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Announcements
• All project teams have been formed

• https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-
B9Y9_oAPuqF_AZW2nrhsQY5lfml86wQU/edit?gid=0#gid=0

• Connect with your teammates

• Check CampusWire if you want to switch team

• GEM, F1-Tenth, Drone Safety Training required (Check CampusWire)

https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-B9Y9_oAPuqF_AZW2nrhsQY5lfml86wQU/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-B9Y9_oAPuqF_AZW2nrhsQY5lfml86wQU/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-B9Y9_oAPuqF_AZW2nrhsQY5lfml86wQU/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-B9Y9_oAPuqF_AZW2nrhsQY5lfml86wQU/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-B9Y9_oAPuqF_AZW2nrhsQY5lfml86wQU/edit?gid=0#gid=0


Announcements
• Project pitch presentation next week! (15% of your project grades!)

• Check out previous semesters’ projects:

• https://www.youtube.com/playlist?list=PLcA4s4DKSOF1Kzp0_OqOlNAGWoft2G7z6

• https://www.youtube.com/watch?v=J0_EZeZfXWk

• You must upload slides to Gradescope by 11:59pm on Monday, October 13th. We will 
only display the uploaded version during Pitch.

• Given the time limit, we will enforce a STRICT 5-min presentation + 1-min Q&A 

• Your presentation will be graded – check campuswire for grading rubrics & 
hints

• Check CampusWire for presentation schedule

https://www.youtube.com/playlist?list=PLcA4s4DKSOF1Kzp0_OqOlNAGWoft2G7z6
https://www.youtube.com/playlist?list=PLcA4s4DKSOF1Kzp0_OqOlNAGWoft2G7z6
https://www.youtube.com/watch?v=J0_EZeZfXWk
https://www.youtube.com/watch?v=J0_EZeZfXWk


Autonomy 
pipeline

Control
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Sensing

Physics-based 
models of camera, 

LIDAR, RADAR, GPS, 
etc.

GEM platform



Can you name a few challenges in the Perception 
pipeline?
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Outline of state estimation module

• Introduction: Localization problem, taxonomy

• Review of probability: conditional probability and Bayes’ Rule

• Probabilistic models: motion and measurements

Next lectures:

• Discrete Bayes Filter 

• Histogram filter and grid localization

• Particle filter



Roomba mapping 

iRobot Roomba uses SLAM algorithm to create maps for cleaning areas

SLAM: Simultaneous Localization and Mapping

Also in underground, underwater, and space robots, in GPS-denied environments

Image credit: Devendra Singh Chaplot



State estimation and localization problem (MP3)

• For closed loop control, the controller needs to know the 

current state (position, attitude, pose)

•  𝑥𝑡+1 =  𝑓(𝑥𝑡 , 𝑢𝑡); 𝑢𝑡  =  𝑔(𝑥𝑡) 

• Typically, the state 𝑥𝑡 is not available directly. We have some 

other observables 𝑧𝑡  =  ℎ 𝑥𝑡  that are available. 

• Example observables:  images, lidar scans, GPS, IMU

• We have to compute a state estimate ෝ𝒙𝒕 from observations 𝑧𝑡 

so that ො𝑥𝑡 ≈ 𝑥𝑡

• Then we can use 𝑢𝑡 = 𝑔 ො𝑥𝑡

• Localization is a special case of the state estimation problem 

where we have to determine the pose of the robot relative to 

the given map of the environment



Setup: State evolution and measurement models
Familiar Deterministic model:

System evolution: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡

• 𝑥𝑡: unknown state of the system at time t

• 𝑢𝑡: known control input at time t, 𝑢𝑡 = 𝑔( ො𝑥𝑡)

• 𝑓: known dynamic function, possibly stochastic

Measurement or observation: 𝑧𝑡 = ℎ(𝑥𝑡 , 𝑚)
• 𝑧𝑡: known measurement of state 𝑥𝑡 at time 𝑡

• 𝑚: unknown underlying map

• ℎ: known measurement function

Problem: Given the sequence of measurements 
𝑧1, 𝑧2, … 𝑧𝑡−1 and control inputs 𝑢1, 𝑢2, … 𝑢𝑡−1 

