

ECE 484: Principles of Safe Autonomy (Fall 2025)

Lecture 11

State Estimation, Filtering and Localization

Professor: Huan Zhang

<https://publish.illinois.edu/safe-autonomy/>

<https://huan-zhang.com>

huanz@illinois.edu

Slides adapted from Prof. Sayan Mitra's slides for Spring 2025;

Reference: Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard, and Dieter Fox

Some slides are from the book's website

Announcements

- All project teams have been formed
 - https://docs.google.com/spreadsheets/d/1fj2NtL1jLdB9Y9_oAPuqFAZW2nrhsQY5lqml86wQU/edit?gid=0#gid=0
 - Connect with your teammates
 - Check CampusWire if you want to switch team
- GEM, F1-Tenth, Drone Safety Training required (Check CampusWire)

Announcements

- Project pitch presentation next week! (15% of your project grades!)
 - Check out previous semesters' projects:
 - https://www.youtube.com/playlist?list=PLcA4s4DKSOF1Kzp0_Oq0INAGWoft2G7z6
 - https://www.youtube.com/watch?v=J0_EZeZfXWk
 - You must upload slides to Gradescope by **11:59pm on Monday, October 13th**. We will only display **the uploaded version** during Pitch.
 - Given the time limit, we will enforce a **STRICT 5-min presentation + 1-min Q&A**
- Your presentation will be graded – check campuswire for grading rubrics & hints
- Check CampusWire for presentation schedule

GEM platform

Autonomy pipeline

Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,
etc.

Perception

Programs for object
detection, lane
tracking, scene
understanding, etc.

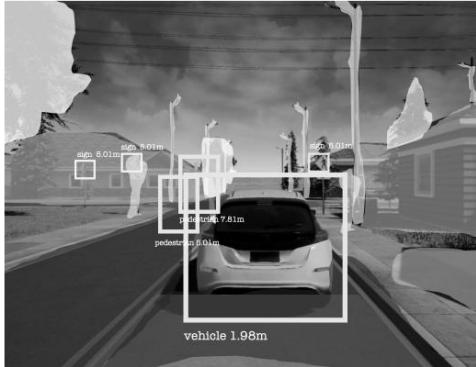
Decisions and planning

Programs and multi-
agent models of
pedestrians, cars,
etc.

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Can you name a few challenges in the Perception pipeline?



Perception

Programs for object detection, lane tracking, scene understanding, etc.

Outline of state estimation module

- Introduction: **Localization** problem, taxonomy
- Review of probability: **conditional probability** and **Bayes' Rule**
- Probabilistic models: **motion** and **measurements**

Next lectures:

- Discrete Bayes Filter
- Histogram filter and grid localization
- Particle filter

Roomba mapping

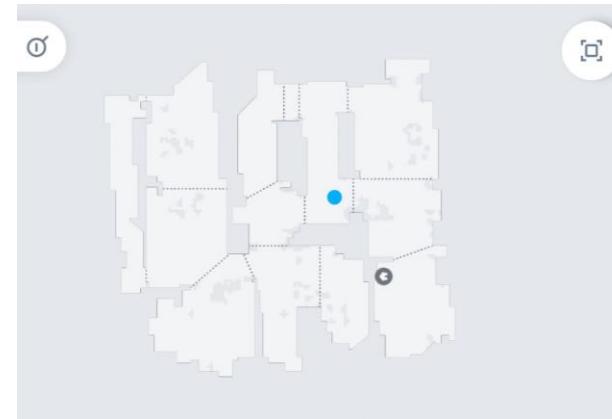
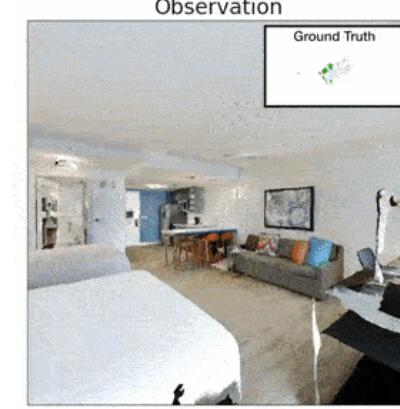
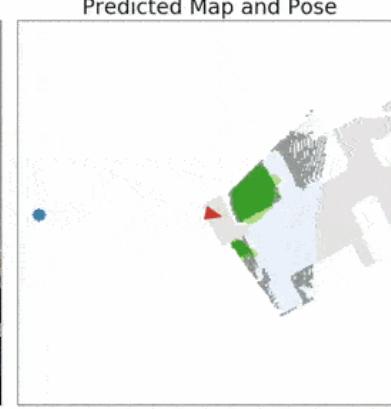


