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ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 11
State Estimation, Filtering and Localization

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra’s slides for Spring 2025;
Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Some slides are from the book’s website
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Announcements

* All project teams have been formed

e https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-
B9Y9 oAPugF AZW2nrhsQY5IfmI86wQU/edit?gid=0#gid=0

e Connect with your teammates
e Check CampusWire if you want to switch team

* GEM, F1-Tenth, Drone Safety Training required (Check CampusWire)



https://docs.google.com/spreadsheets/d/1fj2NtL1jLd-B9Y9_oAPuqF_AZW2nrhsQY5lfml86wQU/edit?gid=0#gid=0
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Announcements

* Project pitch presentation next week! (15% of your project grades!)
* Check out previous semesters’ projects:
e https://www.youtube.com/playlist?list=PLcA4s4DKSOF1Kzp0 OgOINAGWoft2G7z6
e https://www.youtube.com/watch?v=J0 EZeZfXWk

* You must upload slides to Gradescope by 11:59pm on Monday, October 13th. We will
only display the uploaded version during Pitch.

* Given the time limit, we will enforce a STRICT 5-min presentation + 1-min Q&A

* Your presentation will be graded — check campuswire for grading rubrics &
hints

e Check CampusWire for presentation schedule



https://www.youtube.com/playlist?list=PLcA4s4DKSOF1Kzp0_OqOlNAGWoft2G7z6
https://www.youtube.com/playlist?list=PLcA4s4DKSOF1Kzp0_OqOlNAGWoft2G7z6
https://www.youtube.com/watch?v=J0_EZeZfXWk
https://www.youtube.com/watch?v=J0_EZeZfXWk
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Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,

etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Decisions and
planning
Programs and multi-
agent models of
pedestrians, cars,
etc.

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.




Can you name a few challenges in the Perception
pipeline?

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.
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Outline of state estimation module

* Introduction: Localization problem, taxonomy

* Review of probability: conditional probability and Bayes’ Rule
* Probabilistic models: motion and measurements

Next lectures:

e Discrete Bayes Filter

* Histogram filter and grid localization

e Particle filter
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Roomba mapping

i Ground Truth
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Image credit: Devendra Singh Chaplot

iRobot Roomba uses SLAM algorithm to create maps for cleaning areas
SLAM: Simultaneous Localization and Mapping
Also in underground, underwater, and space robots, in GPS-denied environments

%

Observation Predicted Map and Pose

G A




State estimation and localization problem (MP3)

* For closed loop control, the controller needs to know the
current state (position, attitude, pose)

* Xep1 = f(xpue); up = g(xt)

* Typically, the state x; is not available directly. We have some

other observables z; = h(x;) that are available.

 Example observables: images, lidar scans, GPS, IMU

* We have to compute a state estimate X; from observations z;

sothat X; = x;
* Then we can use u; = g(x;)

* Localization is a special case of the state estimation problem
where we have to determine the pose of the robot relative to

the given map of the environment
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Setup: State evolution and measurement models

amiliar Deterministic moael: W

z¢[1]

Xt
Z:|2 ‘\

N

System evolution: x;41 = f(x¢, ug)

* Xx;: unknown state of the system at time t
* u;: known control input at time t, u; = g(X;)
* f:known dynamic function, possibly stochastic

Measurement or observation: z; = h(x;, m)
* Z¢: known measurement of state x; at time ¢t
* m: unknown underlying map

* h: known measurement function

Problem: Given the sequence of measurements
Z1,Z5, ... Zg_1 and control inputs uq, Uy, ... Us_q

z¢[3] m

We will use probabilistic models going forward

4o

This is not exactly the measurement model of MP3



Ambiguity in global localization arising from
locally symmetric environment
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Localization as coordinate transformation

Shaded known:
map (m), control inputs (u), measurements(z).
White nodes to be determined (x)

maps (m) are described in global coordinates.
Localization = establish coord transf. between
m and robot’s local coordinates

Transformation used for objects of interest
(obstacles, pedestrians) for decision, planning
and control
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Localization taxonomy

Global vs Local

* Local: assumes initial pose is known, has to only account for the uncertainty
coming from robot motion (position tracking problem)

* Global: initial pose unknown; harder and subsumes position tracking

* Kidnapped robot problem: during operation the robot can get teleported to a
new unknown location (models failures)

