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ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 12: Filtering and Localization

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025;
Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Some slides are from the book’s website
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Announcements

* GEM, F1-Tenth signup (check CampusWire)
 Safety Training required (Check CampusWire)
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Outline of state estimation module

Problem. Estimate the current state x; of the system from knowledge
about past observations z,.;, control inputs ug.;, and map m

* Introduction: Localization problem, taxonomy

* Probabilistic models: motion and measurements
e Discrete Bayes Filter

e Histogram filter and grid localization

e Particle filter
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Review of conditional probabilities

Random variable X takes values x,X, € R"
P(X = x) is written as P(x)
P(X =x,7Z = z) is written as P(x, z)

Conditional probability: P(X = x |Z = z) = P(xX|z) =
Bayes Rule P(x|z) = P(ZIL)Z;D(X), orovided P(z) > 0

P(x,z)

P(z)

provided P(z) > 0



Evolution: probabilistic Markov Chain models

A probability distribution m € P(Q) over a finite set of states Q can be represented by 13

1/3
a vector r € Rl where ¥'mr; = 1 H a H

Recall deterministic discrete transitions for automata D: Q — Q

Probabilistic discrete transitions give a probability distribution D: Q = P(Q)
according to which the next state is chosen, i.e., D(q) is a particular probability 01 ‘ 0.8

distribution over Q

For the example ontheright pp(X¢31 = b [ Xy =a) ==, i.e, D(a) = % % %
[z biz 2] D(b) = [az b:0 c:7] p=|l , *
3 5 5 5
Such a state machine model is called a Markov chain 1_10 120 0

A probabilistic transition D can be represented by a matrix D € RICIXICl where Dij Markov Chain Probability Distribution (Time Step 0)
gives the probability of state i to transition to j

The evolution of the probability m over states can be represented as

o
=
T

Probability

1 = D starting with an initial distribution Ty € P(Q)

Ei ' State a Sta'lfe b StaT‘:e C



Evolution: probabilistic MDP models

More generally, transitions depend on input in which case the 'eac

transition function D: Q X U = P(Q) also depends on the control

action U %

For the example below pp(X¢y1 = b | Xy = a, U = red) =

3

Such a state machine model with inputs is called a Markov
Decision Process (MDP)

The probabilistic transitions D can be represented by a collection
of matrices D: U — RI¢XI% where D;;(u) gives the probability
of state i to transition to j under action u

Dp (x'|x, u) if transition probabilities are time invariant
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Evolution and measurement: probabilistic models

1/3 1/3

Even more generally, transitions depend on outputs and history 'Oa

PD(Xt = x¢ | Xo = X0, . Xpoq = xt—l,Zl =Zy el = Zt—1, U, =

Uy, ... Uy = u; ) describes state evolution model 008

pp(x; |Xo.4—1, Z1:t—1, U1.¢) describes motion/state evolution model
If state is complete, sufficient summary of the history then
* pp(X¢ |%0:t-1, Zo:t—1, Uo:t—1) = Pp (X¢ |X¢—1, Ug) transition prob.

« pp(x'|x, u) if transition probabilities are time invariant
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Example Motion Model without measurements

Ty =pXp=%09) =1

Start

N

Pp (X¢|Xt-1, ut)

¥

10 meters

The state transition
probabilities are defined by

Xee1 = (e up) + wy

where w;~N(0,1)




Probabilistic measurements

A measurement model gives the output or observation

probability for a given state, e.g.:

1
Py (Ze = l|xy = a) = 5

Generally, measurements can depend on history

Pum (Z¢ [Xo:t, Z1:t-1, Uoit—1)
e |f state is complete Py (Z¢ |Xo-0r Z1:t—1, U1:t) = P(Z¢ |X0)
* Py (Z¢ |X¢): measurement probability
* pm(Z |X): time invariant measurement probability

4o

State a produces output 1 and 0 each
with probability 0.5
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Example Proximity Sensor Measurement Models

Q
N
\ s §
\ \
/\ AN \
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Measure d [ | Measured
Xk 1 j
pm(ze [Xe = %) &™) g o00m |
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SO L rg 0.05 |-
o [
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0015 |
o 100 200 00 200 0 %—ﬁ/\ﬁ -
measured distance [cm] 120 mlzz.sured. djst;ioe ferm] +00 500
Laser sensor Sonar sensor
Max-range

spike
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Motion and measurement models

pp (x; |x0.6—1, Zg:t—1, U1.¢) describes motion/state evolution model
If state is complete (sufficient summary of the history) then

* pp(x¢ |%0:t-1,Z0:t—1, Uo:e—1) = Pp (x¢ |xr—1,u;) motion model
* pp(x'|x,u) if transition probabilities are time invariant