Image credit: Devendra Singh Chaplot

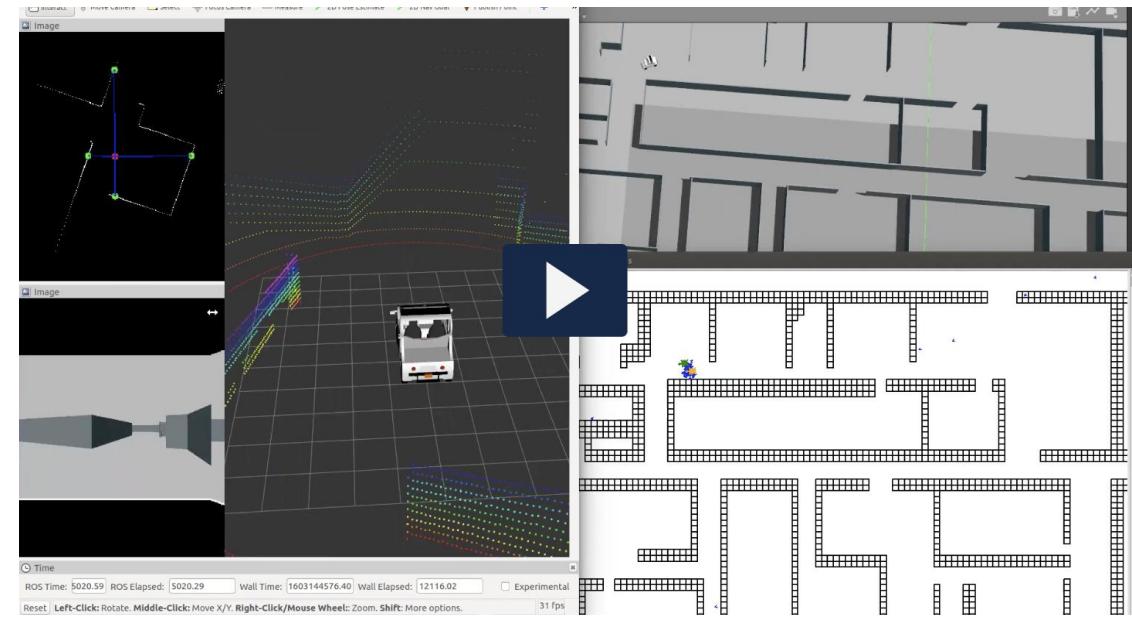
iRobot Roomba uses SLAM algorithm to create maps for cleaning areas

SLAM: Simultaneous **Localization** and **Mapping**

Also in underground, underwater, and space robots, in GPS-denied environments

State estimation and localization problem (MP3)

- For closed loop control, the controller needs to know the current state (position, attitude, pose)
 - $x_{t+1} = f(x_t, u_t); u_t = g(x_t)$
- Typically, the state x_t is not available directly. We have some other observables $z_t = h(x_t)$ that are available.
- Example observables: images, lidar scans, GPS, IMU
- We have to compute a **state estimate** \hat{x}_t from observations z_t so that $\hat{x}_t \approx x_t$
- Then we can use $u_t = g(\hat{x}_t)$
- **Localization** is a special case of the state estimation problem where we have to determine the **pose** of the robot relative to the [given map](#) of the environment



Setup: State evolution and measurement models

Familiar Deterministic model:

System evolution: $x_{t+1} = f(x_t, u_t)$

- x_t : unknown state of the system at time t
- u_t : known control input at time t , $u_t = g(\hat{x}_t)$
- f : known dynamic function, possibly stochastic

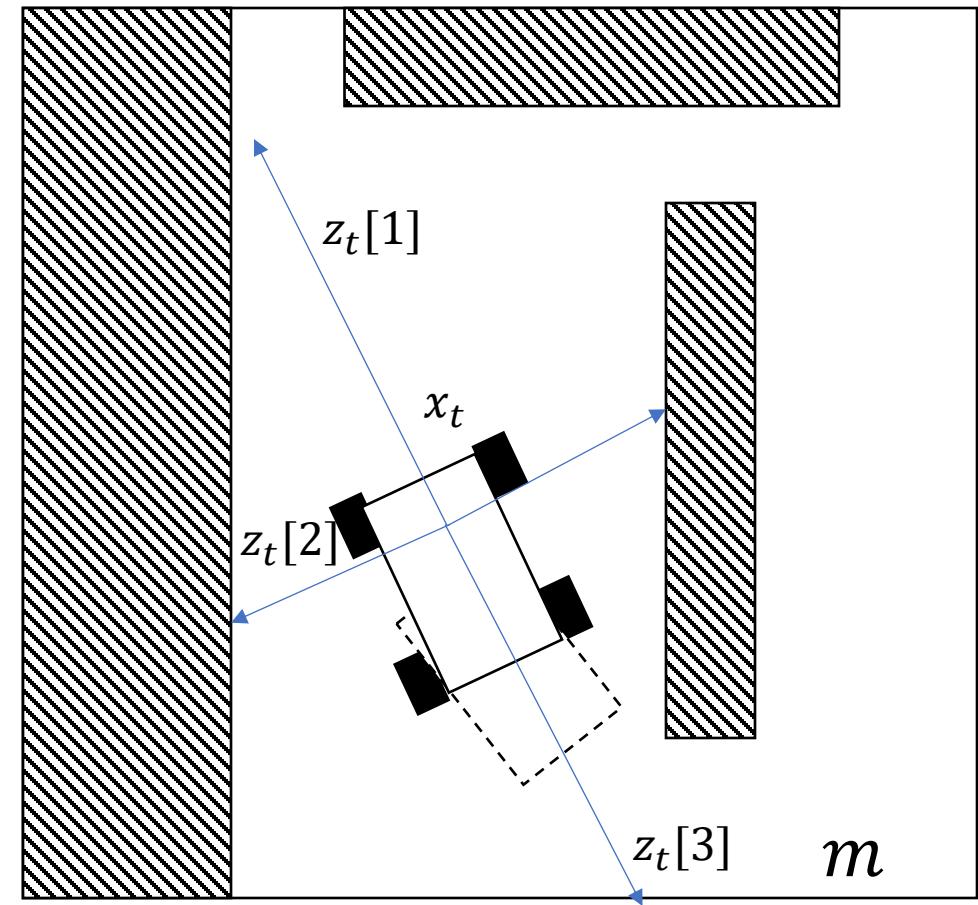
Measurement or observation: $z_t = h(x_t, m)$

