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Announcement

As requested by the TA: 

For preparation for the MP0 demo, have a screenshot of R3 (third 
initial set) plot ready. It should be using whatever function proves 
safety or unsafely for this scenario.

Check Campuswire for more details



Role of Perception in Autonomy
Perception module converts signals from the 

environment state estimates for the 
autonomous agent and its environment 

Examples of state estimates: 

• Type of lead vehicle, traffic sign

• Position of ego on the map, relative to the 
lane, distance to the leading vehicle

• Position of lead vehicle, speed, intention of 
the pedestrian

Types of estimates: 

• Semantic: E.g., type of vehicle, sign

• Geometric: E.g., position, speed

 



Problem

Reconstructing the 3D structure of the scene from images

Input: image with points in pixels

Output: position of objects in millimeters in world camera frame

We will develop a method to find camera’s internal and external 
parameters

Outline:

Linear Camera Model (Projection matrix)

Camera calibration 

Simple stereo



Background: rotation in 3D

https://www.youtube.com/watch?v=wg9bI8-Qx2Q

https://www.youtube.com/watch?v=wg9bI8-Qx2Q
https://www.youtube.com/watch?v=wg9bI8-Qx2Q
https://www.youtube.com/watch?v=wg9bI8-Qx2Q


Forward Imaging Model: 3D to 2D
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Forward Imaging Model: 3D to 2D
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World to camera Transformation (Extrinsic parameters)

ො𝑥𝑤

ො𝑦𝑤

Ƹ𝑧𝑤
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frame

World 
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framePinhole
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Position 𝑐𝑤 and the orientation 𝑅 of the camera in the world coordinate frame (W) are the camera’s 

Extrinsic Parameters

Rotation matrix 𝑅 =

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

→ row 1 is the direction of ො𝑥𝑐 in world coordinates, 2 for ො𝑦𝑐, …  

This is an orthonormal matrix, i.e., the row vectors or the column vectors are orthonormal

𝑅−1 = 𝑅𝑇  i.e., 𝑅𝑇𝑅 = 𝑅𝑅𝑇 = 𝐼
Proof: (𝑅𝑥)𝑇(𝑅𝑥) =  𝑥𝑇  𝑅𝑇𝑅𝑥 =  𝑥𝑇𝑥 (since rotation perseves length). So 𝑅𝑇𝑅 = 𝐼
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World to camera Transformation

ො𝑥𝑤

ො𝑦𝑤

Ƹ𝑧𝑤

𝑃
𝑥𝑤

ො𝑥𝑐

ො𝑦𝑐
Ƹ𝑧𝑐

Camera 

coordinate 

frame

World 

coordinate 

framePinhole

𝑐𝑤

𝑥𝑐

Position 𝑐𝑤 and the orientation 𝑅 of the camera in the world coordinate frame (W) are the 

camera’s Extrinsic Parameters

Given the extrinsic parameters (𝑅, 𝑐𝑤) of the camera, the camera-centric location of the 

point P in the world coordinate (w) is simply 𝑥𝑐 𝑤 = 𝑥𝑤 − 𝑐𝑤

In the camera coordinate (c) 𝑥𝑐 = 𝑅 𝑥𝑤 − 𝑐𝑤 = 𝑅𝑥𝑤 − 𝑅𝑐𝑤 = 𝑅𝑥𝑤 + 𝑡 𝑡 = −𝑅𝑐𝑤

𝑥𝑐 =

𝑥𝑐

𝑦𝑐

𝑧𝑐

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑥𝑤

𝑦𝑤

𝑧𝑤

+

𝑡𝑥

𝑡𝑦

𝑡𝑧

   𝑥𝑐 = 𝑅𝑥𝑤 + 𝑡
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Extrinsic Matrix

We have an affine transformation: 𝑥𝑐 = 𝑅𝑥𝑤 + 𝑡

Can we represent it as 𝑥𝑐 = 𝑀𝑥𝑤? No

We can introduce a new coordinate ෤𝑥𝑐 = ෤𝑥, ෤𝑦, ǁ𝑧, 1 𝑇

Now can we represent this as a matrix multiplication ෤𝑥𝑐 = 𝑀 ෤𝑥𝑤

 

