

# ECE 484: Principles of Safe Autonomy (Fall 2025)

## Lectures 5

### Perception: Reconstructing 3D world from images (Part I)

Professor: Huan Zhang

<https://publish.illinois.edu/safe-autonomy/>

<https://huan-zhang.com>

huanz@illinois.edu



# Announcement

As requested by the TA:

For preparation for the **MPO demo**, have a screenshot of R3 (third initial set) plot ready. It should be using whatever function proves safety or unsafely for this scenario.

Check Campuswire for more details



# Role of Perception in Autonomy

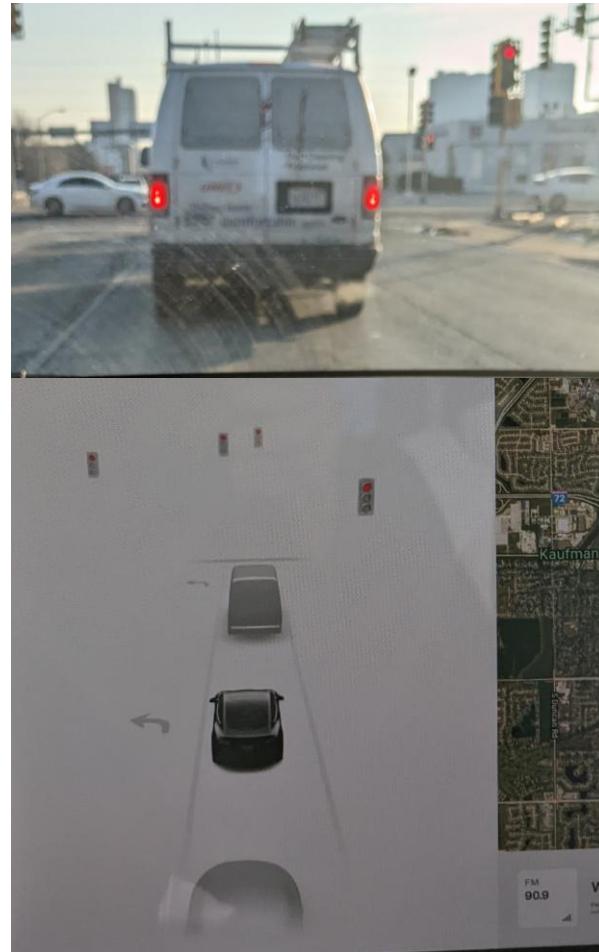
Perception module converts signals from the environment **state estimates** for the autonomous agent and its environment

Examples of state estimates:

- Type of lead vehicle, traffic sign
- Position of ego on the map, relative to the lane, distance to the leading vehicle
- Position of lead vehicle, speed, intention of the pedestrian

Types of estimates:

- Semantic: E.g., type of vehicle, sign
- Geometric: E.g., position, speed



# Problem

Reconstructing the 3D structure of the scene from images

Input: image with points in pixels

Output: position of objects in millimeters in world camera frame

We will develop a method to find camera's internal and external parameters

Outline:

Linear Camera Model (Projection matrix)

Camera calibration

Simple stereo

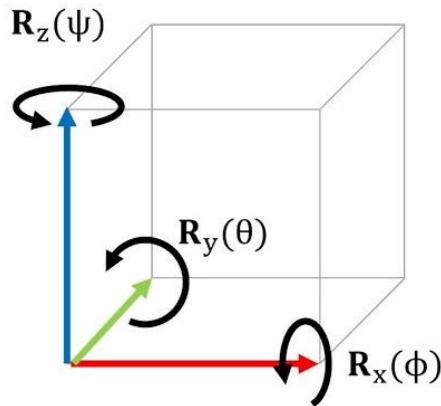


# Background: rotation in 3D

$$\mathbf{R}_x(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix}$$

$$\mathbf{R}_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_z(\psi) = \begin{bmatrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