- z_t : known measurement of state x_t at time t
- m : unknown underlying map
- h : known measurement function

Problem: Given the sequence of measurements

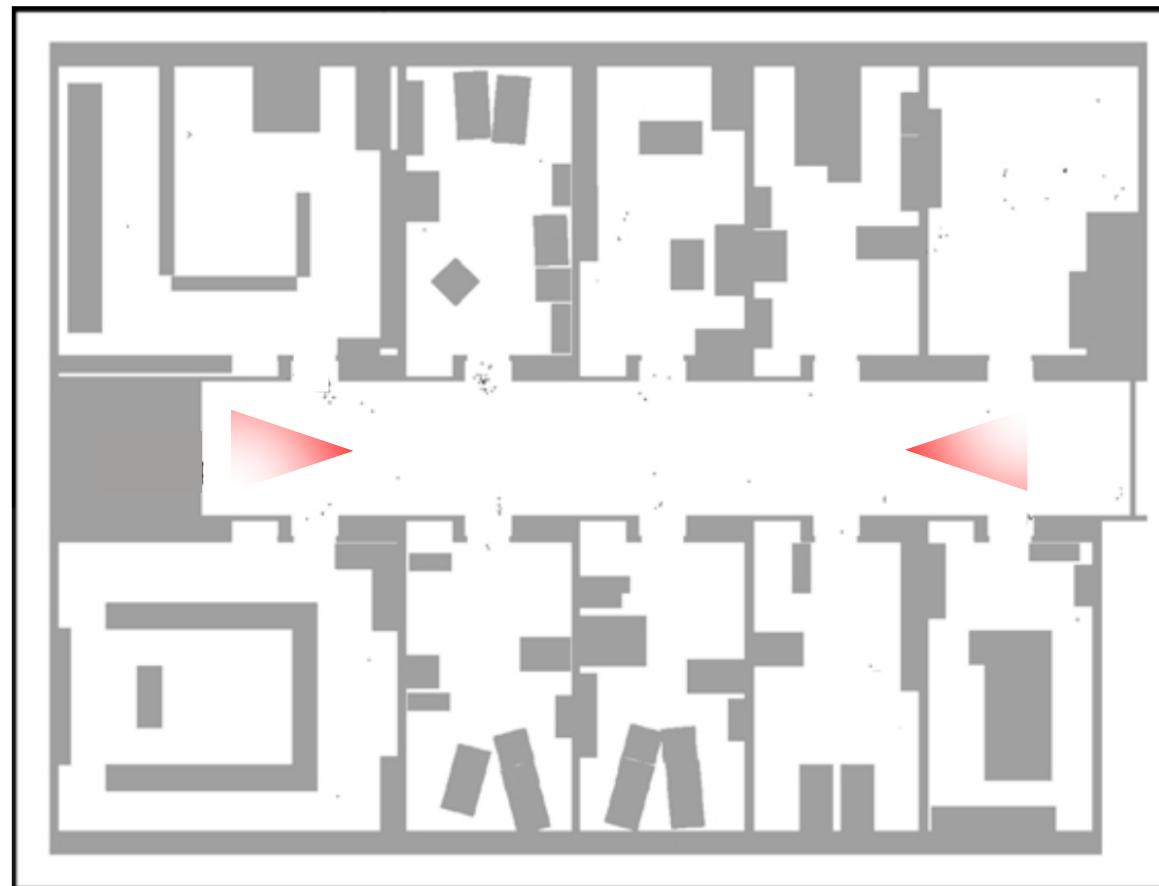
z_1, z_2, \dots, z_{t-1} and control inputs u_1, u_2, \dots, u_{t-1}

We will use probabilistic models going forward



This is not exactly the measurement model of MP3

Ambiguity in global localization arising from locally symmetric environment



Localization as coordinate transformation

Shaded known:

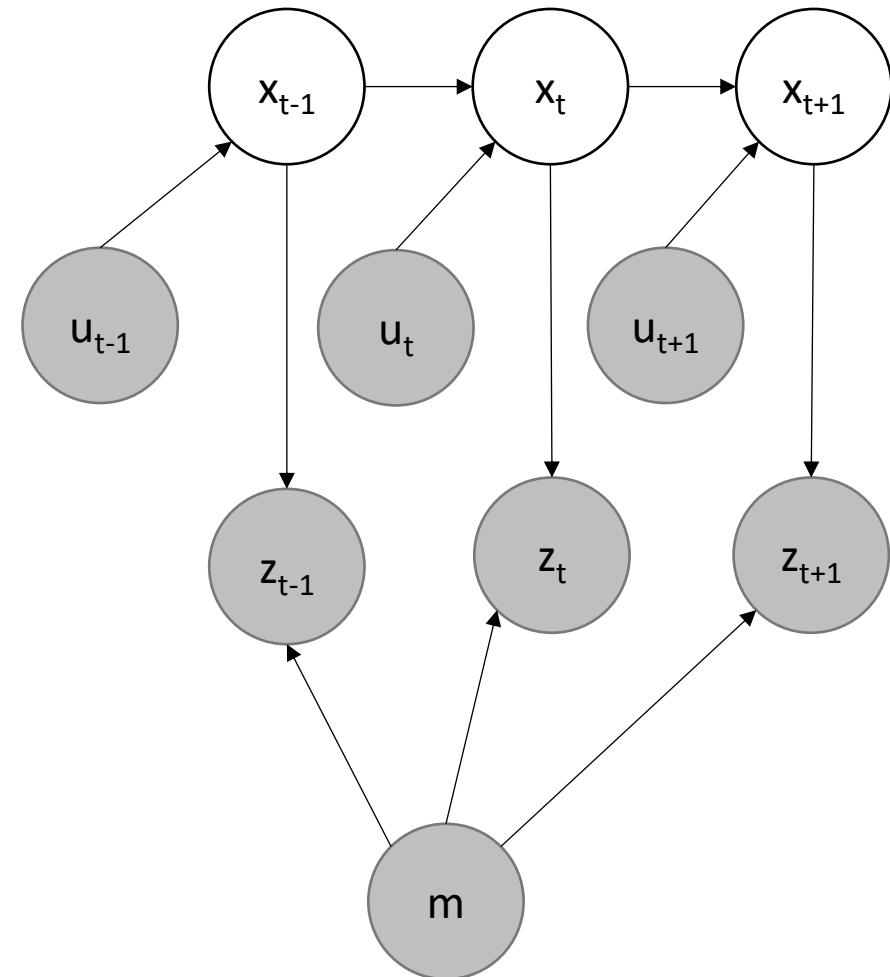
map (m), control inputs (u), measurements(z).

White nodes to be determined (x)

maps (m) are described in global coordinates.

Localization = establish coord transf. between
m and robot's local coordinates

Transformation used for objects of interest
(obstacles, pedestrians) for decision, planning
and control



Localization taxonomy

Global vs Local

- Local: assumes initial pose is known, has to only account for the uncertainty coming from robot motion (*position tracking problem*)
- **Global**: initial pose unknown; harder and subsumes position tracking
- Kidnapped robot problem: during operation the robot can get teleported to a new unknown location (models failures)

Static vs Dynamic Environments

Single vs Multi-robot localization

Passive vs Active Approaches

- **Passive**: localization module only observes and is controlled by other means; motion not designed to help localization (Filtering problem)
- Active: controls robot to improve localization

Discrete time model: Automaton with inputs/outputs

We will describe the systems state, inputs, and outputs as a sequence

- System evolution: $x_{t+1} = f(x_t, u_t)$
 - x_t : state of the system at time t
 - u_t : control input at time t
- Measurement: $z_t = g(x_t, m)$
 - z_t : measurement of state x_t at time t
 - m : unknown underlying map

Instead of nondeterministic automata or set-valued functions (like we used in the first part of this course), now we will model uncertainty in f and g with probability distributions

Setup, notations

- $x_{t_1:t_2} = x_{t_1}, x_{t_1+1}, x_{t_1+2}, \dots, x_{t_2}$ sequence of states t_1 to t_2
- Robot takes one measurement at a time
 - $z_{t_1:t_2} = z_{t_1}, \dots, z_{t_2}$ sequence of all measurements (observations) from t_1 to t_2
- Control also exercised at discrete steps
 - $u_{t_1:t_2} = u_{t_1}, u_{t_1+1}, u_{t_1+2}, \dots, u_{t_2}$ sequence control inputs

Review of conditional probabilities

I rolled two fair six-sided dice. Define two random variables:

X_1 =value rolled on die 1

X_2 =value rolled on die 2



Can you calculate the probability of the following events?

$$P(X_1=2)$$

$$P(X_1+X_2 \leq 4)$$

$$P(X_1=2 \mid X_1+X_2 \leq 4)$$
 conditional probability

Conditional probabilities and Bayes Rule

A **random variable** is a function $X: \Omega \rightarrow \mathbb{R}^n$ that assigns numerical values to the outcomes of a random experiment. Ω is the sample space.

Random variable X takes values $x_1, x_2 \in \mathbb{R}^n$

Example: Result of a dice roll (X) and $x_i = 1, \dots, 6$

$P(X = x)$ is written as $P(x)$

$P(X = x, Y = y)$ is written as $P(x, y)$

Conditional probability: $P(X = x | Y = y) = P(x|y) = \frac{P(x,y)}{P(y)}$ provided $P(y) > 0$

$$P(x, y) = P(x|y)P(y)$$

$$= P(y|x)P(x)$$

Substituting in the definition of Conditional Prob. we get **Bayes Rule**

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}, \text{ provided } P(y) > 0$$

Using measurements to update state estimates

$$P(x|z) = \frac{P(z|x)P(x)}{P(z)}, \text{ provided } P(z) > 0 \quad (*)$$

X : Robot position, Z : measurement,

$P(x)$: Prior distribution/belief (before measurement)

$P(x|z)$: Posterior distribution (after measurement)

$P(z|x)$: Measurement model / inverse conditional / generative model

$P(z)$: does not depend on x ; normalization constant

Example: Light Sensor Robot

- Problem Setup:
- A robot has a light sensor that detects if a light is 'on' or 'off'
- The sensor is noisy and cannot be fully trusted
- Goal: Estimate the true state of the light using noisy measurements

Sensor Model (Measurement Model)

- Sensor characteristics:
- **If light is ON: sensor reads 'on' 90% of the time**
 - $p(z = \text{'on'} \mid x = \text{'on'}) = 0.9$
- **If light is OFF: sensor reads 'on' 40% of the time**
 - $p(z = \text{'on'} \mid x = \text{'off'}) = 0.4$