෤𝑥𝑐 =

𝑥𝑐

𝑦𝑐

𝑧𝑐

1

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

0 0 0

 𝑡𝑥

 𝑡𝑦

 𝑡𝑧

1

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

𝑥𝑐 =

𝑥𝑐

𝑦𝑐

𝑧𝑐

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑥𝑤

𝑦𝑤

𝑧𝑤

+

𝑡𝑥

𝑡𝑦

𝑡𝑧
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World to camera Transformation (Extrinsic matrix)

ො𝑥𝑤
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Given the extrinsic parameters (𝑅, 𝑐𝑤) of the camera, the camera-centric location of the 

point P in the world coordinate is

𝑥𝑐 = 𝑅 𝑥𝑤 − 𝑐𝑤 = 𝑅𝑥𝑤 − 𝑅𝑐𝑤 = 𝑅𝑥𝑤 + 𝑡  𝑡 = −𝑅𝑐𝑤  

𝑥𝑐 =

𝑥𝑐

𝑦𝑐

𝑧𝑐

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑥𝑤

𝑦𝑤

𝑧𝑤

+

𝑡𝑥

𝑡𝑦

𝑡𝑧

 Using homogeneous coordinates 

෤𝑥𝑐 =

𝑥𝑐

𝑦𝑐

𝑧𝑐

1

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

0 0 0

 𝑡𝑥

 𝑡𝑦

 𝑡𝑧

1

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

 Extrinsic matrix 𝑀𝑒𝑥𝑡 ෤𝑥𝑐 = 𝑀𝑒𝑒𝑥𝑡  ෤𝑥𝑤 
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Geometry of Homogeneous coordinates (for 2D)

Affine transformation: xc = Rxw + t

How to represent this as ෤xc = M෤xw

The homogeneous representation of a 2D point 
𝑝 = 𝑥, 𝑦  is a 3D point ෤𝑝 = ෤𝑥, ෤𝑦, ǁ𝑧 . 

The third coordinate ෤z ≠ 0 is fictitious such that:

𝑝 = 𝑥, 𝑦  𝑥 =
෤𝑥

෤𝑧
 𝑦 =

෤𝑦

෤𝑧

𝑝 ≡
𝑥
𝑦
1

≡
ǁ𝑧𝑥
ǁ𝑧𝑦
ǁ𝑧

≡
෤𝑥
෤𝑦
ǁ𝑧

= ෤𝑝

Geometric interpretation: all points on the line L 
(except origin) represent homogeneous 
coordinate  𝑝(𝑥, 𝑦)

𝑥𝑐 =
𝑥𝑐

𝑦𝑐
=

𝑟11 𝑟12

𝑟21 𝑟22

𝑥𝑤

𝑦𝑤
+

𝑡𝑥

𝑡𝑦

𝑦

𝑥
𝑝(𝑥, 𝑦)

ǁ𝑧 = 1

ǁ𝑧

෤𝑦

෤𝑥

𝐿
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𝑝 ≡

𝑥
𝑦
𝑧
1

≡
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෥𝑤𝑦
෥𝑤𝑧
෥𝑤

≡

෤𝑥
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෩𝑧
෥𝑤

= ෤𝑝For 3D, homogeneous 
representation is 4D:



Forward Imaging Model: 3D to 2D
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Perspective imaging with pinhole
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Perspective imaging with pinhole
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𝒙𝑐 =
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Perspective projection of a line and magnification

𝑃

ො𝑥𝑐

ො𝑦𝑐
Ƹ𝑧𝑐

Image plane

Pinhole

𝑓
𝒙𝑐

A line in 3D gets mapped to a line in the image plane

𝑃′

𝒙𝑖

𝑓
=

𝒙𝒄

𝑧𝑐
⇒

𝑥𝑖

𝑓
=

𝑥𝑐

𝑧𝑐
, 

𝑦𝑖

𝑓
=

𝑦𝑐

𝑧𝑐

Exercise: Show that magnification  m =
𝑖𝑚𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
=

𝛿𝑥𝑖
2+𝛿𝑦𝑖

2

𝛿𝑥𝑜
2+𝛿𝑦𝑜

2
= |

𝑓

𝑧0
|

𝑥0, 𝑦0, 𝑧0

𝑥0 + 𝛿𝑥0, 𝑦0 + 𝛿𝑦0, 𝑧0
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𝒙𝑖

𝑥𝑖 , 𝑦𝑖

𝑥𝑖 + 𝛿𝑥𝑖 , 𝑦𝑖 + 𝛿 𝑦𝑖



Camera coordinates to image plane coordinates 
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=
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𝑓
=
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𝑦𝑐

