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Problem: Visual Odometry (VO)

Incrementally estimate pose of the vehicle from onboard camera images

input output

Image sequence (or video stream)

from one or more cameras attached to a moving vehicle
𝑅0, 𝑅1, 𝑅2 …

𝑡0, 𝑡1, 𝑡2
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Unlike wheel odometry, VO is not affected by wheel 
slip in uneven terrain or other adverse conditions. 

More accurate trajectory estimates compared to 
wheel odometry (relative position error 0.1% − 2%)

VO can be used as a complement to 
• wheel odometry, GPS, IMUs, laser odometry 

In GPS-denied environments, such as underwater and 
aerial

Why VO ?
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Image 1 Image 2

VO Principle

𝑅, 𝑡

VO Solution Outline

1. Detect and match features in 

two successive images

2. Estimate motion 𝑅𝑘, 𝑡𝑘 

(Epipolar geometry)

3. RANSAC outlier removal

4. Repeat Steps 1-3, optimize
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Brief history of VO

➢ 1996: The term VO was coined by Srinivasan to define motion orientation in honey 

bees. 

➢ 1980: First known stereo VO real-time implementation on a robot by Moraveck PhD 

thesis (NASA/JPL) for Mars rovers using a sliding camera. Moravec invented a 

predecessor of Harris detector, known as Moravec detector

➢ 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of 2004 

Mars mission (see papers from Matthies, Olson, etc. From JPL)

➢ 2004: VO used on a robot on another planet: Mars rovers Spirit and Opportunity

➢ 2004. VO was revived in the academic environment by Nister «Visual Odometry» 

paper. 

The term VO became popular.



Recall what a calibrated camera gives us

Camera to pixel

෤𝑢
෤𝑣
෥𝑤

=
𝑓𝑥 0 𝑜𝑥 0
0 𝑓𝑦 𝑜𝑦 0

0 0 1 0

𝑥𝑐

𝑦𝑐
𝑧𝑐

1

෤𝑢 = 𝑀𝑖𝑛𝑡 ෤𝑥𝑤 

෤𝑢 = 𝑀𝑖𝑛𝑡 𝑀𝑒𝑥𝑡 ෤𝑥𝑤 = 𝑃 ෤𝑥𝑤 

෤𝑢
෤𝑣
෥𝑤

=

𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤

𝑦𝑤
𝑧𝑤

1
P: Projection matrix

World to camera
𝑥𝑐

𝑦𝑐

𝑧𝑐

1

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

0 0 0

 𝑡𝑥

 𝑡𝑦

 𝑡𝑧

1

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

෤𝑥𝑐 = 𝑀𝑒𝑥𝑡 ෤𝑥𝑤 
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Backward projection from 2D to 3D

(𝑢, 𝑣)

image 

plane

𝑥𝑙

camera/world 

coordinates

(0,0,0)

3D to 2D 𝑢 = 𝑓𝑥
𝑥𝑐

𝑧𝑐
+ 𝑜𝑥 and 𝑣 = 𝑓𝑦

𝑦𝑐

𝑧𝑐
+ 𝑜𝑦

2D to 3D 𝑥 =
𝑧

𝑓𝑥
𝑢 − 𝑜𝑥 , y =

𝑧

𝑓𝑦
𝑣 − 𝑜𝑦 ;  𝑧 > 0
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Simple Stereo Problem: Reconstructing scene from two images

(𝑢𝑙 , 𝑣𝑙)

Left or first 

camera 

position

𝑥𝑙

camera/world 

coordinates

(0,0,0)

Right or next  

camera 

position

𝑥𝑙
(𝑏, 0,0)

(𝑢𝑟 , 𝑣𝑟)

(𝑥, 𝑦, 𝑧)

𝑢𝑙 = 𝑓𝑥
𝑥

𝑧
+ 𝑜𝑥 and 𝑣𝑙 = 𝑓𝑦

𝑦

𝑧
+ 𝑜𝑦

𝑢𝑟 = 𝑓𝑥
𝑥−𝒃

𝑧
+ 𝑜𝑥 and 𝑣 = 𝑓𝑦

𝑦

𝑧
+ 𝑜𝑦

From these 4 equations we can find 𝑥, 𝑦, 𝑧 :  𝑧 =
𝑏𝑓𝑥

(𝑢𝑙−𝑢𝑟)
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Uncalibrated Stereo Problem

