ECE 484: Principles of Safe Autonomy (Fall 2025)
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Perception: Visual Odometry
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Problem: Visual Odometry (VO)

Incrementally estimate pose of the vehicle from onboard camera images

input output

Image sequence (or video stream) R R. R
from one or more cameras attached to a moving vehicle 0,1, 722
Lo, 1, L2
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Why VO ?

Unlike wheel odometry, VO is not affected by wheel
slip in uneven terrain or other adverse conditions.

More accurate trajectory estimates compared to
wheel odometry (relative position error 0.1% - 2%)

VO can be used as a complement to

e wheel odometry, GPS, IMUs, laser odometry

In GPS-denied environments, such as underwater and e s
aerial § TS
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VO Principle
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VO Solution Outline
1. Detect and match features in
two successive images

2. Estimate motion Ry, t;,
(Epipolar geometry)
RANSAC outlier removal
Repeat Steps 1-3, optimize
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Image 1 &

Image 2
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Brief history of VO

» 1996: The term VO was coined by Srinivasan to define motion orientation in honey
bees.

» 1980: First known stereo VO real-time implementation on a robot by Moraveck PhD
thesis (NASA/JPL) for Mars rovers using a sliding camera. Moravec invented a
predecessor of Harris detector, known as Moravec detector

» 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of 2004
Mars mission (see papers from Matthies, Olson, etc. From JPL)

» 2004: VO used on a robot on another planet: Mars rovers Spirit and Opportunity

» 2004. VO was revived in the academic environment by Nister «Visual Odometry»
paper.
The term VO became popular.




Recall what a calibrated camera gives us

Camera to pixel

World to camera

i f. 0 o, 0][*] Xc "1 Tz Tz G| [Xw]
gl=(0o £ o, ol Ye| _ |21 T2z T2z ty||w
y y Z: — r
v 0 0 1 0 Zc 31 T32 T133C;||2w
- L1 1] o o o01]l1
i=M,, % . ~
— nt "w — — X = Mext Xy
U= Mt Mgyt X, = P X,
] P11 P12z P13 DPis ;C/W Image plane Pinhole e
Ul =1|P21 D22 D23 D24 ZW B y// ‘/J
~ w / Camera " 4, World
w p31 p32 p33 p34 1 ¥ *¢ coordinate ?rc;(:‘:c:r\lste
- - frame C

P: Projection matrix
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Backward projection from 2D to 3D

camera/world
coordinates

(0,0,0) x

(w,v)

image
plane

3Dto2Du =/, +o,andv =/, >+0,

Z Z
2Dto3Dx=f—x(u—ox),y=E(v—0y);Z>0

N
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Simple Stereo Problem: Reconstructing scene from two images

7 (x,y,2)
camera/world

coordinates

(0,0,0) xl : Hol-jz()ntal
‘*~~Pf’§?’ﬁleb 4
(ul' vl) \\‘_X}l\ (br O;O)

Left or first B x ~ 7
Cam?ra o (ur:vr) u = 2 + and U = . +
position Right or next

camera _ x—b ~ y
position Uy = T + and v = ; +
' ' b f
From these 4 equations we can find (x,y,2): z = =
[~ YUr
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camera/world
coordinates
(0,0,0)

(uy, vp)

Left or first
camera
position

X1

R, t

Uncalibrated Stereo Problem

X1

Right or next
camera
position

O
(x,y,2)

°\ (ur, vr)

The two cameras’ intrinsic
parameters are known but the
rotation (R) and the translation

(b,0,0)  (t) between the two camera

poses is unknown

This relation between the two
poses is described by epipolar
geometry

Relation captured by
Fundamental matrix
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Epipolar Geometry: Epipoles

(2%
Right t= H

Left camera

camera

The intrinsic parameters (fy, fy, 0y, 0y) are given for each camera

Problem: Compute extrinsic parameters t, R relating the two camera
positions, given only coordinates on the image planes (ul, vl), (u,, v;-)

Epipole: Image point of origin/pinhole of one camera position as viewed by
the other camera position: €; and e,
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Epipolar Geometry: Epipolar Plane

Epipolar

€1 e

Epipolar plane of scene point P: The plane formed by camera origins
(0, and 0,.), epipoles (e; and e,.), and P.