Image 
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𝑥𝑖 = 𝑓
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 and 𝑦𝑖 = 𝑓

𝑦𝑐

𝑧𝑐
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Image plane to image sensor mapping

ො𝑦𝑖 (mm)

Image plane
Pixels may be rectangular

Let 𝑚𝑥 and 𝑚𝑦 be the pixel 

densities (pixels/mm) in x and 

y directions 

𝑥𝑖 = 𝑓
𝑥𝑐

𝑧𝑐
 and 𝑦𝑖 = 𝑓

𝑦𝑐

𝑦𝑐

𝑢 = 𝑚𝑥𝑓
𝑥𝑐

𝑧𝑐
+ 𝑜𝑥 and 𝑣 = 𝑚𝑦𝑓

𝑦𝑐

𝑧𝑐
+ 𝑜𝑦

𝑢 = 𝑓𝑥
𝑥𝑐

𝑧𝑐
+ 𝑜𝑥 and 𝑣 = 𝑓𝑦

𝑦𝑐

𝑧𝑐
+ 𝑜𝑦

ො𝑥𝑖 (mm)

𝑣 (pixels)

𝑢 (pixels)

Image sensor

𝑢 = 𝑚𝑥𝑓
𝑥𝑐

𝑧𝑐
 and 𝑣 = 𝑚𝑦𝑓

𝑦𝑐

𝑧𝑐

(𝑜𝑥, 𝑜𝑦) Principle point

Intrinsic parameters: 𝑓𝑥 , 𝑓𝑦, 𝑜𝑥 , 𝑜𝑦
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Nonlinear to linear model using homogeneous coordinates

Use homogeneous representation of 𝑢, 𝑣  as a 3D point ෤𝑢 = ( ෤𝑢, ෤𝑣, ෥𝑤)

𝑢𝑧𝑐 = 𝑓𝑥𝑥𝑐 + 𝑜𝑥𝑧𝑐 and 𝑣𝑧𝑐 = 𝑓𝑦 𝑦𝑐 + 𝑜𝑦𝑧𝑐

𝑢𝑧𝑐 , 𝑣𝑧𝑐 , 𝑧𝑐 ≡ (𝑢, 𝑣, 1)

𝑢 ≡
𝑢
𝑣
1

≡

𝑧𝑐𝑢
𝑧𝑐𝑣
𝑧𝑐

=
𝑓𝑥𝑥𝑐 + 𝑧𝑐𝑜𝑥

𝑓𝑦𝑦𝑐 + 𝑧𝑐𝑜𝑦

𝑧𝑐

=
𝑓𝑥 0 𝑜𝑥 0
0 𝑓𝑦 𝑜𝑦 0

0 0 1 0

𝑥𝑐

𝑦𝑐
𝑧𝑐

1
Linear model of perspective projection ෤𝑢 = 𝐾 0 ෤𝑥𝑐 = 𝑀𝑖𝑛𝑡 ෤𝑥𝑐 

Intrinsic matrix (𝑀𝑖𝑛𝑡)

Calibration matrix 𝐾 (upper right triangular)

𝑢 = 𝑓𝑥
𝑥𝑐

𝑧𝑐
+ 𝑜𝑥 and 𝑣 = 𝑓𝑦

𝑦𝑐

𝑧𝑐
+ 𝑜𝑦
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Forward Camera Model

Camera to pixel

෤𝑢
෤𝑣
෥𝑤

=
𝑓𝑥 0 𝑜𝑥 0
0 𝑓𝑦 𝑜𝑦 0

0 0 1 0

𝑥𝑐

𝑦𝑐
𝑧𝑐

1

෤𝑢 = 𝑀𝑖𝑛𝑡 ෤𝑥𝑤 

෤𝑢 = 𝑀𝑖𝑛𝑡 𝑀𝑒𝑥𝑡 ෤𝑥𝑤 = 𝑃 ෤𝑥𝑤 

෤𝑢
෤𝑣
෥𝑤

=

𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤

𝑦𝑤
𝑧𝑤

1
P: Projection matrix

World to camera
𝑥𝑐

𝑦𝑐

𝑧𝑐

1

=

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

0 0 0

 𝑡𝑥

 𝑡𝑦

 𝑡𝑧

1

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

෤𝑥𝑐 = 𝑀𝑒𝑥𝑡 ෤𝑥𝑤 



Camera Calibration Procedure

Step 1. Capture image of object with known geometry

known geometry object

(world coordinate)