(𝑢𝑙 , 𝑣𝑙)

Left or first 

camera 

position

𝑥𝑙

camera/world 

coordinates

(0,0,0)

Right or next  

camera 

position

𝑥𝑙
(𝑏, 0,0)

(𝑢𝑟 , 𝑣𝑟)

(𝑥, 𝑦, 𝑧)

The two cameras’ intrinsic 

parameters are known but the 

rotation (R) and the translation 

(t) between the two camera 

poses is unknown

This relation between the two 

poses is described by epipolar 

geometry

Relation captured by 

Fundamental matrix

R, t
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Epipolar Geometry: Epipoles

The intrinsic parameters (𝑓𝑥, 𝑓𝑦, 𝑜𝑥, 𝑜𝑦) are given for each camera

Problem: Compute extrinsic parameters 𝑡, 𝑅 relating the two camera 

positions, given only coordinates on the image planes 𝑢𝑙 , 𝑣𝑙 , (𝑢𝑟 , 𝑣𝑟)

Epipole: Image point of origin/pinhole of one camera position as viewed by 

the other camera position: 𝑒𝑙  and 𝑒𝑟

𝑃

𝑂𝑙
𝑂𝑟

𝒕, 𝑅

𝑒𝑙 𝑒𝑟

𝒙𝑙 𝒙𝑟

scene

Left 

camera

Right 

camera
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𝑢𝑙 , 𝑣𝑙

(𝑢𝑟 , 𝑣𝑟)

𝒙𝑟 =

𝑥𝑟

𝑦𝑟

𝑧𝑟

𝒙𝑙 =

𝑥𝑙

𝑦𝑙

𝑧𝑙

𝒕 =

𝑡𝑥

𝑡𝑦

𝑡𝑧



Epipolar Geometry: Epipolar Plane

Epipolar plane of scene point P: The plane formed by camera origins 
(𝑂𝑙 and 𝑂𝑟), epipoles (𝑒𝑙 and 𝑒𝑟), and P.

Each scene point 𝑃 has a unique epipolar plane

𝑃

𝑂𝑙
𝑂𝑟

𝑡, 𝑅

𝑒𝑙 𝑒𝑟

Epipolar 

plane
𝒙𝑙 𝒙𝑟

Slide ideas from First Principles of Computer Vision by Shree Nayar 



Epipolar Constraints

Vector normal to the epipolar plane: 𝒏 = 𝒕 × 𝒙𝒍

Dot product of 𝑥𝑙 and 𝑛 (perpendicular vectors) is zero 𝒙𝑙 . 𝑛 = 𝒙𝒍. 𝒕 × 𝒙𝒍 = 0

𝑥𝑙 𝑦𝑙 𝑧𝑙

𝑡𝑦𝑧𝑙 − 𝑡𝑧𝑦𝑙

𝑡𝑧𝑥𝑙 − 𝑡𝑥𝑧𝑙

𝑡𝑥𝑦𝑙 − 𝑡𝑦𝑥𝑙

= 0  rewritten as   𝑥𝑙 𝑦𝑙 𝑧𝑙

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0

𝑥𝑙

𝑦𝑙

𝑧𝑙

= 0

𝑃

𝑂𝑙
𝑂𝑟

𝑡, 𝑅

𝑒𝑙 𝑒𝑟

Epipolar 

plane𝒏 = 𝒕 × 𝒙𝑙

𝒙𝑙 𝒙𝑟 Recall 𝑎 × 𝑏 =

𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦

𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧

𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥

“Epipolar constraint”