Each scene point P has a unique epipolar plane
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Epipolar Constraints

(a,b, —a,b,
Recallax b =|a,b, —a,b,
axby — ayby

Epipolar
n=txx plane

Vector normal to the epipolar plane:n =t x x;

Dot product of x; and n (perpendicular vectors) is zero x;.n =|xl. (t X x;) = 0 “Epipolar constraint”

tyZl — thl 0 _tZ ty X
[X1 Vi Zi]|tzx; —txZ;| = 0 rewrittenas [X1 Y1 Zi]| t, 0 —t|[»m]|=0
txy1 — tyX; —t, ty 0 |Lz

I



Epipolar Constraints

Dot product of x; and n (perpendicular vectors) is zerox;.n = x;. (t X x;) = 0

tyZl zY1 0
[X1 Vi Zi] |t — ez | =0 B 0 =t ||Vi|=0
_txYI - tyxl _ty X
Relating 3D coordinates of P in the left camera with that of the right x; = Rx, + ¢
T2 T3] [Xr tx
Substituting = 7’21 T22 123 }’r y in the second x;
T3z T33
T2 T3] [Xr 0 —t; ty|rtx
[X1 Y1 Z] tz —t T2 Ta3||Wr t, 0 =t ||ty ]=0
—t, ty T32  T33]LlZr —ty Iy 0 |l

Essential matrix

X, €11 €12 €13
yr] =0 E=TxR =|€21 €22 €23
€31 €32 €33

0 =t ¢t |[r11 12 T3
B 0 —ty||T21 T22 ™23
X

_ T T
ty 32 33

E is a product of a skew symmetric matrix Ty and an orthonormal matrix R, and therefore, from E we can get t R by
Singular value decompositions (SVD) (read: https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1/HZepipolar.pdf)
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https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1/HZepipolar.pdf

How to find the Essential Matrix?

x1Ex, =0
€11 €12 €13][Xr
X1 Vi Zi]|ez21 €22 exs||¥|=0
€31 €32 €3311Zr

Unfortunately, we do not have the 3D coordinates of the same scene
point x; and x,

But we know the corresponding points in image coordinates,
(uy, vp) and (uy, vy)
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Incorporating image coordinates

u; =

Ziu; =

Up
1

()

(l) X1 + (l) v, =
X+ Z; 0()
o .
P00 o
@ @
0 5y~ o
0 0 1 .

Known intrinsic

matrix K;

X1
Z)

O’ (l)
y Z To0
21V = ()yl +ZIO()
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Incorporating image coordinates in Epipolar constraints

Left camera

[i]- I

D

(l)

X1
(l) 0(1) [yl]
A

Right camera

Uy f; x( " 0 Oa(cr) Xy
Zy vlr =1 o y(r) o 3(}r) .Zr
o o0 1]°7

T -1T r
x =w v 1]zK x, = K71z, |v,
1
. €11 €12 €13 Uy A g t " t
1 _ ssume z; and z, are not zero, the res
[ v 1lzK €21 €22 €23|K 7 |Vr[=0 of the products must be 0
€31 €32 €33 1]
T €11 €12 €13 Uy ] fir fiz fis
[u; v, 1]K7Y |e21 €22 exs|K | v |=0 || [t v 1U|far faz fos =0
€31 €32 €33 1] . fz1 fr2 fa3
E =K, FK, F =K' EK;' Fundamental matrix

P Y
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Find a set of corresponding features in the
two images (e.g. using SIFT)

o w v @ @™ v

o @™, vy @ @™, v™)

. 2
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Plugging into Epipolar Constraints

. _ fir fiz fi3 u,(ﬂi)
[ul@ Vl(l) 1fz1 faz fa3 vr(i) =0
fza1 fzz fa3]l 1

unknown known

known

One linear equation for each matched feature i
Stacking equations for all the features and the elements of F as a vector f we get

Af=0
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Missing scale

fir fiz fiz|[ur fi1 fi2 fiz | [ur
fa1 fa2 f23 [Ur] =0=[w v 1]|kfo1 kfaz Fkf2s [Vr] =0
fa1 fzz fa3fl1l fa31 kfzz kfsz]l1l

(W, v 1]

The fundamental matrix works on homogeneous coordinates
Fundamental matrix F and kF describe the same epipolar geometry
F is defined only up to a scale factor

Set the Fundamental Matrix to some arbitrary scale ||f|| =1
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Solving for F up to Scale

_ _ fir fiz  fi3 u,(al)
[ul@ vl(l) 1|fzr foz fos p D | = 0
f31 f32 f33 1
known unknown known
One linear equation for each matched feature i
Stacking equations for all the features and the elements of F as a vector f we get
Af=0
2
We want Af as close to 0 as possible and ||f|| = 1:
2
Constrained linear least squares problem mfin| |Af] |2 such that ||f|| =1

From f rearrange to get F then compute E = KZTFKT and extract R and t from
E = TR using singular value decomposition (SVD)
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Problem of outliers in matching

All the matching pairs of features may not
give a valid fundamental matrix

Issue: Deal with inliers (give valid F) and
outliers (give invalid F)

RANSAC algorithm

If the number of outliers is less than 50%,
RANSAC can work!
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RANdom Sample Consensus

General RANSAC Algorithm

1.