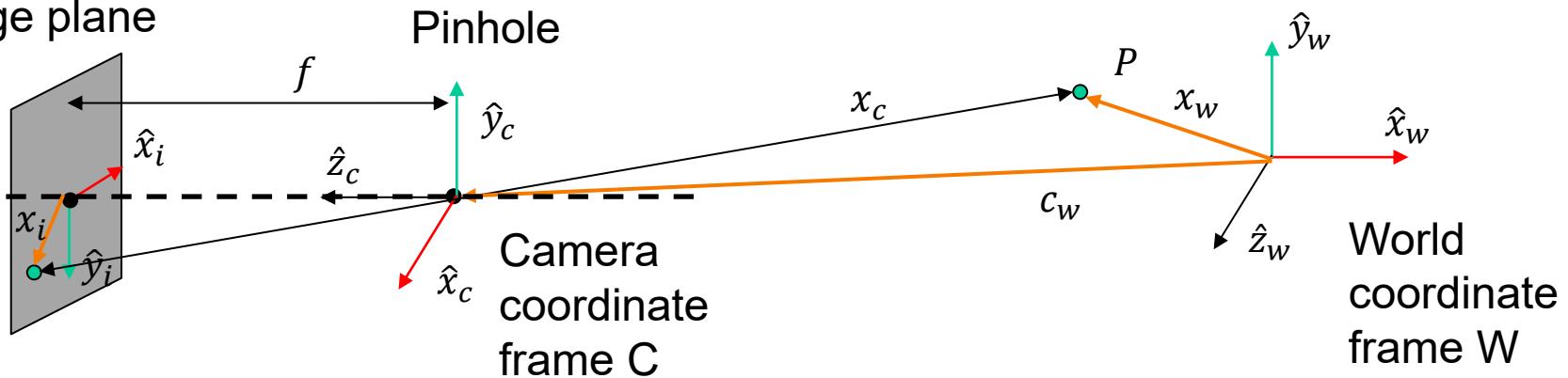


<https://www.youtube.com/watch?v=wg9bl8-Qx2Q>



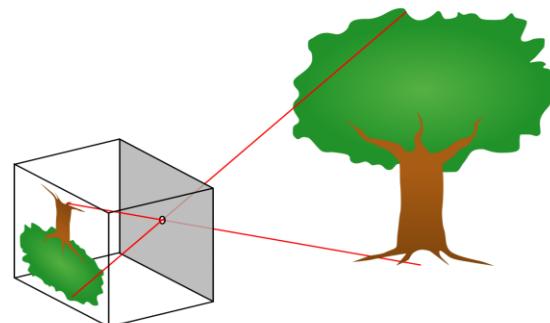
# Forward Imaging Model: 3D to 2D

Image plane



Camera  
coordinate  
frame C

World  
coordinate  
frame W



# Forward Imaging Model: 3D to 2D

Image plane

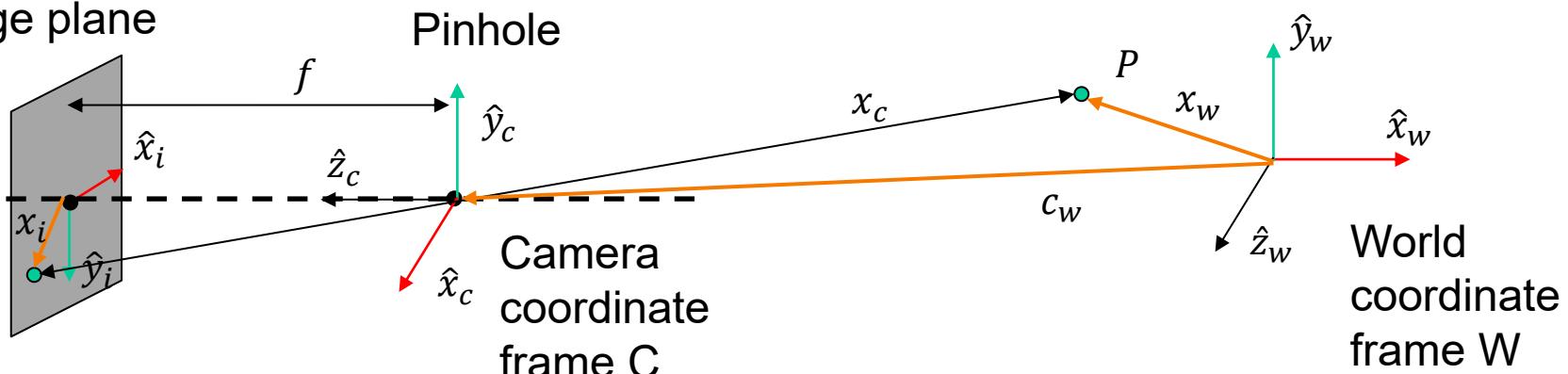


Image  
coordinates  
frame

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

3D-2D

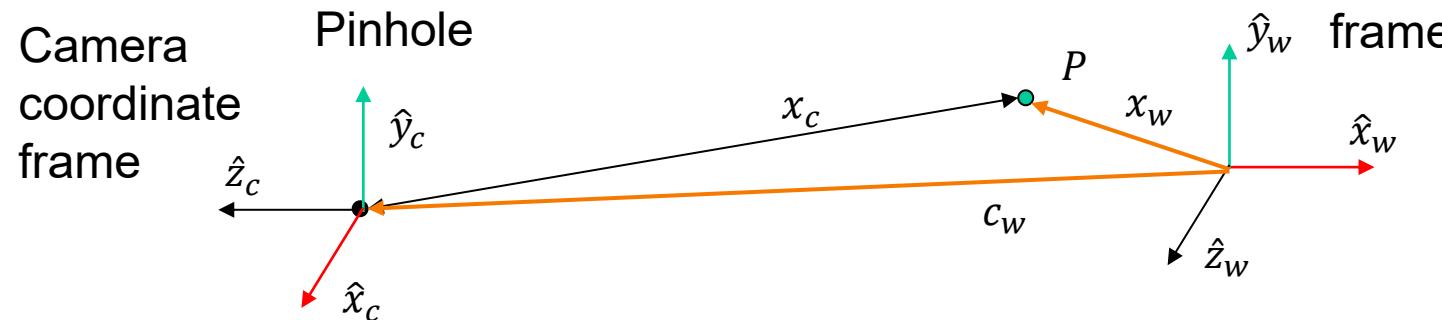
$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

3D-3D

$$\mathbf{x}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$



# World to camera Transformation (Extrinsic parameters)



Position  $c_w$  and the orientation  $R$  of the camera in the world coordinate frame (W) are the camera's **Extrinsic Parameters**