𝑇𝑋



Epipolar Constraints

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1/HZepipolar.pdf

Dot product of 𝒙𝑙 and 𝑛 (perpendicular vectors) is zero 𝒙𝑙 . 𝑛 = 𝒙𝑙 . 𝑡 × 𝒙𝑙 = 0

𝑥𝑙 𝑦𝑙 𝑧𝑙

𝑡𝑦𝑧𝑙 − 𝑡𝑧𝑦𝑙

𝑡𝑧𝑥𝑙 − 𝑡𝑥𝑧𝑙

𝑡𝑥𝑦𝑙 − 𝑡𝑦𝑥𝑙

= 0 𝑥𝑙 𝑦𝑙 𝑧𝑙

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0

𝑥𝑙

𝑦𝑙

𝑧𝑙

= 0

Relating 3D coordinates of P in the left camera with that of the right 𝒙𝑙 = 𝑅𝒙𝑟 + 𝒕 

Substituting  

𝑥𝑙

𝑦𝑙

𝑧𝑙

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑥𝑟

𝑦𝑟

𝑧𝑟

+

𝑡𝑥

𝑡𝑦

𝑡𝑧

 in the second 𝒙𝑙

𝑥𝑙 𝑦𝑙 𝑧𝑙

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑥𝑟

𝑦𝑟

𝑧𝑟

+

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0

𝑡𝑥

𝑡𝑦

𝑡𝑧

= 0

𝑥𝑙 𝑦𝑙 𝑧𝑙

0 −𝑡𝑧 𝑡𝑦

𝑡𝑧 0 −𝑡𝑥

−𝑡𝑦 𝑡𝑥 0

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑥𝑟

𝑦𝑟

𝑧𝑟

= 0

E is a product of a skew symmetric matrix 𝑇𝑋 and an orthonormal matrix 𝑅, and therefore, from E we can get t R by 
Singular value decompositions (SVD)  (read: https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook1/HZepipolar.pdf)

Essential matrix

𝐸 = 𝑇𝑋𝑅 =

𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33
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How to find the Essential Matrix? 

𝒙𝑙
𝑇𝐸𝒙𝑟 = 0

𝑥𝑙 𝑦𝑙 𝑧𝑙

𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

𝑥𝑟

𝑦𝑟

𝑧𝑟

= 0

Unfortunately, we do not have the 3D coordinates of the same scene 
point 𝑥𝑙 and 𝑥𝑟

But we know the corresponding points in image coordinates, 
𝑢𝑙 , 𝑣𝑙  𝐚𝐧𝐝 (𝑢𝑟 , 𝑣𝑟)

Slide ideas from First Principles of Computer Vision by Shree Nayar 



Incorporating image coordinates

𝑢𝑙 = 𝑓𝑥
(𝑙) 𝑥𝑙

𝑧𝑙
+ 𝑜𝑥

(𝑙)
 𝑣𝑙 = 𝑓𝑦

(𝑙) 𝑦𝑙

𝑧𝑙
+ 𝑜𝑦

(𝑙)

𝑧𝑙𝑢𝑙 = 𝑓𝑥
(𝑙)

𝑥𝑙 + 𝑧𝑙𝑜𝑥
(𝑙)

 𝑧𝑙𝑣𝑙 = 𝑓𝑦
(𝑙)

𝑦𝑙 + 𝑧𝑙𝑜𝑦
(𝑙)

𝑧𝑙

𝑢𝑙

𝑣𝑙

1
=

𝑓𝑥
𝑙

0 𝑜𝑥
𝑙

0 𝑓𝑦
𝑙

𝑜𝑦
𝑙

0 0 1

𝑥𝑙

𝑦𝑙
𝑧𝑙

 

Known intrinsic 

matrix 𝐾𝑙
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Incorporating image coordinates in Epipolar constraints

