𝑡~𝑁(0,1)

𝜋0 = 𝑝 𝑋0 = 𝑥0 = 1



Probabilistic measurements

A measurement model gives the output or observation 
probability for a given state, e.g.:

p𝑀 zt = 1 xt = a) =
1

2

Generally, measurements can depend on history 
p𝑀 zt x0:t, z1:t−1, u0:t−1)

• If state is complete p𝑀 zt x0:t, z1:t−1, u1:t) =  p zt xt)

• p𝑀 zt xt): measurement probability

• p𝑀 z x): time invariant measurement probability
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Example Proximity Sensor Measurement Models

Laser sensor Sonar sensor

𝑥𝑘

𝑝𝑀 𝑧𝑡 𝑋𝑡 = 𝑥𝑘)

𝑚

max-range 
spike



Motion and measurement models

𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧0:𝑡−1, 𝑢1:𝑡) describes motion/state evolution model

If state is complete (sufficient summary of the history) then

• 𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧0:𝑡−1, 𝑢0:𝑡−1) = 𝑝𝐷 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) motion model

• 𝑝𝐷 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

𝑝𝑀 𝑧𝑡 𝑥0:𝑡 , 𝑧0:𝑡−1, 𝑢0:𝑡−1, 𝑚) describes measurement

If state is complete 

• 𝑝𝑀 𝑧𝑡 𝑥0:𝑡, 𝑧1:𝑡−1, 𝑢1:𝑡, 𝑚) = 𝑝𝑀 𝑧𝑡 𝑥𝑡 , 𝑚) measurement model

• 𝑝𝑀 𝑧 𝑥, 𝑚): time invariant measurement probability

zt-1
zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1
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Beliefs
Belief: Robot’s knowledge about the state

True state 𝑥𝑡 is not directly measurable or observable and the robot must infer or 

estimate state from measurements and this distribution of states is called the belief 

𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡)

Posterior distribution over state at time t given all past measurements and control. This 

will be calculated in two steps:

Initially: 𝑏𝑒𝑙(𝑥0) = π0 

1. Prediction: 𝑏𝑒𝑙(𝑥𝑡) = 𝑝 𝑥𝑡 𝑧1:𝑡−1, 𝑢1:𝑡  based on past measurements and control 𝑢

2. Correction: 𝑏𝑒𝑙(𝑥𝑡) from 𝑏𝑒𝑙(𝑥𝑡) based on most recent measurement 𝑧𝑡



Bayes Filter: Prediction and Correction
𝑏𝑒𝑙 𝑥𝑡−1

𝑥′
𝑏𝑒𝑙(𝑥′)

1
𝑏𝑒𝑙(1)

2
𝑏𝑒𝑙(2)

3
𝑏𝑒𝑙(3)

𝑝𝐷 𝑥′|1, 𝑢𝑡

𝑝𝐷 𝑥′|2, 𝑢𝑡

𝑝𝐷 𝑥′|3, 𝑢𝑡

𝑏𝑒𝑙 𝑥𝑡

𝑥′

𝑏𝑒𝑙(𝑥𝑡)

𝑝𝑀 𝑧𝑡 𝑥𝑡

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡, 𝑧𝑡) iteratively calculates 𝑏𝑒𝑙 𝑥𝑡  given 
𝑏𝑒𝑙 𝑥𝑡−1 , the recent control 𝑢𝑡, and the measurement 𝑧𝑡

𝑏𝑒𝑙 𝑥𝑡−1 : 𝑃(𝑄) is a probability distribution over Q

𝑏𝑒𝑙(𝑥𝑡) = 𝑝 𝑥𝑡 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑧1:𝑡−1, 𝑢1:𝑡 = 𝑝 𝑥𝑡 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡  is the 
intermediate belief which uses only prediction but not the most recent 
measurement

For discrete distributions for each 𝑥′ ∈ 𝑄 the beliefs can be calculated as

𝑏𝑒𝑙(𝑋𝑡 = 𝑥′) = ෍

𝑥∈𝑄

𝑝𝐷(𝑋𝑡 = 𝑥′|𝑋𝑡−1 = 𝑥, 𝑈𝑡 = 𝑢𝑡) 𝑏𝑒𝑙(𝑋𝑡−1 = 𝑥)

𝑏𝑒𝑙 𝑋𝑡 = 𝑥′ = 𝜂 𝑝𝑀 𝑍𝑡 = 𝑧𝑡 𝑋𝑡 = 𝑥′ 𝑏𝑒𝑙(𝑋𝑡 = 𝑥′)

where 𝜂 is a normalizing constant to make 𝑏𝑒𝑙 𝑥𝑡 ∈ 𝑷(𝑄)

Recall Bayes rule 𝑃 𝑥 𝑧 =
𝑃 𝑧 𝑥 𝑃 𝑥

𝑃(𝑧)
, provided 𝑃 𝑧 > 0

motion model

measurement model



Histogram Filter or Discrete Bayes Filter

Finitely many states 𝑥𝑖 , 𝑥𝑘 , 𝑒𝑡𝑐. Random state vector 𝑋𝑡

𝑝𝑘,𝑡: belief at time t for state 𝑥𝑘; discrete probability distribution

Algorithm Discrete_Bayes_filter( 𝑝𝑘,𝑡−1 , 𝑢𝑡, 𝑧𝑡):

for all 𝑘 do:

 ҧ𝑝𝑘,𝑡 = ∑𝑖 𝑝(𝑋𝑡 = 𝑥𝑘|𝑢𝑡,𝑋𝑡−1 = 𝑥𝑖)𝑝𝑖,𝑡−1

 𝑝𝑘,𝑡 = 𝜂 𝑝 𝑧𝑡 𝑋𝑡 = 𝑥𝑘) ҧ𝑝𝑘,𝑡

end for

return {𝑝𝑘,𝑡} 

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑘

𝑝′

1
𝑝1,𝑡−1

2
𝑝2,𝑡−1

3
𝑝3,𝑡−1

𝑝 𝑥𝑘|𝑢𝑡, 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡

Notation: 𝑏𝑒𝑙 𝑋𝑡 = 𝑥𝑘 ≔ 𝑝𝑘,𝑡



Bayes Filter: Continuous Distributions

Algorithm Bayes_filter(𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡)

for all 𝑥𝑡 do:

𝑏𝑒𝑙 𝑥𝑡 = ∫ 𝑝(𝑥𝑡|𝑢𝑡,𝑥𝑡−1)𝑏𝑒𝑙(𝑥𝑡−1)𝑑𝑥𝑡−1 

 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝 𝑧𝑡 𝑥𝑡 𝑏𝑒𝑙(𝑥𝑡)

end for

return 𝑏𝑒𝑙(𝑥𝑡)

 

𝑏𝑒𝑙 𝑥𝑡−1

𝑥𝑡

𝑝′

1
𝑝1

2
𝑝2

3
𝑝3

𝑝 𝑥𝑡|𝑢𝑡 , 1

𝑝 𝑥𝑡|𝑢𝑡 , 2

𝑝 𝑥𝑡|𝑢𝑡 , 3

𝑏𝑒𝑙 𝑥𝑡−1

𝑏𝑒𝑙(𝑥𝑡)

𝑝 𝑧𝑡 𝑥𝑡



Grid Localization

Solves global localization in some cases kidnapped robot problem using 
Bayes filter

Can process raw sensor data

• No need for feature extraction

Non-parametric method, i.e., does not rely on specific form of 
probability distributions

• In particular, not bound to unimodal distributions (unlike Extended 
Kalman Filter)
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Grid localization with bicycle model + landmarks
The state space Q is a quantization of position and orientation 𝑞 = ⟨𝑥, 𝑦, 𝜃⟩ 

A belief is a probability distribution over states be𝑙 𝑞𝑡 ∈ 𝑃(𝑄)

Prediction: Fixing an (steering) input ut compute the new intermediate belief over Q 
using motion model 𝑝𝐷(𝑞𝑡+1|𝑞𝑡 , 𝑢𝑡+1)

Correction: Update intermediate belief with received distance to landmark 𝑧𝑡+1 based 
on measurement model 𝑝𝑀

𝑏𝑒𝑙(𝑋𝑡 = 𝑥, 𝑦, 𝜃 )
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Grid-based Localization



Ambiguity in global localization arising from 
locally symmetric environment



Grid localization

Algorithm Grid_localization ( 𝑝𝑘,𝑡−1 , 𝑢𝑡 , 𝑧𝑡, 𝑚)

for all 𝑘 do:

 ҧ𝑝𝑘,𝑡 = ∑𝑖 𝑝𝑖,𝑡−1 𝒎𝒐𝒕𝒊𝒐𝒏_𝒎𝒐𝒅𝒆𝒍(𝑚𝑒𝑎𝑛 𝑥𝑘 , 𝑢𝑡, 𝑚𝑒𝑎𝑛 𝑥𝑖 )

 𝑝𝑘,𝑡 = 𝜂 ҧ𝑝𝑘,𝑡𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒎𝒆𝒏𝒕_𝒎𝒐𝒅𝒆𝒍(𝑧𝑡 , 𝑚𝑒𝑎𝑛 𝑥𝑘 , 𝑚)

end for

return 𝑏𝑒𝑙(𝑥𝑡)
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Grid localization, 
𝑏𝑒𝑙 𝑥𝑡 represented by a 
histogram over grid 𝑝𝑀(𝑧|𝑥)

𝑝𝑀(𝑧|𝑥)

initial

correction

prediction

correction

prediction



Summary
• Key variable: Grid resolution

• Two approaches
• Topological: break-up pose space into regions of significance (landmarks)

• Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs

• Important to compensate for coarseness of resolution

• Evaluating measurement/motion based on the center of the region may not be enough. If motion is 
updated every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naïve implementation 
will not have any state transition!

• Computation

• Motion model update for a 3D grid required a 6D operation, measurement update 3D

• With fine-grained models, the algorithm cannot be run in real-time

• Some calculations can be cached (ray-casting results) 
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