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1 Introduction

You are stuck in ECEB and want to find your way out. However, you don’t know your exact location in the
building. Fortunately, you have a detailed map of ECEB, and you plan to use a particle filter to find your
position.

Same as the previous MPs, this MP is divided into two different parts. In the first part of this MP (Sec.
2), you will be working on some theoretical problems about particle filter and localization to help you better
understand the algorithm we talked about during lecture. In the second part of this MP (Sec. 3), you will
need to implement the Monte Carlo Localization (MCL) method discussed during the lecture. You will have
a vehicle running in the Gazebo simulator, and you will need to find the position of the vehicle using the
sensor reading from the vehicle and the map of the environment. The estimated position of the vehicle will
be displayed on the map as well. You will need to play around with some parameters of the particle filter
and check the effect of those parameters. This is passive localization; in other words, the vehicle motion is
controlled independently (not by you), and you will not be able to change it for help with localization.

For part one, you will solve Problems 1-3. For part two, you and your group will need to submit your
modified 1idarProcessing.py, maze.py, particle_filter.py code, as well as the solution to
Problems 4-8 in the report. Name all group members and cite any external resources you may have used
in your solutions. If you haven’t looked before, see the course’s policy on Al here. More details for submission
are given in Sec. 4. All the regulations for academic integrity and plagiarism are spelled out in the student
code.

Learning objectives
o Particle filters
e Localization

e Measurement models

System requirements
e Ubuntu 22.04
e ROS2 Humble
¢ ros-humble-ros-control
¢ ros-humble-effort-controllers
¢ ros-humble-joint-state-controller

* ros-humble-ackermann-msgs



https://publish.illinois.edu/safe-autonomy/
https://publish.illinois.edu/safe-autonomy/policies-spring-2025/
https://studentcode.illinois.edu/article1/part4/1-402/
https://studentcode.illinois.edu/article1/part4/1-402/

2  Written Problems
Problem 1 (20 points). Following is derivation steps for the Bayes filter update rule
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using the conditional probabilities. Fill in the blanks. Hint: The box with same number should have the same
answer.
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Problem 2 (50 points). An autonomous robot is navigating through a 1D world represented by five discrete
positions. The robot uses various techniques such as Bayesian filters and Particle filters to keep track of its
position.

(a) Bayesian filter The robot has a prior belief of being in position # = 3 with probability 0.4, z = 2 with
probability 0.5, and ¢ = 4 with probability 0.1. Compute the posterior probability if a control input
potentially moves the robot one position to the right with a transition probability of 0.8, and there’s a
0.2 probability it remains in the same position.

(b) Particle Filter The positions [2,4] have a unique landmark. The robot has a sensor that detects these
landmarks with a probability of 0.8 when it’s at the correct position, and gives a false positive (detects
a landmark when there isn’t one) with a probability of 0.1 at other positions (Note: this means sensor
readings suggesting the robot is at positions 1, 3, or 5 would be considered false positives. On the other
hand, readings indicating the robot is at positions 2 or 4 would be true positives). The initial positions
of the particles are [1, 3, 4], and you can assume that initially the particles are equally likely to be at these
three positions (you must update each particle individually based on this assumption). A control input
moves the robot one position to the right with a 0.7 probability, and there’s a 0.3 probability it remains
in the same position.

After finishing processing a control input, the robot’s sensor detects a landmark.

Update the particle weights based on the sensor measurement. Based on these weights, predict the
weights of particles at the new positions after the control input and sensor measurement.

e What are the new positions of the particles after the motion update? What are the probabilities of
each particle arriving at each position?

* What are the weights of each particle to be sampled at each location?



Problem 3 (30 points). Recall in MP0 you proved safety of Automatic Emergency Braking scenario using
invariants. Now let’s add localization into the equations. Imagine a scenario in which a connected au-
tonomous vehicle and a pedestrian’s phone can share information about their locations wirelessly. The
localization methods on the vehicle and on the phone both rely on GPS. However, due to the differences
in the receiver size and performance, the two have different accuracies. Similar to MP0, let’s assume the
vehicle starts from origin and cruises down a straight road in the z-direction. The car has an initial velocity
vo = 5m/s, and the deceleration rate a, = 5m/s?. Assume the vehicle has no reaction delay and infinite
sensing distance thanks to the connectivity. The pedestrian is still static. Only this time, you don’t have
ground truth for the locations of the vehicle and the pedestrian. Let’s model the sensor noise of the GPS
receivers using additive Gaussian noise model. The measurement y.,, of the car GPS can be modeled as
Year = Tear + Near, Where .., is the true location of the vehicle and n.,, is the Gaussian noise. Simi-
larly, Ynuman = Thuman + Mhuman- And from the receiver information, we know that n¢,, ~ N(0,1.5) and
Nhuman ~ N (0, 6). For this question, you do not need to write any formal invariant proofs.