Py (2 |X0-6) Zo: -1, Up-t—1, M) describes measurement

If state is complete

* v (Z: | X060 Z1.6—1, Uq-e, M) = Py (24 | X, M) measurement model

* py(Z |x, m): time invariant measurement probability

Como)
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Beliefs

Belief: Robot’s knowledge about the state

True state x; is not directly measurable or observable and the robot must infer or

estimate state from measurements and this distribution of states is called the belief
bel(x¢) = p(x¢|Z1.e) Ur.e)

Posterior distribution over state at time t given all past measurements and control. This
will be calculated in two steps:

Initially: bel(xy) = Mg
1. Prediction: bel(x;) = p(x¢|z1..—1,Us.+) based on past measurements and control u

2. Correction: bel(x;) from bel(x,) based on most recent measurement z,



Bayes Filter: Prediction and Correction
bel(x,_) bel(x;)
pD(x’|1»ut)

Algorithm Bayes_filter(bel(x;_1), 1, Z;) iteratively calculates bel(x;) given
bel(x;_1), the recent control u;, and the measurement z;

bel(x;_1): P(Q) is a probability distribution over Q @pp(x'IZ,ut)
bel(2)

bel(xy) = p(x|bel(x¢_1),21.0—1, ur.e) = p(xe|bel(xe—1),u,) is the
intermediate belief which uses only prediction but not the most recent

|

measurement @ |
pD(x,|3r ut) |

|

l

For discrete distributions for each x” € Q the beliefs can be calculated as pu (Ze|xp)
bel(X, = x) = ) pp(Xe = x|,y = %,Uy = ;) bel(X,_; = x) motion model

: G
bel(X, = x") =npy(Z; = z:|X; = x') bel(X; = x") measurement model

where 17 is a normalizing constant to make bel(x;) € P(Q)

P(Z|X)P(x)
P(z)

Recall Bayes rule P(x|z) =

4o

, provided P(z) > 0



Histogram Filter or Discrete Bayes Filter

Notation: bel(X; = xx) = Pk ¢

Finitely many states x;, xj, etc. Random state vector X;

Pk ¢ belief at time t for state xy; discrete probability distribution
Algorithm Discrete_Bayes_filter({py :_1}, us, 7;):
for all k do:
Prt = LiP(Xe = Xpe|ue Xeo1 = X)Dit-1
Pre =N P(Ze | Xy = X)) Dt
end for

return {py ¢}
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Bayes Filter: Continuous Distributions

4o

Algorithm Bayes_filter(bel(x;_1), u;, z;)

for all x; do:
bel(x;) = fp(xt|ut,xt;1)bel(xt—1)dxt—1
bel(x;) =n p(z¢|x.) bel(x;)

end for

return bel(x;)

bel(x;_q1) bel(x;_,)

2\ plxeluy, 2) [ Xy
p2 'Q’

e p(xelue, 3) p(z¢|xt)
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Grid Localization

Solves global localization in some cases kidnapped robot problem using
Bayes filter

Can process raw sensor data
* No need for feature extraction

Non-parametric method, i.e., does not rely on specific form of
probability distributions

* In particular, not bound to unimodal distributions (unlike Extended
Kalman Filter)



Grid localization with bicycle model + landmarks

bel(X; = (x,y,0))

The state space Q is a quantization of position and orientation g = (x,y, 6)

P

A belief is a probability distribution over states bel(q;) € P(Q)

I

Prediction: Fixing an (steering) input u,compute the new intermediate belief over Q

using motion model pp (G¢4+119s) Uiv1)

Correction: Update intermediate belief with received distance to landmark z;, ; based
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on measurement model py,

Time[s]:1.90 Time[s]:7.99 Time[s]:19.8

20 A 204

151 15

10 A 10 A

-15  -10 -5 0 5 10 15 SR -20 -15  -10 -5 0 5 10 15

-20 =15 -10 =5 0 5 10 15

17
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Grid-based Localization

18



Ambiguity in global localization arising from
locally symmetric environment
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Grid localization

Algorithm Grid_localization ({py :—1}, t¢, z¢, m)

for all k do:
Dkt = X Dit—1 motion_model(mean(xy), us, mean(x;))
Dkt = 1 Prcmeasurement_model(z,, mean(x;), m)

end for
return bel(x;)




Grid localization,
bel(x;)represented by a
histogram over grid
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jl . . .
Bel(s) initial

I Bel(s) correction

« prediction

pm(z|x)

I Ba(s) correction

¥

prediction
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e Key variable: Grid resolution O—O O

* Two approaches
* Topological: break-up pose space into regions of significance (landmarks)
* Metric: fine-grained uniform partitioning; more accurate at the expense of higher computation costs

* Important to compensate for coarseness of resolution

* Evaluating measurement/motion based on the center of the region may not be enough. If motion is
updated every 1s, robot moves at 10 cm/s, and the grid resolution is 1m, then naive implementation
will not have any state transition!

* Computation
* Motion model update for a 3D grid required a 6D operation, measurement update 3D
* With fine-grained models, the algorithm cannot be run in real-time
e Some calculations can be cached (ray-casting results)

4o
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