We will use probabilistic models going forward 𝑚
This is not exactly the measurement model of MP3 

𝑥𝑡

𝑧𝑡[1]

𝑧𝑡[2]

𝑧𝑡[3]



Ambiguity in global localization arising from 
locally symmetric environment



Localization as coordinate transformation

m

zt-1
zt zt+1

ut-1 ut ut+1

xt-1 xt xt+1

Shaded known: 
map (m), control inputs (u), measurements(z). 
White nodes to be determined (x)

maps (m) are described in global coordinates. 
Localization = establish coord transf. between 
m and robot’s local coordinates

Transformation used for objects of interest 
(obstacles, pedestrians) for decision, planning 
and control 



Localization taxonomy
Global vs Local

• Local: assumes initial pose is known, has to only account for the uncertainty 
coming from robot motion (position tracking problem)

• Global: initial pose unknown; harder and subsumes position tracking

• Kidnapped robot problem: during operation the robot can get teleported to a 
new unknown location (models failures)

Static vs Dynamic Environments

Single vs Multi-robot localization

Passive vs Active Approaches

• Passive: localization module only observes and is controlled by other means; 
motion not designed to help localization (Filtering problem)

• Active: controls robot to improve localization



Discrete time model: Automaton with inputs/outputs

We will describe the systems state, inputs, and outputs as a sequence

• System evolution: 𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡

• 𝑥𝑡: state of the system at time t

• 𝑢𝑡: control input at time t

• Measurement: 𝑧𝑡 = 𝑔(𝑥𝑡 , 𝑚)
• 𝑧𝑡: measurement of state 𝑥𝑡  at time 𝑡

• 𝑚: unknown underlying map

Instead of nondeterministic automata or set-valued functions (like we used in 
the first part of this course), now we will model uncertainty in 𝑓 and 𝑔 with 
probability distributions



Setup, notations

• 𝑥𝑡1:𝑡2
= 𝑥𝑡1

, 𝑥𝑡1+1, 𝑥𝑡1+2, … , 𝑥𝑡2
 sequence of states 𝑡1to 𝑡2

• Robot takes one measurement at a time
• 𝑧𝑡1:𝑡2

= 𝑧𝑡1
, … , 𝑧𝑡2

 sequence of all measurements (observations) from 𝑡1to 𝑡2

• Control also exercised at discrete steps
• 𝑢𝑡1:𝑡2

= 𝑢𝑡1
, 𝑢𝑡1+1, 𝑢𝑡1+2, … , 𝑢𝑡2

 sequence control inputs



Review of conditional probabilities

I rolled two fair six-sided dice. Define two random variables:

X1=value rolled on die 1             X2=value rolled on die 2

Can you calculate the probability of the following events?

P(X1=2)

P(X1+X2<=4)

P(X1=2 | X1+X2<=4) conditional probability



Conditional probabilities and Bayes Rule
A random variable is a function X: Ω → ℝn that assigns numerical values to the outcomes of a random 
experiment. Ω is the sample space. 

Random variable X takes values x1, x2 ∈ ℝn

Example: Result of a dice roll (X) and xi = 1, … , 6

P X = x  is written as P x  

P X = x, Y = y  is written as P x, y  

Conditional probability: P X = x Y = y) = P x y =
P x,y

P(y)
 provided P y > 0

P x, y = P x y P(y)

     = P y x P(x)

Substituting in the definition of Conditional Prob. we get Bayes Rule

P x y =
P y x P x

P(y)
, provided P y > 0



Using measurements to update state estimates

𝑃 𝑥 𝑧 =
𝑃 𝑧 𝑥 𝑃 𝑥

𝑃(𝑧)
, provided 𝑃 𝑧 > 0 (*)

𝑋 : Robot position, 𝑍 : measurement, 

𝑃 𝑥 : Prior distribution/belief (before measurement)

𝑃 𝑥 𝑧 : Posterior distribution (after measurement)

