ECE 484: Principles of Safe Autonomy (Fall 2025)
Lectures 5

Perception: Reconstructing 3D world from images
(Part 1)

Professor: Huan Zhang
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Announcement

As requested by the TA:

For preparation for the MPO demo, have a screenshot of R3 (third
initial set) plot ready. It should be using whatever function proves
safety or unsafely for this scenario.

Check Campuswire for more details



Role of Perception in Autonomy

Perception module converts signals from the
environment state estimates for the
autonomous agent and its environment

Examples of state estimates:
* Type of lead vehicle, traffic sign

e Position of ego on the map, relative to the
lane, distance to the leading vehicle

* Position of lead vehicle, speed, intention of
the pedestrian

Types of estimates:
 Semantic: E.g., type of vehicle, sign
 Geometric: E.g., position, speed
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Problem

Reconstructing the 3D structure of the scene from images

Input: image with points in pixels
Output: position of objects in millimeters in world camera frame

We will develop a method to find camera’s internal and external
parameters

Outline:

Linear Camera Model (Projection matrix)
Camera calibration

Simple stereo



Background: rotation in 3D
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https://www.youtube.com/watch?v=wqg9bl8-Qx2Q
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Forward Imaging Model: 3D to 2D
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Forward Imaging Model: 3D to 2D

Image plane Pinhole o

SR B , .
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World to camera Transformation (Extrinsic parameters) World

coordinate
Camera Pinhole p y» frame
' ~ X
coordinate 9. Xc w 2,
_

frame 2
. c /
; Zw
X

c

Position c,, and the orientation R of the camera in the world coordinate frame (W) are the camera’s
Extrinsic Parameters

1 Tz T3
Rotation matrix R = [7‘21 22 7‘23] — row 1 is the direction of X, in world coordinates, 2 for y., ...
31 T32 133

This is an orthonormal matrix, i.e., the row vectors or the column vectors are orthonormal
R 1'=RTie.,RTR=RRT =1
Proof: (Rx)T(Rx) = xT RTRx = xTx (since rotation perseves length). So RTR =1
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World
coordinate

Camera Pinhole p 9, frame
coordinate Xc e Xy .
xW

frame

World to camera Transformation

o)

Zc

Xc
Position c,, and the orientation R of the camera in the world coordinate frame (W) are the

camera’s Extrinsic Parameters
Given the extrinsic parameters (R, c,,) of the camera, the camera-centric location of the

point P in the world coordinate (w) is simply (x.),, = x,, — ¢,
In the camera coordinate (c) = Rx,, — Rc,, = Rx,, +t t = —Rcy,
Xc "1 T2 T3] [Xw Ly
Xe = |Ve| = |T21 T22 T23||Iw|+ |y Xc = Rxy, +t
Zc 31 T3z 133ll2w t;
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Extrinsic Matrix

Xc

Ye
Zc

Xw

Yw
Zyw

1 Ti2 T3
21 T2 T23
31 T32 T33

+

Xe =

bx
ty]
ty

We have an affine transformation: x, = Rx,, +t

Can we represent itas x, = Mx,,? No

We can introduce a new coordinate X, = [%, ¥, Z, 1]7

Now can we represent this as a matrix multiplication X, = MX,,

Xc
Ye

"2 T3 x| [Xw
22 T3ty || Vw
32 71331,||%w
0 0 1111
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World to camera Transformation (Extrinsic matrix) World

coordinate
Camera Pinhole vy, frame
coordinate

P L
A X Xy .
Y < %
frame / W
. o /
Zw

Zc

Xc

Given the extrinsic parameters (R, c¢,,) of the camera, the camera-centric location of the
point P in the world coordinate is

x. = R(x,, —c,) = Rx,, — Rc,, = Rx,, +t

t = —Rcy,
Xc "1 Tiz T3] [Xw]  [ix
Xe = |Ye| = [7”21 22 T23||Yw| + |ty | Using homogeneous coordinates
Z 31 T32 1331 12w L,

C
X 11 Tz T3 ] [Xw
~ T T o3 € .. . ~ ~
%, = | 21 T2 723 % | W Extrinsic matrix M,,, X, = M,y %,
Z 31 132 133 0,||%Zw
1

0 0 O011l1
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Geometry of Homogeneous coordinates (for 2D)

Affine transformation: x. = Rx,, + t _[ ]_ [21 22” ]+ [i;]
How to represent this as X. = MX,,

The homogeneous representation of a 2D point
p = (x,y) isa 3D pointp = (X, ¥, Z). Y