Static vs Dynamic Environments
Single vs Multi-robot localization
Passive vs Active Approaches

* Passive: localization module only observes and is controlled by other means;
motion not designed to help localization (Filtering problem)

* Active: controls robot to improve localization



Discrete time model: Automaton with inputs/outputs

We will describe the systems state, inputs, and outputs as a sequence

e System evolution: x;4q = f(x¢, uy)
* Xx;: state of the system at time t
* Ui control input at time t

* Measurement: z; = g(x;, m)
* 7Z;: measurement of state x; at time t
* m: unknown underlying map

Instead of nondeterministic automata or set-valued functions (like we used in
the first part of this course), now we will model uncertainty in f and g with
probability distributions

4o
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Setup, notations

* Xt,it, = Xt Xe +1, Xt 42, -, X, S€QUENce of states t;to ¢,

* Robot takes one measurement at a time
* Zt .t, = Zt,, - Zt, S€Quence of all measurements (observations) from t;to ¢,

* Control also exercised at discrete steps
* Up,.t, = Ut,, U, +1, Ug 42, -, Ug, SEQUENCE CONtrol inputs
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Review of conditional probabilities

| rolled two fair six-sided dice. Define two random variables:

X1=value rolled on die 1 X2=value rolled on die 2

Can you calculate the probability of the following events?
P(X1=2)

P(X1+X2<=4)

P(X1=2 | X1+X2<=4) conditional probability
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Conditional probabilities and Bayes Rule

A random variable is a function X: Q0 — R that assigns numerical values to the outcomes of a random
experiment. ) is the sample space.

Random variable X takes values x4,x, € R"
Example: Result of a dice roll (X) andx; =1, ..., 6
P(X = x) is written as P(x)

P(X =x,Y =y) is written as P(x,y)

Conditional probability: P(X = x|Y =y) = P(x|y) = PP(?;;) provided P(y) > 0
P(x,y) = P(x|y)P(y)

=P(y[x)P(x)
Substituting in the definition of Conditional Prob. we get Bayes Rule

P(xly) = %, provided P(y) > 0
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Using measurements to update state estimates

P(Z|X)P(x)

P(xl2) = 4

,provided P(z) > 0 (%)

X : Robot position, Z : measurement,
P(x): Prior distribution/belief (before measurement)

P(x|z): Posterior distribution (after measurement)

P(z|x):Measurement model / inverse conditional / generative model

P(z): does not depend on x; normalization constant
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Example: Light Sensor Robot

* Problem Setup:

* A robot has a light sensor that detects if a light is 'on' or 'off’

* The sensor is noisy and cannot be fully trusted

e Goal: Estimate the true state of the light using noisy measurements
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Sensor Model (Measurement Model)

e Sensor characteristics:

* |f light is ON: sensor reads 'on' 90% of the time
e p(z="on' | x="on")=0.9

* |f light is OFF: sensor reads 'on' 40% of the time
* p(z="on'| x="off')=0.4
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Step 1: Initial Belief (Prior)

* Before sensing, the robot's initial belief:

* p(x;='on')=0.5

* p(x; ='off') =0.5

e The robot is completely uncertain about the light's state
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Step 2: Sensor Reading

e The sensor now reads:
ez.="'on'

e Question: What should the robot now believe?

* Mathematically: we need P(x="on' | z: = 'on’)
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Step 2: Sensor Reading

* We can now apply the Bayes Rule

e P(x; ="'on' | z¢="'on") =[Pzt ="on' | x¢ ="'on’) - P(xq

on’) ]/ P(ze="on’)

Posterior Measurement Prior/Belief ~ Normalizing

constant
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Step 3: Calculate normalization constant

 Calculate normalization constant p(z: = 'on'):

p(z="'on"')=p(z="on' | x="on') - p(x="on') + p(z ="'on' | x ="off") - p(x = "off")
=(0.9)(0.5) + (0.4)(0.5)

=0.45+0.20

=0.65
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Step 4: Calculate Posterior

* Update belief using Bayes' Law:

p(x='on' | z="on") = [p(z ="on" | x="on') - p(x ="

=(0.9x0.5)/0.65

=0.45/0.65
=~ 0.692 or 69.2%
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Result & Interpretation

* Before sensing: 50% confident light is on
» After sensing 'on': 69.2% confident light is on