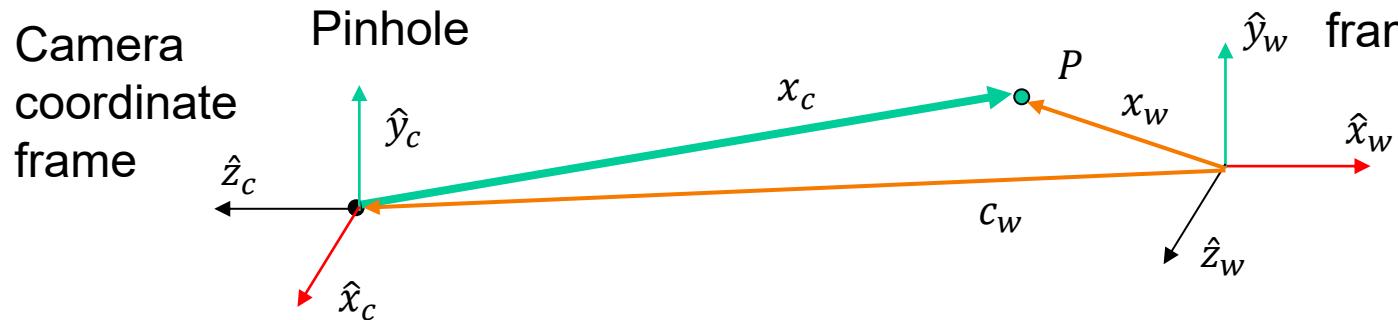
Rotation matrix  $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$   $\rightarrow$  row 1 is the direction of  $\hat{x}_c$  in world coordinates, 2 for  $\hat{y}_c$ , ...

This is an **orthonormal matrix**, i.e., the row vectors or the column vectors are orthonormal  
 $R^{-1} = R^T$  i.e.,  $R^T R = R R^T = I$

*Proof:*  $(Rx)^T (Rx) = x^T R^T R x = x^T x$  (since rotation preserves length). So  $R^T R = I$



# World to camera Transformation



Position  $c_w$  and the orientation  $R$  of the camera in the world coordinate frame (W) are the camera's **Extrinsic Parameters**

Given the extrinsic parameters  $(R, c_w)$  of the camera, the camera-centric location of the point P in the world coordinate (w) is simply  $(x_c)_w = x_w - c_w$

In the camera coordinate (c)  $x_c = R(x_w - c_w) = Rx_w - Rc_w = Rx_w + t$

$$t = -Rc_w$$

$$\begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

$$x_c = Rx_w + t$$



# Extrinsic Matrix

$$x_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}$$

We have an affine transformation:  $x_c = Rx_w + t$

Can we represent it as  $x_c = Mx_w$ ? No

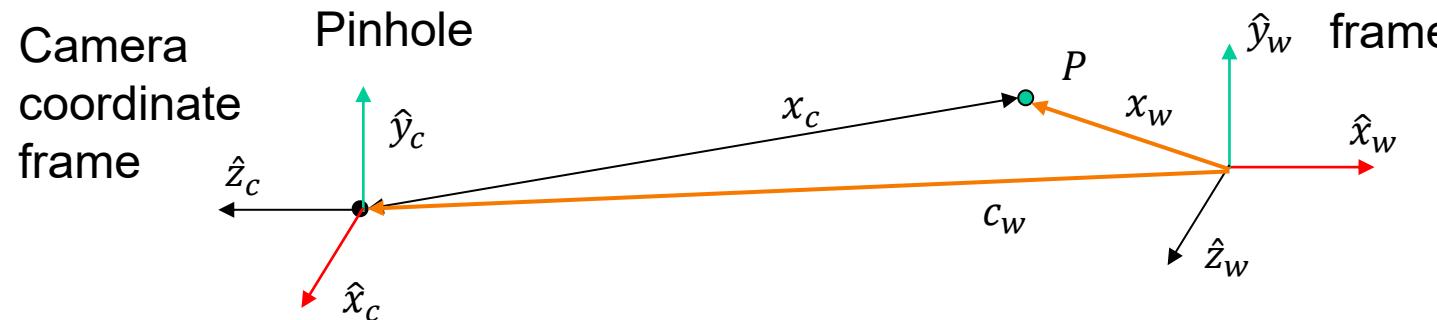
We can introduce a new coordinate  $\tilde{x}_c = [\tilde{x}, \tilde{y}, \tilde{z}, 1]^T$

Now can we represent this as a matrix multiplication  $\tilde{x}_c = M\tilde{x}_w$

$$\tilde{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$



# World to camera Transformation (Extrinsic matrix)



Given the extrinsic parameters  $(R, c_w)$  of the camera, the camera-centric location of the point  $P$  in the world coordinate is

$$x_c = R(x_w - c_w) = Rx_w - Rc_w = Rx_w + t \quad t = -Rc_w$$

$$x_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} \text{ Using homogeneous coordinates}$$

$$\tilde{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

**Extrinsic matrix**  $M_{ext} \tilde{x}_c = M_{eext} \tilde{x}_w$



# Geometry of Homogeneous coordinates (for 2D)

Affine transformation:  $\mathbf{x}_c = \mathbf{R}\mathbf{x}_w + \mathbf{t}$

How to represent this as  $\tilde{\mathbf{x}}_c = \mathbf{M}\tilde{\mathbf{x}}_w$

The homogeneous representation of a 2D point

$p = (x, y)$  is a 3D point  $\tilde{p} = (\tilde{x}, \tilde{y}, \tilde{z})$ .