Randomly choose s samples. Typically, s is the
minimum samples to fit the model

Fit the model to the randomly chosen samples

Count of the number VI of data (inliers) that fit
the model within a measure of error €

Repeat Steps 1-3 N times

Choose the model that has the largest number
of inliers
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RANSAC Example: Line Extraction
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RANSAC Example: Line Extraction

e Select sample of 2
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RANSAC Example: Line Extraction

e Select sample of 2 points at
random

e Calculate model parameters
that fit the data in the sample
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RANSAC Example: Line Extraction

. ' e Select sample of 2 points at
\ e 8 o random
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RANSAC Example: Line Extraction

e Select sample of 2 points at
random

e Calculate model parameters
that fit the data in the sample

e Calculate error function for
each data point

e Select data that support
current hypothesis
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RANSAC Example: Line Extraction

e Select sample of 2 points at

e . o random
. "o e Calculate model parameters
’ « o that fit the data in the sample
L TS . e Calculate error function for each
e, - . data point
iy
o . e Select data that support current
d . * hypothesis
3 . . e Repeat sampling
. L J
¢ . o
I °
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RANSAC Example: Line Extraction

e Select sample of 2 points at
‘. g ..’ random

ae e Calculate model parameters
that fit the data in the sample

e Calculate error function for
each data point

e Select data that support
current hypothesis

e . . e Repeat sampling
. L J
.r . o
$e . ] ®
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RANSAC Example: Line Extraction

ALL-INLIER SAMPLE




Windowed Camera-Pose Optimization

cameras poses C
Ch-m  Cp-mi1 Cpomiz  Cnomas Cn1 Gy

»
»

» So far we assumed that the transformations T, = [Ry ; t;] are between
consecutive frames

» Transformations can be computed also between non-adjacent frames T; ; and
can be used as additional constraints to improve cameras poses by minimizing
2
2ij ||Ci - Ti,jCj||
» For efficiency, only the last m keyframes are used
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VO or Structure from Motion (SFM)

SFM is more general than VO and tackles the problem of
3D reconstruction of both the structure and camera
poses from unordered image sets

The final structure and camera poses are refined with an
offline optimization (i.e., bundle adjustment), whose
computation time grows with the number of images

VO focuses on estimating the 3D motion of the camera
sequentially (as a new frame arrives) and in real time.
Bundle adjustment is options.

Video example
http://youtu.be/kxtQqYLRaSQ

Reconstruction from 3 million images from Flickr.com
Cluster of 250 computers, 24 hours of computation!
Paper: “Building Rome in a Day”, ICCV’09
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VO vs. Visual SLAM (1/2)

» The goal of SLAM in general is to obtain a global, consistent estimate of
the robot path. This is done through identifying loop closures. When a
loop closure is detected, this information is used to reduce the drift in both
the map and camera path (global bundle adjustment).

» Conversely, VO aims at recovering the path incrementally, pose after
pose, and potentially optimizing only over the last m poses path
(windowed bundle adjustment)

W e e

Before loop closing After loop closing
Image courtesy of Clemente et al. RSS’07
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VO vs. Visual SLAM (2/2)

VO only aims to the local consistency of the trajectory

SLAM aims to the global consistency of the trajectory and of the
map

VO can be used as a building block of SLAM

VO is SLAM before closing the loop!

The choice between VO and V-SLAM depends on the tradeoff
between performance and consistency, and simplicity in
implementation.

VO trades off consistency for real-time performance, without
the need to keep track of all the previous history of the
camera.

I

Visual SLAM

Image courtesy of Clemente et al. RSS’07



Summary

VO technique for incrementally finding the changes in camera
pose from successive images

* Assumes calibrated camera (intrinsics are known)

Essential matrix E relates the 3D coordinates of the scene points
and cane be decomposed to find the changes in translation and
the orientation of the camera

. Can be calculated from the fundamental matrix and the camera calibration

Fundamental matrix F relates the pixel coordinates up to scale

* Can be found using matched features and by solving an eigenvalue problem (constrained
least square problem)

RANSAC algorithm can remove outliers (e.g. in matching features
for finding F)
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