* The robot updated its belief by combining:
* Prior knowledge (initial 50% belief)
* Sensor measurement (noisy reading 'on')
* Sensor reliability (90% accurate when on)



Evolution: probabilistic Markov Chain models

A probability distribution m € P(Q) over a finite set of states Q can be represented by 13

1/3
a vector r € Rl where ¥'mr; = 1 H a H

Recall deterministic discrete transitions for automata D: Q — Q

Probabilistic discrete transitions give a probability distribution D: Q = P(Q)
according to which the next state is chosen, i.e., D(q) is a particular probability 01 ‘ 0.8

distribution over Q

For the example ontheright pp(X¢31 = b [ Xy =a) ==, i.e, D(a) = % % %
[z biz 2] D(b) = [az b:0 c:7] p=|l , *
3 5 5 5
Such a state machine model is called a Markov chain 1_10 120 0

A probabilistic transition D can be represented by a matrix D € RICIXICl where Dij Markov Chain Probability Distribution (Time Step 0)
gives the probability of state i to transition to j

The evolution of the probability m over states can be represented as

o
=
T

Probability

.1 = Dm; starting with an initial distribution Ty € P(Q)

Ei ' State a Sta'lfe b StaT‘:e C



Evolution: probabilistic MDP models

More generally, transitions depend on input in which case the 'eac

transition function D: Q X U = P(Q) also depends on the control

action U %

For the example below pp(X¢y1 = b | Xy = a, U = red) =

3

Such a state machine model with inputs is called a Markov
Decision Process (MDP)

The probabilistic transitions D can be represented by a collection
of matrices D: U — RI¢XI% where D;;(u) gives the probability
of state i to transition to j under action u

Dp (x'|x, u) if transition probabilities are time invariant
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Evolution and measurement: probabilistic models

1/3 1/3

Even more generally, transitions depend on outputs and history 'Oa

PD(Xt = x¢ | Xo = X0, . Xpoq = xt—l,Zl =Zy el = Zt—1, U, =

Uy, ... Uy = u; ) describes state evolution model 008

pp(x; |Xo.4—1, Z1:t—1, U1.¢) describes motion/state evolution model
If state is complete, sufficient summary of the history then:
* pp(X¢ |%0:t-1, Zo:t—1, Uo:t—1) = Pp (X¢ |X¢—1, Ug) transition prob.

« pp(x'|x, u) if transition probabilities are time invariant

4o
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Example Motion Model without measurements

Ty =pXp=%09) =1

Start

N

Pp (X¢|Xt-1, ut)

¥

10 meters

The state transition
probabilities are defined by

Xee1 = (e up) + wy

where w;~N(0,1)




Probabilistic measurements

A measurement model gives the output or observation

probability for a given state, e.g.:

1
Py (Ze = l|xy = a) = 5

Generally, measurements can depend on history

Pum (Z¢ [Xo:t, Z1:t-1, Uoit—1)
e |f state is complete Py (Z¢ |Xo-0r Z1:t—1, U1:t) = P(Z¢ |X0)
* Py (Z¢ |X¢): measurement probability
* pm(Z |X): time invariant measurement probability

4o

State a produces output 1 and 0 each
with probability 0.5
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Example Proximity Sensor Measurement Models

Q
N
\ s §
\ \
/\ AN \
Approximated —— ° Approximated E—
Measure d [ | Measured
Xk 1 j
pm(ze [Xe = %) &™) g o00m |
E } B
SO L rg 0.05 |-
o [
0.025 L
0015 |
o 100 200 00 200 0 %—ﬁ/\ﬁ -
measured distance [cm] 120 mlzz.sured. djst;ioe ferm] +00 500
Laser sensor Sonar sensor
Max-range

spike
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Summary so far: Evolution and measurement

pp (x¢ |%9.t—1, Z1.4—1, U1.¢) describes motion/state evolution model

If state is complete, sufficient summary of the history then

* pp(xe [X%0:6-1) Zo:t—1, Uo:e—1) = Pp (X |x¢—1, Ug) motion model
o pp(x'|x,w) if transition probabilities are time invariant

Py (Z: |x0.t) Z1.6—1, Uo-t—1) describes measurement
If state is complete
* pM(Zt |x0:tr Zl:t—lrul:t) - p(Zt |xt) measurement model|

* py(z |x): time invariant measurement probability
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