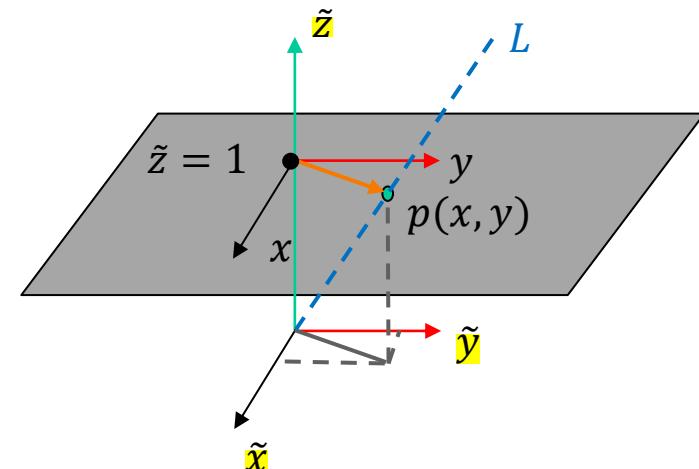
The third coordinate  $\tilde{z} \neq 0$  is fictitious such that:

$$p = (x, y) \quad x = \frac{\tilde{x}}{\tilde{z}} \quad y = \frac{\tilde{y}}{\tilde{z}}$$

$$p \equiv \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{z}x \\ \tilde{z}y \\ \tilde{z} \end{bmatrix} \equiv \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \tilde{p}$$

Geometric interpretation: all points on the line  $L$  (except origin) represent homogeneous coordinate  $p(x, y)$

$$x_c = \begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$



For 3D, homogeneous representation is 4D:

$$p \equiv \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \equiv \begin{bmatrix} wx \\ \tilde{w}y \\ \tilde{w}z \\ \tilde{w} \end{bmatrix} \equiv \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{bmatrix} = \tilde{p}$$