Left camera

𝑧𝑙

𝑢𝑙

𝑣𝑙

1
=

𝑓𝑥
𝑙

0 𝑜𝑥
𝑙

0 𝑓𝑦
𝑙

𝑜𝑦
𝑙

0 0 1

𝑥𝑙

𝑦𝑙
𝑧𝑙

𝒙𝑙
𝑇 = 𝑢𝑙 𝑣𝑙 1 𝑧𝑙𝐾𝑙

−1𝑇

Right camera

𝑧𝑟

𝑢𝑟

𝑣𝑟

1
=

𝑓𝑥
𝑟

0 𝑜𝑥
𝑟

0 𝑓𝑦
𝑟

𝑜𝑦
𝑟

0 0 1

𝑥𝑟

𝑦𝑟
𝑧𝑟

𝒙𝑟 = 𝐾𝑟
−1𝑧𝑟

𝑢𝑟

𝑣𝑟

1

𝑢𝑙 𝑣𝑙 1 𝑧𝑙𝐾𝑙
−1𝑇

𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

𝐾𝑟
−1𝑧𝑟

𝑢𝑟

𝑣𝑟

1
= 0

𝑢𝑙 𝑣𝑙 1 𝐾𝑙
−1𝑇

𝑒11 𝑒12 𝑒13

𝑒21 𝑒22 𝑒23

𝑒31 𝑒32 𝑒33

𝐾𝑟
−1

𝑢𝑟

𝑣𝑟

1
= 0

𝐸 = 𝐾𝑙
𝑇𝐹𝐾𝑟

𝑢𝑙 𝑣𝑙 1
𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑢𝑟

𝑣𝑟

1
= 0

𝐹 = 𝐾𝑙
−1𝑇

𝐸𝐾𝑟
−1 Fundamental matrix
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Assume 𝑧𝑙 and 𝑧𝑟 are not zero, the rest 

of the products must be 0



Finding Fundamental Matrix: Matching features

Find a set of corresponding features in the 
two images (e.g. using SIFT)

(𝑢𝑙
1

, 𝑣𝑙
1

)  (𝑢𝑟
1

, 𝑣𝑟
1

)

 …   …

(𝑢𝑙
𝑚

, 𝑣𝑙
𝑚

)  (𝑢𝑟
𝑚

, 𝑣𝑟
𝑚

)
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Plugging into Epipolar Constraints

𝑢𝑙
(𝑖)

𝑣𝑙
(𝑖)

1

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑢𝑟
(𝑖)

𝑣𝑟
(𝑖)

1

= 0

   known  unknown known

One linear equation for each matched feature i

Stacking equations for all the features and the elements of 𝐹 as a vector 𝒇 we get
𝐴 𝒇 = 𝟎
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Missing scale

𝑢𝑙 𝑣𝑙 1
𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑢𝑟

𝑣𝑟

1
= 0 = 𝑢𝑙 𝑣𝑙 1

𝑘𝑓11 𝑘𝑓12 𝑘𝑓13

𝑘𝑓21 𝑘𝑓22 𝑘𝑓23

𝑘𝑓31 𝑘𝑓32 𝑘𝑓33

𝑢𝑟

𝑣𝑟

1
= 0

The fundamental matrix works on homogeneous coordinates

Fundamental matrix 𝐹 and  k𝐹 describe the same epipolar geometry

𝐹 is defined only up to a scale factor

Set the Fundamental Matrix to some arbitrary scale  f = 1 
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Solving for F up to Scale

𝑢𝑙
(𝑖)

𝑣𝑙
(𝑖)

1

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

𝑢𝑟
(𝑖)

𝑣𝑟
(𝑖)

1

= 0

   known  unknown known

One linear equation for each matched feature i

Stacking equations for all the features and the elements of 𝐹 as a vector 𝒇 we get
𝐴 𝒇 = 𝟎

We want 𝐴𝒇 as close to 0 as possible and 𝒇
𝟐

= 1:

Constrained linear least squares problem min
𝒇

𝐴𝒇
2

 such that 𝒇
𝟐

= 1 

From 𝒇 rearrange to get 𝐹 then compute 𝐸 = 𝐾𝑙
𝑇𝐹𝐾𝑟 and extract 𝑅 and t from 

𝐸 = 𝑇𝑋𝑅 using singular value decomposition (SVD)

Slide ideas from First Principles of Computer Vision by Shree Nayar 



References

➢Shree K. Nayer, First Principles of Computer Vision: Camera
Calibration and Simple Stereo, 
https://www.youtube.com/watch?v=hUVyDabn1Mg

➢Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 
Years and Fundamentals, IEEE Robotics and Automation Magazine, 
Volume 18, issue 4, 2011.