(@) You would like to take no chances and make sure the car is 100% safe. Fortunately, you know the
GPS sensor noises are truncated at a maximum absolute value, i.e., |n¢er| < 15, [Rpuman| < 60. (We
will ignore the normalization of distribution for this question.) Now given y.q, and ynyman, What’s the
minimum safe braking distance needed between the two to ensure safety?

(b) Suppose we use our conservative safe braking distance from (a), but now have perfect position es-
timates, i.€., Year = Tear, Yhuman = Thuman, What is the final distance between the vehicle and the
pedestrian? Is this policy useful in practice? Explain in 20 words.

(c) Now you want to take some risks. Instead of using the maximum value truncation, you instead use
your knowledge in probability that 99.7% of the noise fall into 30 of the N(0,0?) distribution. Now
let’s do the same analysis again, what’s the minimum safe braking distance between yc.» and yruman
that you must brake to ensure safety? Is it better?



3 Implementing MCL to localize in ECEB environment

3.1 Module architecture

This section describes components that are important for this MP. However, in this MP you only need to
implement some of the components. T he components marked by * are not required for you to implement,
but you will need to be familiar with them. In fact, as the final project may be utilizing a similar simulation
framework, learning about these components may help with your projects. The overall architecture of this
MP is shown in Fig. 1. Detailed explanation for each of the components in the figure can be found in the
following section.
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Figure 1: Architecture of this MP. Map, Robot, Particles module are located in maze.py

3.1.1 Gazebo simulator*

As you have seen previously, this MP will rely on the Gazebo simulator. In the Gazebo simulator, we have
created an environment for the first floor of ECEB. Feel free to take nostalgic virtual tours of your favorite
cafe and machine shops.

Gazebo will acquire the position and orientation of the vehicle from the vehicle model and controller
module, then display the state of the vehicle in the ECEB environment. Additionally, it will send the current
state of the vehicle (position and orientation) to the robot module so that the actual position of the vehicle
can be visualized on a map for debugging.

The LiDAR sensor on the simulated GEM vehicle will constantly publish the raw point cloud LiDAR
reading from the Gazebo simulator as well.

3.1.2 LidarProcessing

This module is located in the lidar_processing.py file. This module takes as input the raw point cloud data
from the LiDAR simulator in Gazebo, and processes this point cloud data to be used in other parts of the
system. The given LidarProcessing module will only sense (i.e., look) 4 directions: front, rear, left, right of
the vehicle. This module will return the distance between the vehicle and wall in each of the four directions.
In this MP, you will need to modify this module to extend the features of LIDAR. Some detailed explanation
about how this module works will be discussed in Sec. 3.2.4.

3.1.3 Vehicle model and controller*

These two modules are implemented in vehicle.py and controller.py. These two modules drive the
vehicle constantly in the Gazebo simulator through a series of waypoints by computing the current position
and orientation of the vehicle and sending the information to the Gazebo simulator. You should not modify
these two modules.



3.1.4 Robot and Particle*

Robot and Particle are two classes defined in the maze . py file. The particle class defines the particle that is
used in the particle filter algorithm. It has properties recording its (x, y) position, its orientation (heading)
6, a weight w, an option to add noise, and the map of the environment that contains a model for the sensor.

The robot class stores the state of the actual vehicle in the Gazebo simulator. It is a derived class of
the particle class. Different from the particles, instead of having a sensor model, the robot will get sensor
readings from the real sensor from the LidarProcessing module. Be sure to familiarize yourself with both
of these classes.

3.1.5 Maze

This module is located in the maze . py file, and encodes the map of the environment that the vehicle stays
in. The actual and estimated state of the vehicle will be displayed in this map.

In addition, the maze has a model of the LiDAR. Same as the simulated LiDAR on the GEM car, the
sensor model will return the distance between particle and wall in front, rear, left and right direction. In
this MP, you will need to modify the sensor model to extend the features of it to be used for particles. Details
about how the sensor model works will be discussed in Sec. 3.2.4.