ො𝑥𝑤

ො𝑦𝑤

𝑢

𝑣

captured image

(pixel coordinate)

𝒙𝑊 =

𝑥𝑤

𝑦𝑤

𝑧𝑤

 𝒖 =
𝑢
𝑣



Camera Calibration

Step 3. For each point i in the scene and the image we get a linear 
equation

𝑢(𝑖)

𝑣(𝑖)

1

=

𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤
(𝑖)

𝑦𝑤
(𝑖)

𝑧𝑤
(𝑖)

1

Step 4. Collecting many 𝑢(𝑖) =
𝑝11𝑥𝑤

(𝑖)
 + 𝑝12𝑦𝑤

(𝑖)
+ 𝑝13𝑧𝑤

(𝑖)
+𝑝14

𝑝31𝑥𝑤
(𝑖)

 + 𝑝32𝑦𝑤
(𝑖)

+ 𝑝33𝑧𝑤
(𝑖)

+𝑝34

 points (same for 𝑣(𝑖)) and 

rearranging p as a vector we get 𝐴𝒑 = 0

 e.g., 𝑝11𝑥𝑤
(𝑖)

 +  𝑝12 𝑦𝑤
(𝑖)

+  𝑝13 𝑧𝑤
(𝑖)

+ 𝑝14 − 𝑝31𝑥𝑤
𝑖

𝑢 𝑖 −  𝑝32 𝑢 𝑖 𝑦𝑤
𝑖

− 𝑝33 𝑢 𝑖 𝑧𝑤
𝑖

− 𝑝34𝑢(𝑖) = 0 is one 
row of this equality

Step 5. Solve for p



Projection matrix scale

Since projection matrix works on homogeneous coordinates
෤𝑢
෤𝑣
෥𝑤

≡ 𝑘
෤𝑢
෤𝑣
෥𝑤

Therefore

𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤

𝑦𝑤
𝑧𝑤

1

= 𝑘

𝑝11 𝑝12 𝑝13 𝑝14

𝑝21 𝑝22 𝑝23 𝑝24

𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤

𝑦𝑤
𝑧𝑤

1

Therefore, Projection Matrices P and kP produce the same homogenous pixel 
coordinates

Projection matrix is defined only upto a scale factor

Scaling the world and the camera will produce indistinguishable images

That is , we can only find the projection matrix up to scale; we choose  𝒑 = 𝟏



Least Squares Solution for Projection Matrix

We want 𝐴𝒑 as close to 0 as possible and 𝒑
2

= 1

min
𝒑

𝐴𝒑
𝟐

 such that 𝒑
2

= 1 

min
𝒑

𝒑𝑻𝐴𝑇𝐴𝒑
𝟐

 such that 𝒑𝑻𝒑 = 1

𝐿 𝒑, 𝜆 = 𝒑𝑻𝐴𝑇𝐴𝒑 − 𝜆(𝒑𝑻𝒑 − 1)

Taking derivative 
𝜕𝐿

𝜕𝒑
= 0 gives 2𝐴𝑇𝐴𝒑 − 2𝜆𝒑 = 𝟎

𝐴𝑇𝐴𝒑 = 𝜆𝒑

𝒑 is the Eigenvector corresponding to the smallest eigenvalue of 𝐴𝑇𝐴

Rearrange 𝒑 to get the projection matrix P



Homography

Image transformations

2x2 transformations

3x3 transformations 

Computing homography

Dealing with outliers RANSAC



Image manipulation

Image filtering: Change range (e.g., brightness)

 g(x,y) = Tr(f(x,y))

Image warping: Change domain (e.g., rotation)

 g(x,y) = f(Td(x,y))

detailoriginal

Tr

original



2x2 Linear Transformations

𝑝2 = 𝑇𝑝1

𝑇 can be represented by a matrix

𝑥2

𝑦2
=

𝑎11 𝑎12

𝑎21 𝑎22

𝑥1

𝑦1

𝑝1 =  (𝑥1, 𝑦1) 𝑝2 =  (𝑥2, 𝑦2)