➢Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching, 
Robustness, and Applications, IEEE Robotics and Automation 
Magazine, Volume 19, issue 1, 2012. 

https://www.youtube.com/watch?v=hUVyDabn1Mg


Problem of outliers in matching

All the matching pairs of features may not 
give a valid fundamental matrix

Issue: Deal with inliers (give valid F) and 
outliers (give invalid F)

RANSAC algorithm

If the number of outliers is less than 50%, 
RANSAC can work!
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RANdom Sample Consensus

General RANSAC Algorithm

1. Randomly choose s samples. Typically, s is the 
minimum samples to fit the model

2. Fit the model to the randomly chosen samples

3. Count of the number M of data (inliers) that fit 
the model within a measure of error 𝜀

4. Repeat Steps 1-3 N times

5. Choose the model that has the largest number 
M of inliers
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RANSAC Example: Line Extraction
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• Select sample of 2 
points at random

RANSAC Example: Line Extraction
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• Select sample of 2 points at 
random

• Calculate model parameters 
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random

• Calculate model parameters 
that fit the data in the sample

• Calculate error function for 
each data point

• Select data that support 
current hypothesis

RANSAC Example: Line Extraction

Copyright of Davide Scaramuzza - davide.scaramuzza@ieee.org - https://sites.google.com/site/scarabotix/



• Select sample of 2 points at 
random

• Calculate model parameters 
that fit the data in the sample

• Calculate error function for each 
data point

• Select data that support current 
hypothesis

• Repeat sampling
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• Select sample of 2 points at 
random

• Calculate model parameters 
that fit the data in the sample

• Calculate error function for 
each data point

• Select data that support 
current hypothesis

• Repeat sampling
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ALL-INLIER SAMPLE

RANSAC Example: Line Extraction
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Windowed Camera-Pose Optimization

➢ So far we assumed that the transformations 𝑻𝒌 = [𝑹𝒌 ; 𝒕𝒌] are between 
consecutive frames

➢ Transformations can be computed also between non-adjacent frames 𝑇𝑖,𝑗 and 

can be used as additional constraints to improve cameras poses by minimizing

σ𝑖,𝑗 𝐶𝑖 − 𝑇𝑖,𝑗𝐶𝑗

2

➢ For efficiency, only the last 𝑚 keyframes are used

...

𝒎

𝑻𝟑,𝟏
𝑻𝟒,𝟏 𝑻𝒏−𝟏,𝟑

𝑪𝒏−𝒎 𝑪𝒏−𝒎+𝟏 𝑪𝒏−𝒎+𝟐 𝑪𝒏−𝒎+𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝒏

...
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SFM is more general than VO and tackles the problem of 
3D reconstruction of both the structure and camera 
poses from unordered image sets

The final structure and camera poses are refined with an 
offline optimization (i.e., bundle adjustment), whose 
computation time grows with the number of images

VO focuses on estimating the 3D motion of the camera 
sequentially (as a new frame arrives) and in real time. 
Bundle adjustment is options. 

VO or Structure from Motion (SFM) 

Reconstruction from 3 million images from Flickr.com

Cluster of 250 computers, 24 hours of computation!

Paper: “Building Rome in a Day”, ICCV’09

Video example

http://youtu.be/kxtQqYLRaSQ
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VO vs. Visual SLAM (1/2)

Before loop closing After loop closing
Image courtesy of Clemente et al. RSS’07
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VO only aims to the local consistency of the trajectory 

SLAM aims to the global consistency of the trajectory and of the 
map

VO can be used as a building block of SLAM

VO is SLAM before closing the loop!

The choice between VO and V-SLAM depends on the tradeoff 
between performance and consistency, and simplicity in 
implementation. 

VO trades off consistency for real-time performance, without 
the need to keep track of all the previous history of the 
camera.

VO vs. Visual SLAM (2/2)

Visual odometry

Visual SLAM
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Summary

• VO technique for incrementally finding the changes in camera 
pose from successive images
• Assumes calibrated camera (intrinsics are known)

• Essential matrix E relates the 3D coordinates of the scene points 
and cane be decomposed to find the changes in translation and 
the orientation of the camera  
• Can be calculated from the fundamental matrix and the camera calibration

• Fundamental matrix F relates the pixel coordinates up to scale
• Can be found using matched features and by solving an eigenvalue problem (constrained 

least square problem)

• RANSAC algorithm can remove outliers (e.g. in matching features 
for finding F)
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