# Forward Imaging Model: 3D to 2D

Image plane

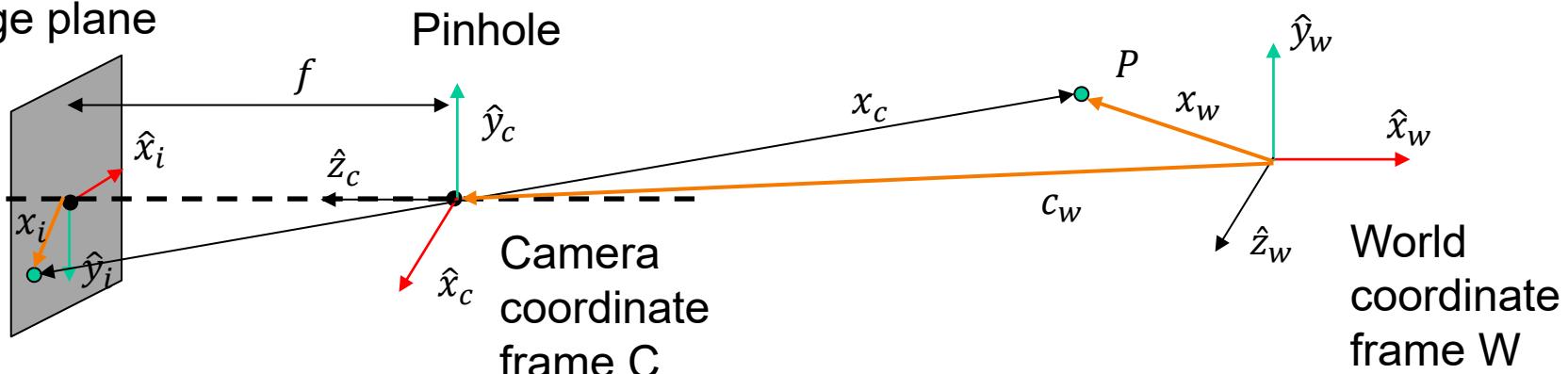


Image  
coordinates  
frame

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

3D-2D

$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

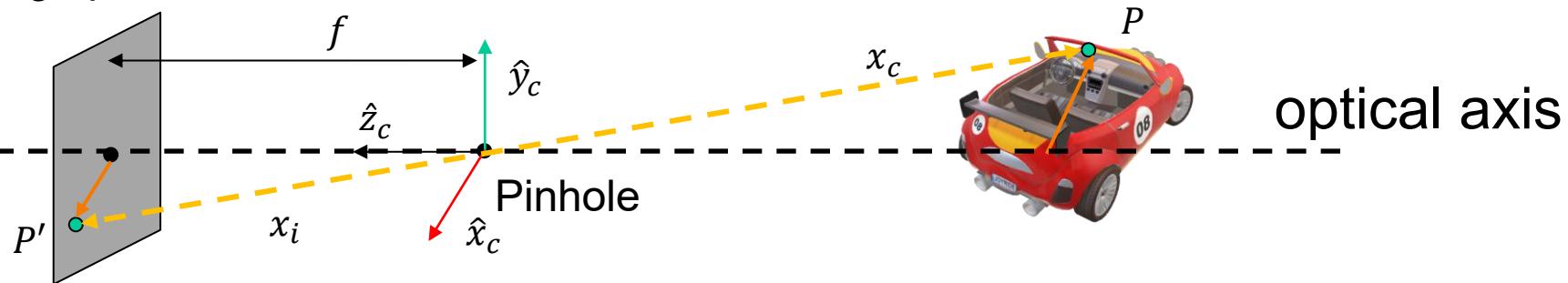
3D-3D

$$\mathbf{x}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$



# Perspective imaging with pinhole

Image plane



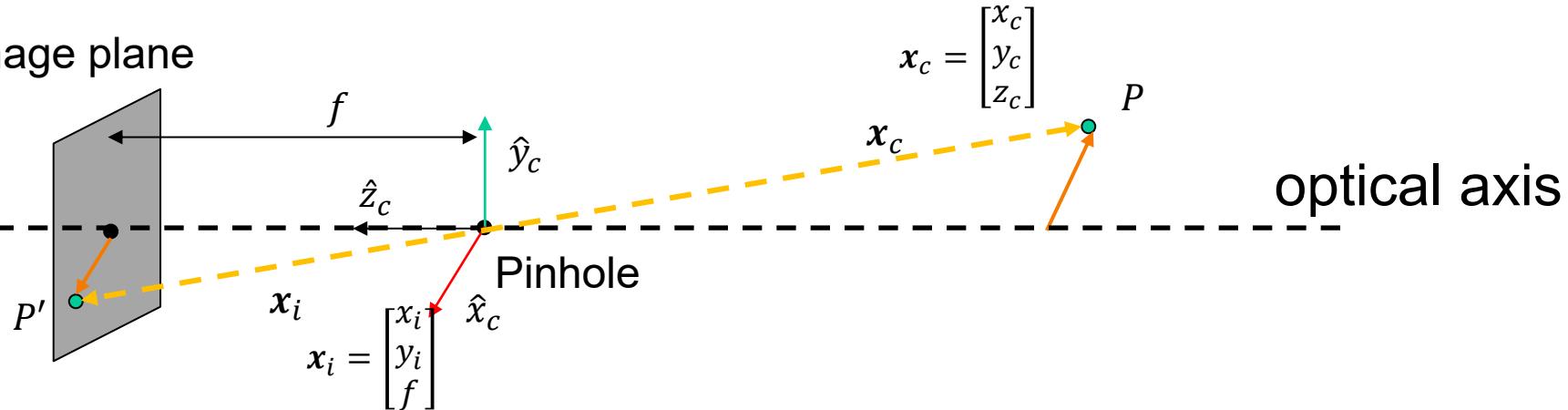
$f$ : Effective focal length

$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} \quad \mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \\ f \end{bmatrix}$$