Scaling (stretching or squishing)

Inverse

𝑥2 =
1

𝑎
𝑥1 𝑦2 =

1

𝑏
𝑦1

𝑥1

𝑦1
= 𝑆−1

𝑥1

𝑦1
=

1

𝑎
0

0
1

𝑏

𝑥2

𝑦2

Forward
𝑥2 = 𝑎𝑥1 𝑦2 = 𝑏𝑦1

𝑥2

𝑦2
= 𝑆

𝑥1

𝑦1
=

𝑎 0
0 𝑏

𝑥1

𝑦1



2D Rotation

𝑥1 = 𝑟 𝑐𝑜𝑠 𝜓
𝑦1 = 𝑟 𝑠𝑖𝑛 𝜓

Forward

𝑥2

𝑦2
= 𝑅

𝑥
𝑦1

=
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

𝑥1

𝑦1

Inverse

𝑥1

𝑦1
= 𝑅−1

𝑥
𝑦1

=
cos 𝜃 sin 𝜃

−sin 𝜃 cos 𝜃

𝑥2

𝑦2



2x2 Matrix Transformations

Any transformation of the form:

𝑥2

𝑦2
=

𝑎11 𝑎12

𝑎21 𝑎22

𝑥1

𝑦1

Examples: Scaling, rotation, skew, mirror

Properties

• Origin maps to origin

• Lines map to lines

• Parallel lines remain parallel

• Closed under composition

If 𝑝2 = 𝑇21𝑝1, 𝑝3 = 𝑇32𝑝2 then 𝑝3 = 𝑇31𝑝1 where 𝑇31 = 𝑇32𝑇21



Translation

Forward
𝑥2 = 𝑥1 + 𝑡𝑥

𝑦2 = 𝑦1 + 𝑡𝑦

Can a 2x2 matrix express this 
transformation? No



Homogeneous coordinates

The homogeneous representation of a 2D point 𝑝 = 𝑥, 𝑦  is a 3D 
point ෤𝑝 = ෤𝑥, ෤𝑦, ǁ𝑧 . The third coordinate ǁ𝑧 ≠ 0 is fictitious such 
that:

𝑥 =
෤𝑥

෤𝑧
 𝑦 =

෤𝑦

෤𝑧

𝑝 ≡
𝑥
𝑦
1

≡
ǁ𝑧𝑥
ǁ𝑧𝑦
ǁ𝑧

≡
෤𝑥
෤𝑦
ǁ𝑧

= ෤𝑝



Translation

Forward
𝑥2 = 𝑥1 + 𝑡𝑥

𝑦2 = 𝑦1 + 𝑡𝑦

𝑥2

𝑦2

1
≡

෤𝑥2

෤𝑦2

ǁ𝑧2

=
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

𝑥1

𝑦1

1



3x3 Affine Transformations

Scaling    Skew

෤𝑥2

෤𝑦2

ǁ𝑧2

=
𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

𝑥1

𝑦1

1
  

෤𝑥2

෤𝑦2

ǁ𝑧2

=
1 𝑚𝑥 0
0 1 0
0 0 1

𝑥1

𝑦1

1

Translation   Rotation 

෤𝑥2

෤𝑦2

ǁ𝑧2

=
1 0 𝑡𝑥

0 1 𝑡𝑦

0 0 1

𝑥1

𝑦1

1
  

෤𝑥2

෤𝑦2

ǁ𝑧2

=
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

𝑥1

𝑦1

1

Composition of Transformations

General form  
෤𝑥2

෤𝑦2

ǁ𝑧2

=
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1

𝑥1

𝑦1

1



Projective Transformations

General form  
෤𝑥2

෤𝑦2

ǁ𝑧2

=

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

෤𝑥1

෤𝑥2

෤𝑥3

 ෤𝑝2 = 𝐻 ෤𝑝1

𝐻 is called a homography

Origin does not necessarily map to origin

Lines map to lines

Parallel lines do not necessarily remain parallel

Closed under composition

Homographies are defined up to scaling

When ℎ31 = ℎ31 = 0, ℎ33 = 1, it becomes affine homography

෤𝑝1

෤𝑝2

Point Plane P1
Plane P2
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