3.1.6 Monte Carlo Localization

This module is located in the particle_filter.py file. This is the main module you will be working
on. This module contains the implementation of the Monte Carlo Localization (MCL) that is based on
the sensor reading from the robot, sensor reading from each particle from the map, and the control signal
from vehicle model and controller. In addition, the MCL will hold a list of particles. The output from this
module is the estimated position of the vehicle in the ECEB environment. In this MP, the MCL resides in
the runFilter function. You will need to implement this function together with some helper functions to
do the calculations. Detailed guide on how to implement this module is given in the next section.



3.2 Development instructions
3.2.1 Monte Carlo Localization (MCL)

As discussed during the lecture, given a map of the environment, MCL can be used to approximate the
posterior probability distribution of the current location based on motion models and measurement up-
dates. The algorithm should hold a list of uniformly random generated particles in initialization. Then
as the vehicle is moving, the algorithm will iterate through the particles to predict its new state after the
movement. With the sensor reading from the vehicle, the particles are weighted and resampled based on
how the actual sensed data correlates with the predicted sensor data. The algorithm will run iteratively and
ultimately, most of the particles should converge toward the actual state of the vehicle.

Sample motion model
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Figure 2: Overall flowchart of a MCL based algorithm.



3.2.2 runFilter

The algorithm will be implemented in the runFilter function. The steps in this function are straightforward.
You only need to constantly loop through the steps as shown in 3. Suppose p = {p; ...p, } are the particles
representing the current distribution:

def runFilter
while True:
sampleMotionModel (p)
reading = vehicle_read_sensor ()
updateWeight(p, reading)
p = resampleParticle (p)

Additionally, you will need to code to show the particles on the map. The weighted sum of the position
and orientation stored in particles will determine the estimated position and orientation of the vehicle
and will be displayed. Each time the runFilter function is run, do not forget to clear particles. Note:
Additionally, if you encounter lag, consider adjusting the show_frequency parameter.

3.2.3 Sample Motion Model

In this part of the algorithm, each particle needs to predict its new location based on the actuation command
(control input) from the real vehicle.
For this MP, the vehicle dynamics is given as

z = vcos(6)
¥ = vsin(6) 3)
=3¢

where (z,y,6) are the z-position, y-position and orientation respectively of the vehicle. The velocity v and
steering angle ¢ are the control signal calculated by the controller.

The vehicle module will constantly publish the control signal [v, §] in ROS topic /gem/control. The
particle filter will subscribe to that topic and record the control signal in list se1f.control. The time step
for each control signal is 0.01s. Due to lag, you might find that you need to play around a bit with this time
step.

With all the above information, we are able to simulate the movement for each particle. One possible
option is to use the numeric integrator package ode in the scipy.integrate package to perform the
simulation. Detailed documentation with example for how to use the integrator can be found here. Al-
ternatively, you can use the vehicle_dynamics function provided in particle_filter.py. In either
case, the initial condition for each particle is the current state of that particle. You should perform integra-
tion through the whole list of control input stored in self.control with time step 0.01. Since the vehicle
control frequency is higher than the particle update frequency, a list of vehicle control inputs will be stored.
Therefore, if you only use the most recent control input, your particle motion will be wrong. By doing this,
you can properly predict the new location of the particle.


https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

3.2.4 Sensor model and weight updates

Sensor model After propagating the particles with the state model and control command, we now need
to assign a new weight for each of them according to the measurement from the sensor.

Figure 3: The picture shows the reference coordinate frame of the vehicle. The provided LidarProcessing
will measure distance in front, right, rear, left direction. Picture from here

The sensor reading of the simulated vehicle is coming from the LiDAR. The Gazebo simulator will con-
stantly publish raw point cloud data from the simulated LiDAR. The LidarProcessing module will subscribe
to the raw point cloud data, then process the data and calculate the distance between the vehicle and the
wall in front, right, rear and left direction (0, 270, 180, and 90 degrees with respect to the vehicle frame as
shown in figure 3).

To run the MCL algorithm, it is also necessary to have the sensor reading for each particle. The particle
sensor model will be based on the python map of the environment and can provide sensor readings for
each particle. Similarly to the LiDAR on the simulated vehicle, the provided sensor model can measure the
distance between particle and wall in the front, right, rear and left direction. In the current implementation
of sensor model, the distances are obtained by counting in a step of 1 at each direction until reaching the
wall.