# Perspective imaging with pinhole

Image plane



$f$ : Effective focal length

$$x_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

$$x_i = \begin{bmatrix} x_i \\ y_i \\ f \end{bmatrix}$$

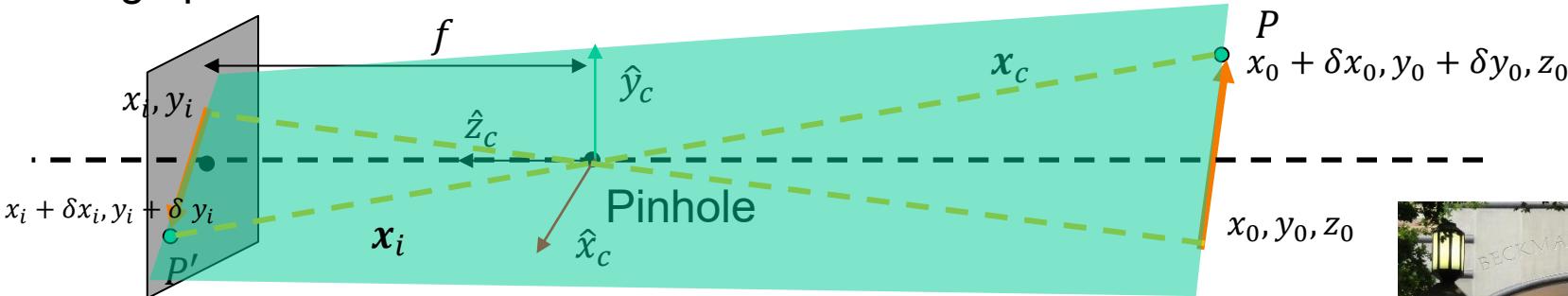
$$\frac{x_i}{f} = \frac{x_c}{z_c}$$

$$\Rightarrow \frac{x_i}{f} = \frac{x_c}{z_c}, \frac{y_i}{f} = \frac{y_c}{z_c}$$



# Perspective projection of a line and magnification

Image plane



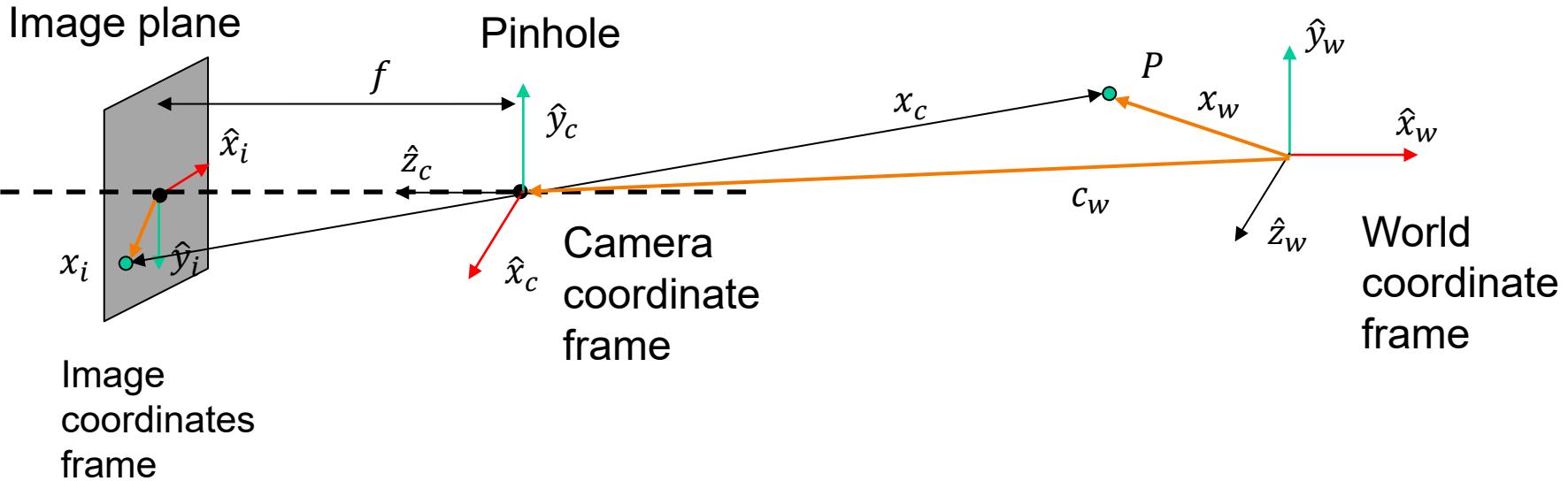
A line in 3D gets mapped to a line in the image plane

$$\frac{x_i}{f} = \frac{x_c}{z_c} \quad \Rightarrow \frac{x_i}{f} = \frac{x_c}{z_c}, \frac{y_i}{f} = \frac{y_c}{z_c}$$

Exercise: Show that magnification  $|m| = \frac{\text{image length}}{\text{actual length}} = \frac{\sqrt{\delta x_i^2 + \delta y_i^2}}{\sqrt{\delta x_0^2 + \delta y_0^2}} = \left| \frac{f}{z_0} \right|$



# Camera coordinates to image plane coordinates



Perspective projection

$$\frac{x_i}{f} = \frac{x_c}{z_c} \text{ and } \frac{y_i}{f} = \frac{y_c}{z_c}$$

$$x_i = f \frac{x_c}{z_c} \text{ and } y_i = f \frac{y_c}{z_c}$$



# Image plane to image sensor mapping

Image plane

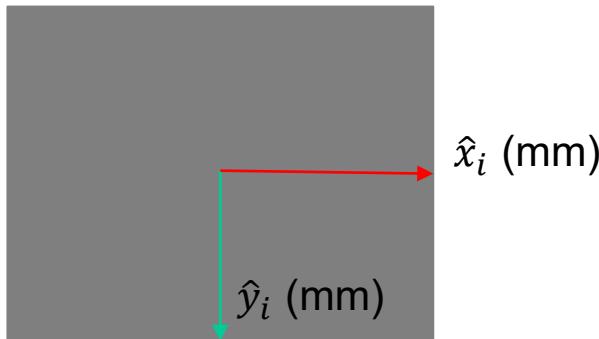
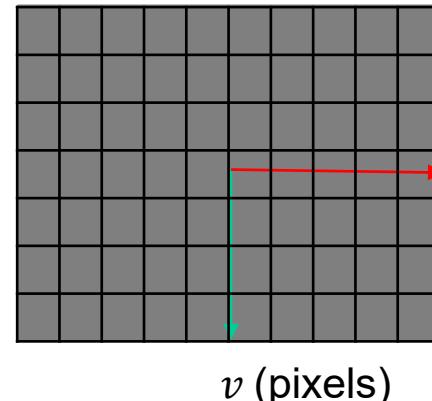


Image sensor



Pixels may be rectangular  
Let  $m_x$  and  $m_y$  be the pixel densities (pixels/mm) in x and y directions

$$x_i = f \frac{x_c}{z_c} \text{ and } y_i = f \frac{y_c}{z_c}$$

$$u = \underbrace{m_x f}_{\text{pixels}} \frac{x_c}{z_c} \text{ and } v = \underbrace{m_y f}_{\text{pixels}} \frac{y_c}{z_c}$$

$$u = m_x f \frac{x_c}{z_c} + o_x \text{ and } v = m_y f \frac{y_c}{z_c} + o_y$$

$$u = f_x \frac{x_c}{z_c} + o_x \text{ and } v = f_y \frac{y_c}{z_c} + o_y$$

Intrinsic parameters:  $f_x, f_y, o_x, o_y$



# Nonlinear to linear model using homogeneous coordinates

$$u = f_x \frac{x_c}{z_c} + o_x \text{ and } v = f_y \frac{y_c}{z_c} + o_y$$

Use homogeneous representation of  $(u, v)$  as a 3D point  $\tilde{u} = (\tilde{u}, \tilde{v}, \tilde{w})$

$$uz_c = f_x x_c + o_x z_c \text{ and } vz_c = f_y y_c + o_y z_c$$
$$(uz_c, vz_c, z_c) \equiv (u, v, 1)$$

$$u \equiv \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} z_c u \\ z_c v \\ z_c \end{bmatrix} = \begin{bmatrix} f_x x_c + z_c o_x \\ f_y y_c + z_c o_y \\ z_c \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