𝑃 𝑧 𝑥 : Measurement model / inverse conditional / generative model

𝑃(𝑧): does not depend on x; normalization constant



Example: Light Sensor Robot

• Problem Setup:

• A robot has a light sensor that detects if a light is 'on' or 'off'

• The sensor is noisy and cannot be fully trusted

• Goal: Estimate the true state of the light using noisy measurements



Sensor Model (Measurement Model)

• Sensor characteristics:

• If light is ON: sensor reads 'on' 90% of the time
• p(z = 'on' | x = 'on') = 0.9

• If light is OFF: sensor reads 'on' 40% of the time
• p(z = 'on' | x = 'off') = 0.4



Step 1: Initial Belief (Prior)

• Before sensing, the robot's initial belief:

• p(xₜ = 'on') = 0.5

• p(xₜ = 'off') = 0.5

• The robot is completely uncertain about the light's state



Step 2: Sensor Reading

• The sensor now reads:

• zₜ = 'on'

• Question: What should the robot now believe?

• Mathematically: we need P(x= 'on' | zₜ = 'on')



Step 2: Sensor Reading

• We can now apply the Bayes Rule

• P(xₜ = 'on' | zₜ = 'on’) = [ P(zₜ = 'on' | xₜ = 'on’) · P(xₜ = 'on’) ] / P(zₜ = 'on’) 

Measurement Prior/Belief Normalizing 
constant

Posterior



Step 3: Calculate normalization constant

• Calculate normalization constant p(zₜ = 'on'):

p(z = 'on') = p(z = 'on' | x = 'on') · p(x = 'on') + p(z = 'on' | x = 'off') · p(x = 'off')

= (0.9)(0.5) + (0.4)(0.5)

= 0.45 + 0.20

= 0.65



Step 4: Calculate Posterior

• Update belief using Bayes' Law:

p(x = 'on' | z = 'on') = [p(z = 'on' | x = 'on') · p(x = 'on')] / p(z = 'on')

= (0.9 × 0.5) / 0.65

= 0.45 / 0.65

≈ 0.692 or 69.2%



Result & Interpretation

• Before sensing: 50% confident light is on

• After sensing 'on': 69.2% confident light is on

• The robot updated its belief by combining:
• Prior knowledge (initial 50% belief)

• Sensor measurement (noisy reading 'on')

• Sensor reliability (90% accurate when on)



Evolution: probabilistic  Markov Chain models
A probability distribution 𝜋 ∈ 𝑃 𝑄  over a finite set of states Q can be represented by 
a vector 𝜋 ∈ ℝ|𝑄| where ∑𝜋𝑖 = 1

Recall deterministic discrete transitions for automata 𝐷: 𝑄 → 𝑄

Probabilistic discrete transitions give a probability distribution 𝐷: 𝑄 → 𝑷(𝑄) 
according to which the next state is chosen, i.e., 𝐷 𝑞  is a particular probability 
distribution over Q

For the example on the right 𝑝𝐷 𝑋𝑡+1 = 𝑏 𝑋𝑡 = 𝑎) =
1

3
, i.e., 𝐷(𝑎)  =

 [𝑎:
1

3
 𝑏:

1

3
 𝑐:

1

3
] 𝐷(𝑏)  =  [𝑎:

1

5
 𝑏: 0 𝑐:

4

5
]

Such a state machine model is called a Markov chain

A probabilistic transition 𝑫 can be represented by a matrix  𝑫 ∈ ℝ 𝑄 ×|𝑄| where 𝐷𝑖𝑗 
gives the probability of state 𝑖 to transition to 𝑗 

The evolution of the probability  𝜋 over states can be represented as

 𝜋𝑡+1 = 𝑫𝜋𝑡 starting with an initial distribution 𝜋0 ∈ 𝑷(𝑄)

a b

c

1/3 

1/3 

1/3 

0.1 

0.9 

0.2 

0.8 

𝑫 =

1

3

1

3

1

3
1

5
0

4

5
1

10

9

10
0



Evolution: probabilistic  MDP models
More generally, transitions depend on input in which case the 
transition function 𝐷: 𝑄 × 𝑈 → 𝑃(𝑄) also depends on the control 
action 𝑈