Step 1: Initial Belief (Prior)

- Before sensing, the robot's initial belief:
- $p(x_t = \text{'on'}) = 0.5$
- $p(x_t = \text{'off'}) = 0.5$
- *The robot is completely uncertain about the light's state*

Step 2: Sensor Reading

- The sensor now reads:
- $z_t = \text{'on'}$
- *Question: What should the robot now believe?*
- *Mathematically: we need $P(x = \text{'on'} \mid z_t = \text{'on'})$*

Step 2: Sensor Reading

- We can now apply the Bayes Rule
- $P(x_t = 'on' | z_t = 'on') = [P(z_t = 'on' | x_t = 'on') \cdot P(x_t = 'on')] / P(z_t = 'on')$

<i>Posterior</i>	<i>Measurement</i>	<i>Prior/Belief</i>	<i>Normalizing constant</i>
------------------	--------------------	---------------------	---------------------------------

Step 3: Calculate normalization constant

- Calculate normalization constant $p(z_t = 'on')$:

$$\begin{aligned} p(z = 'on') &= p(z = 'on' | x = 'on') \cdot p(x = 'on') + p(z = 'on' | x = 'off') \cdot p(x = 'off') \\ &= (0.9)(0.5) + (0.4)(0.5) \\ &= 0.45 + 0.20 \\ &= 0.65 \end{aligned}$$

Step 4: Calculate Posterior

- Update belief using Bayes' Law:

$$p(x = \text{'on'} \mid z = \text{'on'}) = [p(z = \text{'on'} \mid x = \text{'on'}) \cdot p(x = \text{'on'})] / p(z = \text{'on'})$$

$$= (0.9 \times 0.5) / 0.65$$

$$= 0.45 / 0.65$$

$$\approx 0.692 \text{ or } 69.2\%$$

Result & Interpretation

- Before sensing: 50% confident light is on
- After sensing 'on': 69.2% confident light is on
- The robot updated its belief by combining:
 - Prior knowledge (initial 50% belief)
 - Sensor measurement (noisy reading 'on')
 - Sensor reliability (90% accurate when on)

Evolution: probabilistic Markov Chain models

A probability distribution $\pi \in P(Q)$ over a finite set of states Q can be represented by a vector $\pi \in \mathbb{R}^{|Q|}$ where $\sum \pi_i = 1$

Recall deterministic discrete transitions for automata $D: Q \rightarrow Q$

Probabilistic discrete transitions give a probability distribution $D: Q \rightarrow P(Q)$ according to which the next state is chosen, i.e., $D(q)$ is a particular probability distribution over Q

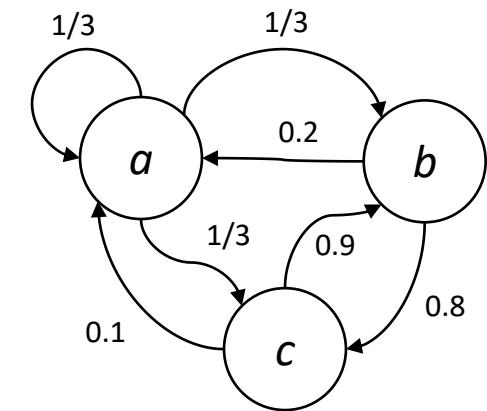
For the example on the right $p_D(X_{t+1} = b | X_t = a) = \frac{1}{3}$, i.e., $D(a) = [a: \frac{1}{3} \ b: \frac{1}{3} \ c: \frac{1}{3}]$ $D(b) = [a: \frac{1}{5} \ b: 0 \ c: \frac{4}{5}]$

Such a state machine model is called a **Markov chain**

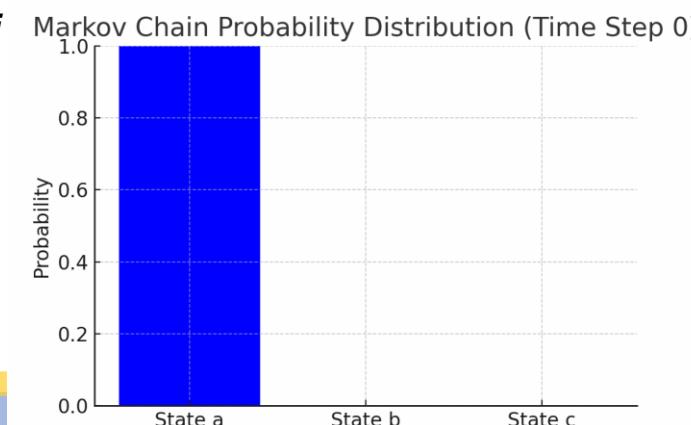
A probabilistic transition D can be represented by a matrix $D \in \mathbb{R}^{|Q| \times |Q|}$ where D_{ij} gives the probability of state i to transition to j

The evolution of the probability π over states can be represented as

$\pi_{t+1} = D\pi_t$ starting with an initial distribution $\pi_0 \in P(Q)$



$$D = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{5} & 0 & \frac{4}{5} \\ \frac{1}{10} & \frac{9}{10} & 0 \end{bmatrix}$$