Linear model of perspective projection  $\tilde{u} = [K|0]\tilde{x}_c = M_{int}\tilde{x}_c$

**Intrinsic matrix ( $M_{int}$ )**

**Calibration matrix  $K$  (upper right triangular)**



# Forward Camera Model

Camera to pixel

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

World to camera

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

$$\tilde{u} = M_{int} \tilde{x}_w$$

$$\tilde{x}_c = M_{ext} \tilde{x}_w$$

$$\tilde{u} = M_{int} M_{ext} \tilde{x}_w = P \tilde{x}_w$$

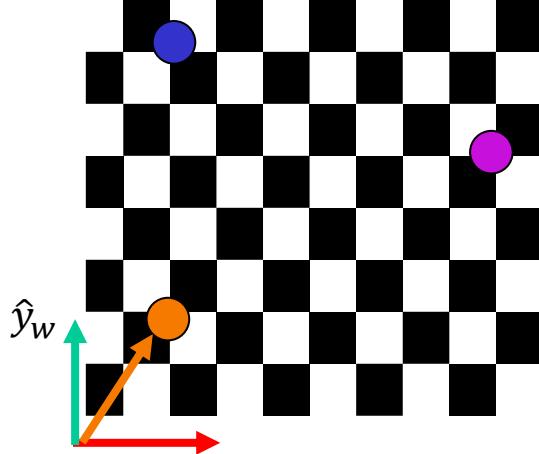
$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

P: Projection matrix



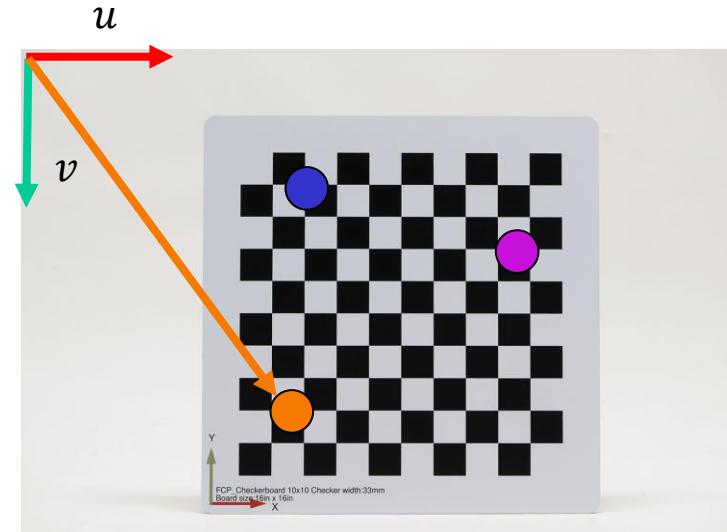
# Camera Calibration Procedure

## Step 1. Capture image of object with known geometry



$\hat{x}_w$  known geometry object  
(world coordinate)

$$\bullet x_W = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$



captured image  
(pixel coordinate)

$$\bullet u = \begin{bmatrix} u \\ v \end{bmatrix}$$



# Camera Calibration

Step 3. For each point  $i$  in the scene and the image we get a linear equation

$$\begin{bmatrix} u^{(i)} \\ v^{(i)} \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w^{(i)} \\ y_w^{(i)} \\ z_w^{(i)} \\ 1 \end{bmatrix}$$

Step 4. Collecting many  $u^{(i)} = \frac{p_{11}x_w^{(i)} + p_{12}y_w^{(i)} + p_{13}z_w^{(i)} + p_{14}}{p_{31}x_w^{(i)} + p_{32}y_w^{(i)} + p_{33}z_w^{(i)} + p_{34}}$  points (same for  $v^{(i)}$ ) and rearranging  $\mathbf{p}$  as a vector we get  $A\mathbf{p} = 0$

e.g.,  $p_{11}x_w^{(i)} + p_{12}y_w^{(i)} + p_{13}z_w^{(i)} + p_{14} - p_{31}x_w^{(i)}u^{(i)} - p_{32}u^{(i)}y_w^{(i)} - p_{33}u^{(i)}z_w^{(i)} - p_{34}u^{(i)} = 0$  is one row of this equality

Step 5. Solve for  $\mathbf{p}$



# Projection matrix scale

Since projection matrix works on homogeneous coordinates

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} \equiv k \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix}$$

Therefore

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix} = k \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Therefore, Projection Matrices  $P$  and  $kP$  produce the same homogenous pixel coordinates

Projection matrix is defined only upto a scale factor

Scaling the world and the camera will produce indistinguishable images

That is , we can only find the projection matrix up to scale; we choose  $\|p\| = 1$



# Least Squares Solution for Projection Matrix

We want  $A\mathbf{p}$  as close to 0 as possible and  $\|\mathbf{p}\|^2 = 1$

$$\min_{\mathbf{p}} \|\mathbf{A}\mathbf{p}\|^2 \text{ such that } \|\mathbf{p}\|^2 = 1$$

$$\min_{\mathbf{p}} \left\| \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p} \right\|^2 \text{ such that } \mathbf{p}^T \mathbf{p} = 1$$

$$L(\mathbf{p}, \lambda) = \mathbf{p}^T \mathbf{A}^T \mathbf{A} \mathbf{p} - \lambda(\mathbf{p}^T \mathbf{p} - 1)$$