To have a more accurate simulation, both the simulated LiDAR on the vehicle and the particle sensor
model have a sensing limit. Both the sensor on the vehicle and the sensor model have a certain effective
range and cannot recognize obstacles that are not within its range. If no obstacle is sensed within the sensor
limit in a direction, the returned sensor reading will be the sensor limit in that direction. sensor_limit
is an argument that can be changed when running the python file. Details about how to change it are in
section 3.4.

For part of this MP, you will extend the provided LidarProcessing and sensor model. You will need to
add 4 additional measurement directions (for a total of 8 measurement directions) to both the LiDAR and
sensor model. Then, compare the performance with using only 4 measurement directions.


http://ronny.rest/tutorials/module/pointclouds_01/point_cloud_birdseye/

Update weight To assign the weights to the particles, we need to compare the similarities between the real
sensor measurements and the particle sensor measurements. In this MP, we recommend using a Gaussian
Kernel to calculate the likelihood between the two sensor readings. You can compute the difference between
the sensor reading from LiDAR on the vehicle and readings from sensor model for each particle and feed
the result into the Gaussian kernel to get the weight value. You can also implement any weight assignment
method you prefer. Please note, the weights need to be normalized before the resampling step.

3.2.5 Resampling particles

In this part of the code, you are supposed to implement function resampleParticle () to resample
and create new particles according to the weights calculated from the section above to replace old set of
particles. The newly sampled particles will be more likely to reside around the particles that have higher
weight. When resampling, you should use the Particle class to create a new array of Particles based on your
computed indices. Remember that you will need some noise when resampling, so use the noisy parameter
provided. It is recommended to start implementing this function using multinomial resampling method:

1. Calculate an array of the cumulative sum of the weights.

2. Randomly generate a number and determine which range in that cumulative weight array to which
the number belongs.

3. The index of that range would correspond to the particle that should be created.
4. Repeat sampling until you have the desired number of samples.

Feel free to explore other resampling method that may have better performance. Some additional re-
sampling algorithms can be found here.

3.3 Gazebo Environment and Map

In order to reduce the amount of computational power required for the particle filter, we restrict the vehicle
to move in the smaller region of the ECE building (around the machine shop) as shown in figure 4.

Figure 4: North west corner of ECEB with obstacles. The vehicle is at its default location


http://people.isy.liu.se/rt/schon/Publications/HolSG2006.pdf

More specifically, we choose a rectangle region with width 120, height 75, and bottom left corner of the
region is at position (z,y) = (—85,45) in Gazebo. Because of that, the map we have only represent that
region as shown in fig 5. Therefore, all the particles we choose should from that region. A point p = (z,y)
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Figure 5: Maze map in bird’s eye view.

in the Gazebo simulator can be converted to a point j = (Z, §) in python map as shown below:
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3.4 Running the Experiment

Build the workspace in your ros_ws, where ros_ws/src is your file structure. For most students, this
should be the mp-release-£fa25 directory.

colcon build —-symlink-install

For this MP, you should be able to start the Gazebo environment using the command

ros2 launch mp3 gem_vehicle.launch.py

By running this command, you will be able to see the Gazebo window as shown in figure 4 and the Rviz
window as shown in figure 6. For the Rviz window, the window on the right shows the visualization of the
raw point cloud data from the LiDAR on the simulated vehicle. The window at bottom left shows the image
from the camera on the vehicle. The window at the upper left shows a visualization of the LiDAR bird-eye

10



view. The distance between vehicle and wall at each measurement direction and the sensed position of wall

is annotated on the bird-eye view. The annotation will not be displayed if no wall is detected within sensor
limit in that measurement direction.
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Figure 6: The rviz window. Note that the LIDAR processing code shown here have 8 measurement direc-
tions.

With Gazebo started, you should start running the vehicle in the environment using command

python3 vehicle.py

If the vehicle is at the default location when the Gazebo is launch as shown in figure 4. If the vehicle is
not at that starting location, you should first run

python3 set_pos.py

with no argument before running the vehicle or the vehicle may not be able to follow the waypoints.
With the car running, you can now run the particle filter by using command

python3 main.py

This file can take many arguments. For help on setting number of particles, sensor distance, etc...,
append a -h argument when running the file for help.