Evolution: probabilistic MDP models

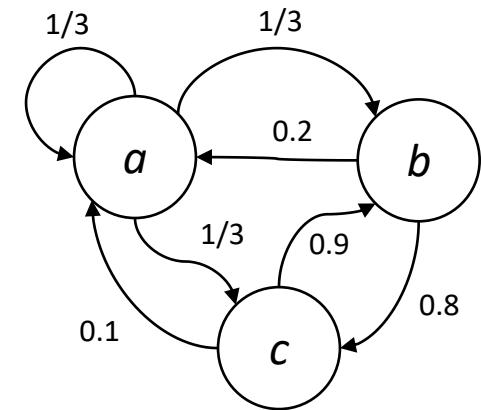
More generally, transitions depend on input in which case the transition function $D: Q \times U \rightarrow P(Q)$ also depends on the control action U

For the example below $p_D(X_{t+1} = b | X_t = a, U_t = \text{red}) = \frac{1}{3}$

Such a state machine model with inputs is called a **Markov Decision Process (MDP)**

The probabilistic transitions D can be represented by a collection of matrices $D: U \rightarrow \mathbb{R}^{|Q| \times |Q|}$ where $D_{ij}(u)$ gives the probability of state i to transition to j under action u

$p_D(x'|x, u)$ if transition probabilities are time invariant



Evolution and measurement: probabilistic models

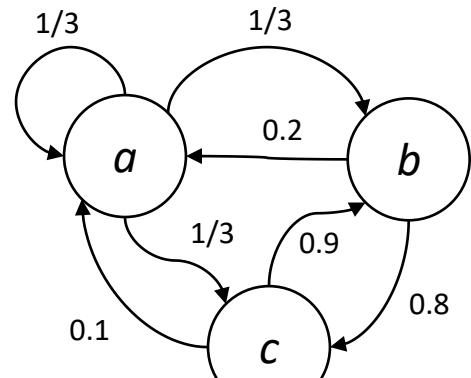
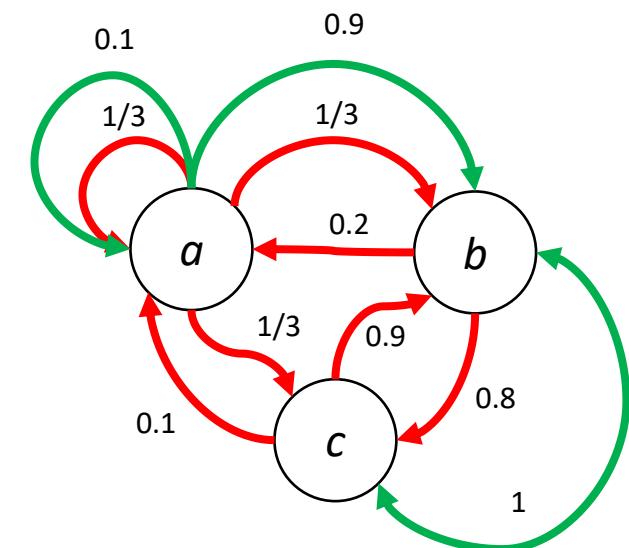
Even more generally, transitions depend on outputs and history

$p_D(X_t = x_t | X_0 = x_0, \dots, X_{t-1} = x_{t-1}, Z_1 = z_1, \dots, Z_{t-1} = z_{t-1}, U_1 = u_1, \dots, U_t = u_t)$ describes state evolution model

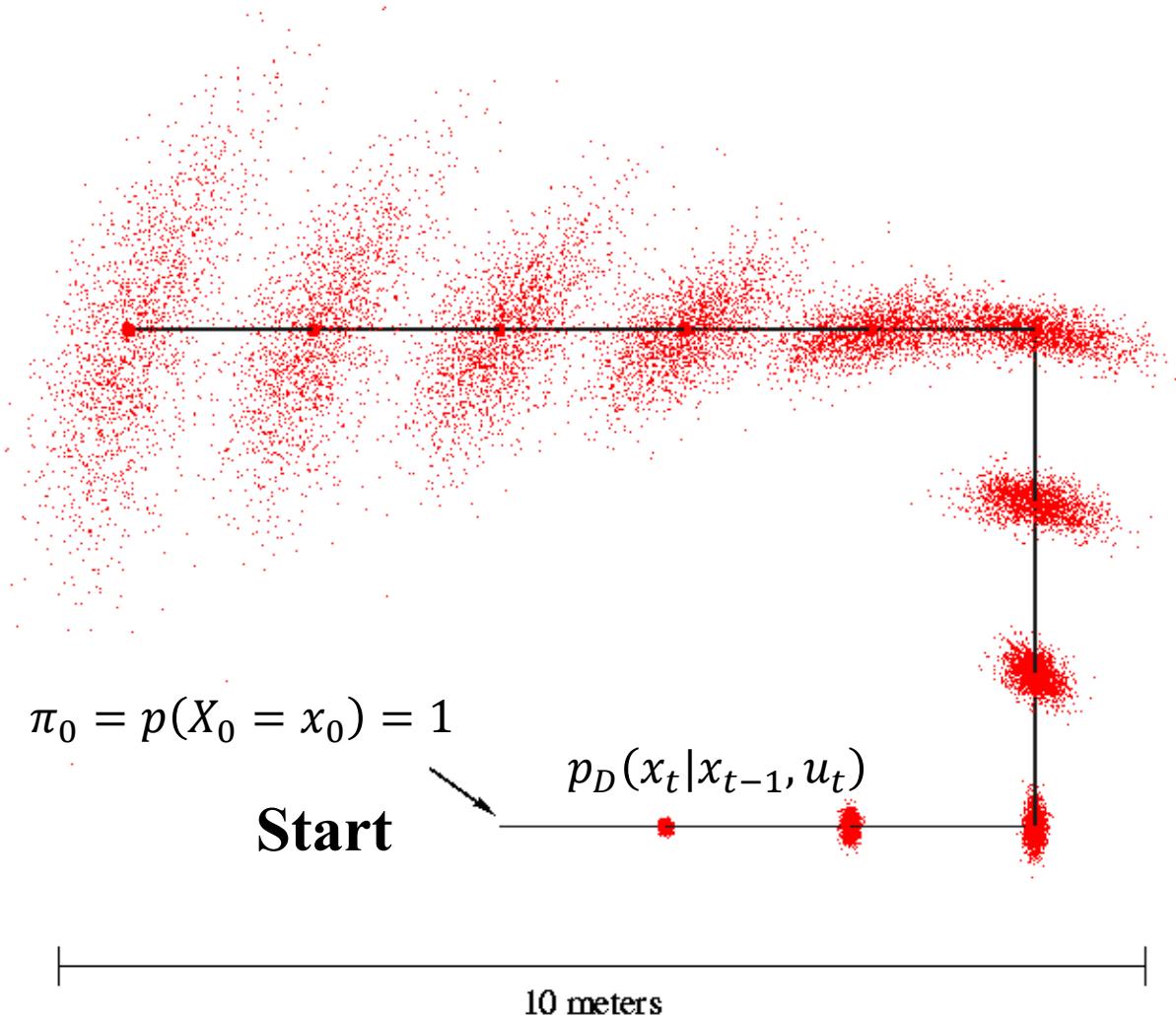
$p_D(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$ describes motion/state evolution model