Taking derivative  $\frac{\partial L}{\partial \mathbf{p}} = 0$  gives  $2\mathbf{A}^T \mathbf{A} \mathbf{p} - 2\lambda \mathbf{p} = \mathbf{0}$

$$\boxed{\mathbf{A}^T \mathbf{A} \mathbf{p} = \lambda \mathbf{p}}$$

$\mathbf{p}$  is the Eigenvector corresponding to the smallest eigenvalue of  $\mathbf{A}^T \mathbf{A}$

Rearrange  $\mathbf{p}$  to get the projection matrix  $\mathbf{P}$



# Homography

Image transformations

2x2 transformations

3x3 transformations

Computing homography

Dealing with outliers RANSAC



# Image manipulation

Image filtering: Change range (e.g., brightness)

$$g(x,y) = \text{Tr}(f(x,y))$$



$\text{Tr}$



Image warping: Change domain (e.g., rotation)

$$g(x,y) = f(T_d(x,y))$$



# 2x2 Linear Transformations



$$p_1 = (x_1, y_1)$$

$$p_2 = (x_2, y_2)$$

$$p_2 = Tp_1$$

$T$  can be represented by a matrix

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$



# Scaling (stretching or squishing)



Forward

$$x_2 = ax_1 \quad y_2 = by_1$$

Inverse

$$x_2 = \frac{1}{a}x_1 \quad y_2 = \frac{1}{b}y_1$$

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = S \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

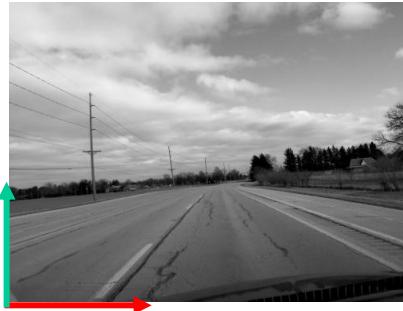
$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = S^{-1} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$



# 2D Rotation

$$x_1 = r \cos(\psi)$$

$$y_1 = r \sin(\psi)$$



Forward

Inverse

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = R \begin{bmatrix} x \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = R^{-1} \begin{bmatrix} x \\ y_1 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$



# 2x2 Matrix Transformations

Any transformation of the form:

$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$$

Examples: Scaling, rotation, skew, mirror

Properties

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Closed under composition

If  $p_2 = T_{21}p_1$ ,  $p_3 = T_{32}p_2$  then  $p_3 = T_{31}p_1$  where  $T_{31} = T_{32}T_{21}$



# Translation



Forward

$$x_2 = x_1 + t_x$$

$$y_2 = y_1 + t_y$$

Can a  $2 \times 2$  matrix express this transformation? No



# Homogeneous coordinates

The homogeneous representation of a 2D point  $p = (x, y)$  is a 3D point  $\tilde{p} = (\tilde{x}, \tilde{y}, \tilde{z})$ . The third coordinate  $\tilde{z} \neq 0$  is fictitious such that:

$$x = \frac{\tilde{x}}{\tilde{z}} \quad y = \frac{\tilde{y}}{\tilde{z}}$$

$$p \equiv \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{z}x \\ \tilde{z}y \\ \tilde{z} \end{bmatrix} \equiv \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \tilde{p}$$



# Translation



Forward

$$x_2 = x_1 + t_x$$

$$y_2 = y_1 + t_y$$

$$\begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$



# 3x3 Affine Transformations

Scaling

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Skew

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} 1 & m_x & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$



Translation

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Rotation

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Composition of Transformations

General form

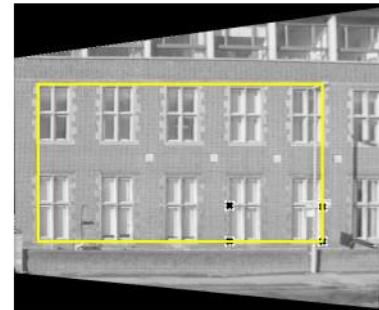
$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$



# Projective Transformations

General form

$$\begin{bmatrix} \tilde{x}_2 \\ \tilde{y}_2 \\ \tilde{z}_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \tilde{y}_1 \\ \tilde{z}_1 \end{bmatrix}$$



from Hartley & Zisserman

$H$  is called a homography

Origin does not necessarily map to origin

Lines map to lines

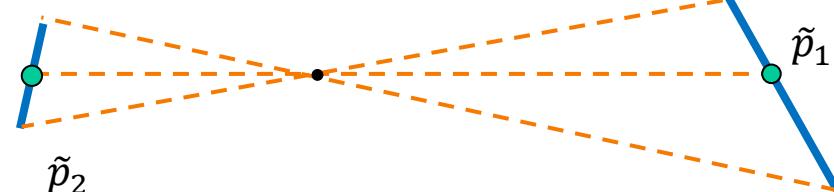
Parallel lines do not necessarily remain parallel

Closed under composition

Homographies are defined up to scaling

When  $h_{31} = h_{32} = 0, h_{33} = 1$ , it becomes **affine** homography

Plane P2



Point

Plane P1