For the example below 𝑝𝐷 𝑋𝑡+1 = 𝑏 𝑋𝑡 = 𝑎, 𝑈𝑡 = 𝑟𝑒𝑑) =
1

3

Such a state machine model with inputs is called a Markov 
Decision Process (MDP)

The probabilistic transitions 𝑫 can be represented by a collection 
of matrices  𝑫: 𝑈 → ℝ 𝑄 ×|𝑄| where 𝐷𝑖𝑗(𝑢) gives the probability 

of state 𝑖 to transition to 𝑗 under action u

𝑝𝐷 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

a b

c

1/3 

1/3 

1/3 

0.1 

0.9 

0.2 

0.8 

a b

c

1/3 

1/3 

1/3 

0.1 

0.9 

0.2 

0.8 

0.9 0.1 

1



Evolution and measurement: probabilistic  models
Even more generally, transitions depend on outputs and history

𝑝𝐷 𝑋𝑡 = 𝑥𝑡 𝑋0 = 𝑥0, … 𝑋𝑡−1 = 𝑥𝑡−1,𝑍1 = 𝑧1, … 𝑍𝑡−1 = 𝑧𝑡−1,, 𝑈1 =

𝑢1, … 𝑈𝑡 = 𝑢𝑡,) describes state evolution model

𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) describes motion/state evolution model

If state is complete, sufficient summary of the history then:

• 𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧0:𝑡−1, 𝑢0:𝑡−1) = 𝑝𝐷 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) transition prob. 

• 𝑝𝐷 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

a b

c

1/3 

1/3 

1/3 

0.1 

0.9 

0.2 

0.8 

a b
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Start

Example Motion Model without measurements

𝑝𝐷 𝑥𝑡|𝑥𝑡−1, 𝑢𝑡

The state transition 
probabilities are defined by
𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡 + 𝜔𝑡

where 𝜔𝑡~𝑁(0,1)

𝜋0 = 𝑝 𝑋0 = 𝑥0 = 1



Probabilistic measurements

A measurement model gives the output or observation 
probability for a given state, e.g.:

p𝑀 zt = 1 xt = a) =
1

2

Generally, measurements can depend on history 
p𝑀 zt x0:t, z1:t−1, u0:t−1)

• If state is complete p𝑀 zt x0:t, z1:t−1, u1:t) =  p zt xt)

• p𝑀 zt xt): measurement probability

• p𝑀 z x): time invariant measurement probability

zt-1
zt

zt+

1

ut-

1
ut

ut+

1

xt-1 xt

xt+

1

𝑧𝑡 = 𝑔 𝑥𝑡 

a
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1

2
 0:

1

2
 

b
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5
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4
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c
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State a produces output 1 and 0 each 
with probability 0.5



Example Proximity Sensor Measurement Models

Laser sensor Sonar sensor

𝑥𝑘

𝑝𝑀 𝑧𝑡 𝑋𝑡 = 𝑥𝑘)

𝑚

max-range 
spike



Summary so far: Evolution and measurement

𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) describes motion/state evolution model

If state is complete, sufficient summary of the history then

• 𝑝𝐷 𝑥𝑡 𝑥0:𝑡−1, 𝑧0:𝑡−1, 𝑢0:𝑡−1) = 𝑝𝐷 𝑥𝑡 𝑥𝑡−1, 𝑢𝑡) motion model

• 𝑝𝐷 𝑥′ 𝑥, 𝑢) if transition probabilities are time invariant

𝑝𝑀 𝑧𝑡 𝑥0:𝑡, 𝑧1:𝑡−1, 𝑢0:𝑡−1) describes measurement

If state is complete 

• 𝑝𝑀 𝑧𝑡 𝑥0:𝑡 , 𝑧1:𝑡−1, 𝑢1:𝑡) =  𝑝 𝑧𝑡 𝑥𝑡) measurement model

• 𝑝𝑀 𝑧 𝑥): time invariant measurement probability

zt-1
zt zt+1

ut-

1
ut ut+1

xt-1 xt xt+1
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