11



When the Particle filter is running, you will be able to see a python turtle window pop up with the map
in it as shown in figure 5. You should be able to see two turtles in the map, which corresponds to the actual
and estimated state of the vehicle. The actual state of the vehicle is represented by the green turtle and the
yellow turtle represents the estimated state of the vehicle. The estimated particles are represented by blue
arrows. If you implementation is correct, you should be able to see the particles (blue arrows) converge to
the actual position of the vehicle (green turtle).

3.5 Report

For problem 4-9, plot the error in position estimation (euclidean distance between actual position and the
estimated position) and orientation estimation as a function of algorithm iterations. Since particle filtering
is a randomized algorithm, run several instances of the same setup and plot the average error for each time.
Recording half of the loop will suffice for the video portions.

Problem 4 (30 points). Complete all TODO sections in particle_filter.py. Using 4 measurement
directions, keep the sensor limit constant at 15, run your algorithm with number of particles 250, 750,
1500. How does changing the number of particles influence the estimation accuracy, converging speed and
computational cost of the algorithm? Record a video of one of the three runs. The video should include the
turtle map window. Provide a link to the video and include it in the report.

Problem 5 (30 points). Using 4 measurement directions, keep the number of particles constant at 500, run
your algorithm with sensor limit 15, 20, and 25. How does changing sensor limit influence the estimation
accuracy, converging speed and computation cost of the algorithm? Record a video of one of the three runs.
The video should include the turtle map window. Provide a link to the video and include it in the report.

Problem 6 (10 points). Does the particle filter you implemented performs evenly well through the whole
environment after converging? More specifically, does the your particle filter have larger prediction error
in some regions of the environment then other regions? If yes, can you explain why this is happening?

Problem 7 (20 points). Complete the TODO sections in 1idar_processing.py and maze.py such that
the sensor model can make measurements in 8 directions. Run your algorithm with number of particles 500
and sensor limit 20. How does having more sensor data influence the estimation accuracy and converging
speed of the algorithm? Record a video of the run. Besides the turtle map window, the video should include
the RViz window of the sensor measurements. Provide a link to the video and include it in the report.

Problem 8 (10 points). Set a new initial position of the GEM using the script set_pos . py with the follow-
ing arguments:

python3 set_pos.py ——x -45 ——y 40 —--heading 0
In a separate terminal, run:
python3 vehicle.py —-alternate

Finally run main.py to begin the particle filter. Compare the localization behavior starting from this new
initial position with that from the previous starting location. Do you notice any differences in the conver-
gence speed under the same amount of running time from the previous initial position? If so, what do you
think is causing this difference? Explain.

Problem 9 (5 bonus points). Activate the measurement noise as outlined in Sec. 3.4. This will result in
occasional absence of the LIDAR measurements. Run your algorithm with particles 1500 and sensor limit
25. How does the missing LIDAR measurement influence the estimation accuracy and converging speed?
Provide a link to the video and include it in the report.
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Problem 10 (10 points + 5 bonus points). Demo For this MP, you will need to demo your code to the
TAs in lab sessions on as marked on the course schedule. The TA will primarily check if the particle filter
can converge within a reasonable number of iterations and track the position of the vehicle closely. Note
that you will also need to show that your filter can expand the sensor measurement from 4 directions to 8
directions. Also, prepare to be asked related questions. Once converged, if the error can stay under 10 for
at least 75% of the whole track, 5 bonus points will be awarded. You will be able to set how many particles
you would like to use as long as the simulation finishes in a timely manner. For full points, you will be
required to use the following supplemental arguments:

--sensor_limit 15

—gps_x_std 5

-—-gps_y_std 5

--gps_heading_std 0.393

--gps_update 1

--extensive_lidar

4 Report and Submission

Problems 1-3 must be done individually (Homework 3). Write solutions to each problem in a file named
hw3_<netid>.pdf and upload the document in Canvas. Include your name and netid in the pdf. You
may discuss solutions with others, but not use written notes from those discussions to write your answers.
If you use/read any material outside of those provided for this class to help grapple with the problem, you
should cite them explicitly.

Problems 4-11 can be done in groups. Each group should write a report that contains the solutions, plots,
and discussions. This report should be submitted to Canvas per group with filename mp3_groupname . pdf.
Please include links to the video and your solution code in the report.
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