If state is complete, sufficient summary of the history then:

- $p_D(x_t | x_{0:t-1}, z_{0:t-1}, u_{0:t-1}) = p_D(x_t | x_{t-1}, u_t)$ transition prob.
- $p_D(x' | x, u)$ if transition probabilities are time invariant



Example Motion Model without measurements



The state transition probabilities are defined by
 $x_{t+1} = f(x_t, u_t) + \omega_t$

where $\omega_t \sim N(0,1)$

Probabilistic measurements

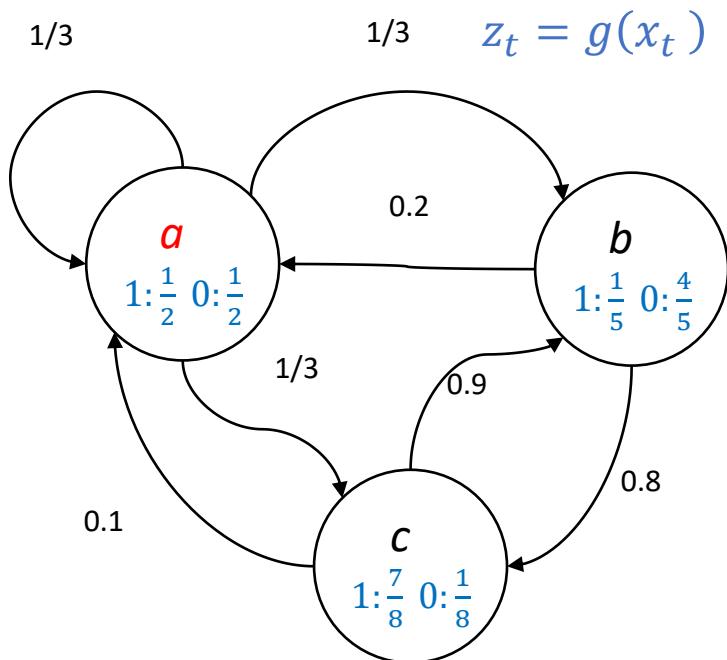
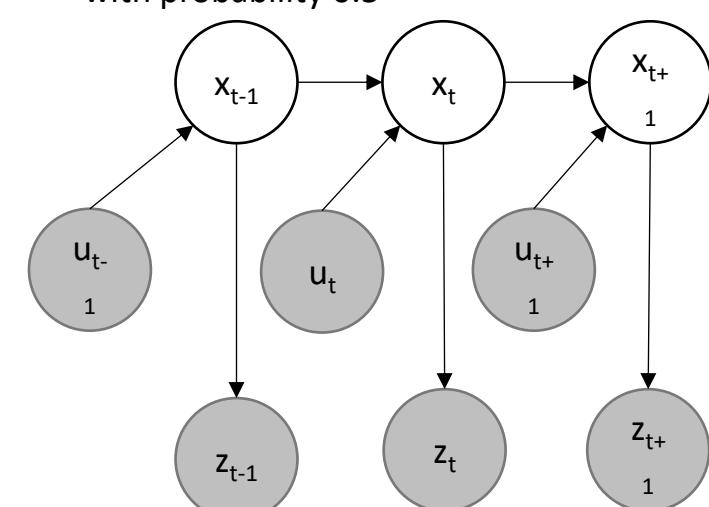
A **measurement model** gives the *output* or observation probability for a given state, e.g.:

$$p_M(z_t = 1 | x_t = a) = \frac{1}{2}$$

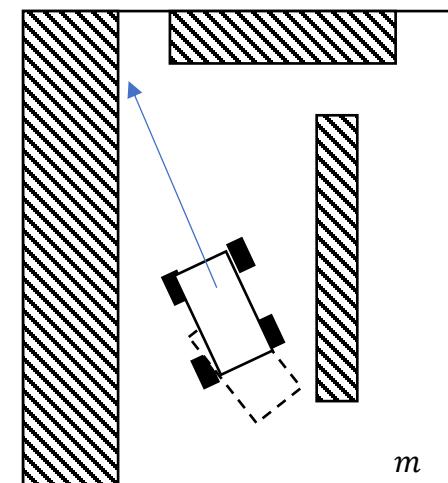
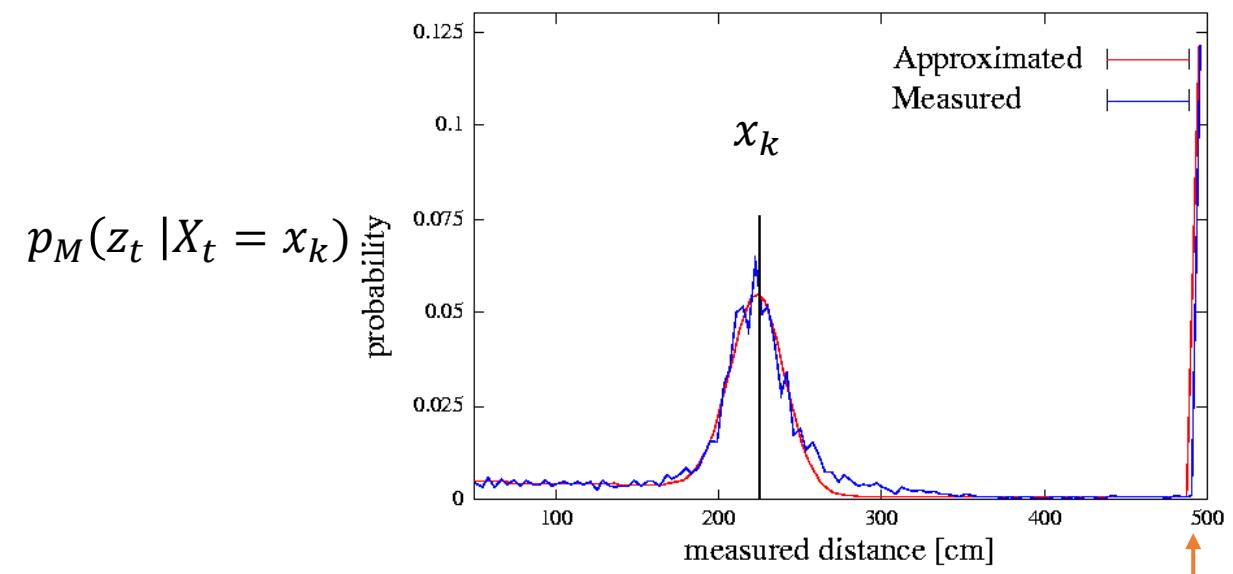
Generally, measurements can depend on history

$$p_M(z_t | x_{0:t}, z_{1:t-1}, u_{0:t-1})$$

- If state is complete $p_M(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$
- $p_M(z_t | x_t)$: **measurement probability**
- $p_M(z | x)$: **time invariant measurement probability**

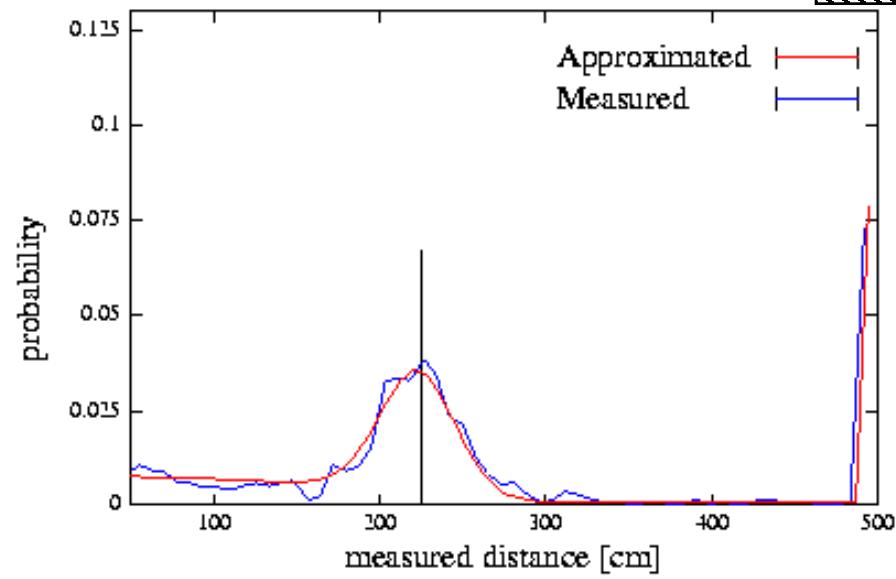


Example Proximity Sensor Measurement Models



Laser sensor

max-range
spike



Sonar sensor

Summary so far: Evolution and measurement

$p_D(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$ describes motion/state evolution model

If state is complete, sufficient summary of the history then

- $p_D(x_t | x_{0:t-1}, z_{0:t-1}, u_{0:t-1}) = p_D(x_t | x_{t-1}, u_t)$ motion model
- $p_D(x' | x, u)$ if transition probabilities are time invariant

$p_M(z_t | x_{0:t}, z_{1:t-1}, u_{0:t-1})$ describes measurement

If state is complete

- $p_M(z_t | x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t | x_t)$ measurement model
- $p_M(z | x)$: time invariant measurement probability