The third coordinate Z # 0 is fictitious such that: Z=1 >y
g
x /. pEY)
/

p=My) x=y=

AP
N
o~

<

_ ~2’ 7 1
X zZX X [~ )
p = y]E Zy]E?=ﬁ Y
1 Z Z X
Geometric interpretation: all points on the line L .
.. X
(except origin) represent homogeneous For 3D, homogeneous » = y ‘ |5
coordinate p(x,y) representation is 4D: Z szr,
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Forward Imaging Model: 3D to 2D

Image plane Pinhole , B
/ f > 5 Xc Xw A~
¢ Ve 2,
& 2, SR
SRR P, Ja D ==== Cuy /
- _ Camera 2, World
X . .
/ ¢ coordinate coordinate
frame C frame W
Image
coordinates
frame

Xc

Xw
Ye| | <GoEptl Xyw — lYW]
Z Zyy

_ [*
Xi = [3’1'] {sp2p | Xc
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Perspective imaging with pinhole

Image plane

a0 optical axis
P”]/ ' ? i

f: Effective focal length
Xc Xi
Xc=|Ye| x;=1|Vi

Ze f
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Perspective imaging with pinhole

Xc
Image plane X, = [yc]
Zc P
/ Xc 2
optical axis
P'y
f: Effective focal length
Xe X Xi Xc
X, = Ve Xi = Vi = zﬁ:ﬁ Yi _ Ve
f Z¢c f zc' f Zc
Zc f
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Perspective projection of a line and magnification

Image plane

el

X, Vi

image length

P
f Xo + 6%, Vo + 6o, Zo

Exercise: Show that magnification |m| =

actual length -

/le-2+6yl-2 f
/6x3+6y§ Z0
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Camera coordinates to image plane coordinates

Image plane Pinhole Yw

T "7 e s T Cw
“I;' _ Camera >/2W World

Xi / Xc Coordinate Coordinate
Image

coordinates

frame

Perspective = — = — and Yi— e mm) | X; = f=andy;, = f=
jecti f z fy z z
projection ¢ c c c
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Image plane to image sensor mapping

Pixels may be rectangular

Image plane Image sensor Let m, and m,, be the pixel
densities (pixels/mm) in x and
y directions

£, (mm) u (pixels)

(0x, 0,) Principle point

v (pixels
X; = f_ and y; = Yc (p )
Yc
X
u—mxf—andv—myfyc u=mxf—c+0xandv=myf&+oy
w \/N—o ZC ZC

u= fx o + Ox and v = fy 7 + Oy Intrinsic parameters: /., /,, 0., 0,
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Nonlinear to linear model using homogeneous coordinates

u—fx +oxandv—fy + o,

Use homogeneous representation of (u, v) as a 3D point ii = (@i, U, W)
Uz; = fyxc + 0xzc and vz, = f,, y. + 0y 2,
(uz., vz, z:) = (u,v1)

fyyc+zcoy =10 f, 0,0 ZE

0 0 0]]1

Linear model of perspective projection @i = [K|0]X, = M;,:X,

u_v

I ] fxe+zc00|  [fe 0 ox| O][*

Intrinsic matrix (M;,,;)
Calibration matrix K (upper right triangular)
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Forward Camera Model
World to camera

Camera to pixel
u fx 0 oy 0] [*c] Xc "1 Tz 113 L] [Xw)
[’7] =10 f, o, O ﬁc Yel = T2t T2z T2z lyf|Dw
w o 0o 1 ol Zc 31 732 73317 [%w
_ 101 _1_ _O 0 01__1_
U = Mint Xw jzc — Mext fW
U= Mint Mext fW =P XW _
u P11 Pz P13z Pul[ ¥
[1’7] = [P21 P22 D23 p24] %/W
W P31 P32 P33 P34 i iy

P: Projection matrix

.



Camera Calibration Procedure

Step 1. Capture image of object with known geometry

u
r—p
1%
/
—_—
Xw  known geometry object .
(world coordinate) captured 'mage
X (pixel coordinate)
u
® % = | Ou=|)
ZW




Camera Calibration

Step 3. For each pointiin the scene and the image we get a linear

equation
| e
u® P11 P12 P13 Pu]|
v =1|P21 P2z P23 Daa||Iw
1 P31 P32 P33 P34 ZV(VL)
| 1
) Q) Q) )
Step 4. Collecting many u® = p“xz‘;) i plzyv(‘;;r ”13zv(vi)+”1‘*
pP31Xy," +D32Yy, + D332, +D34
rearranging p as a vector we get Ap =0

e.g., p11xv(vl) + P12 yv(vl) + P13 Zv(vl) + D1a — P31x\$

row of this equality

Step 5. Solve for p

"u® — pyyu®yg

@

) — pyzu®z

)

w

points (same for v) and

— pa3,u® = 0is one



Projection matrix scale

Since projection matrix works on homogeneous coordinates

o=+l

Xw Xw

! 0

Therefore

P11 P12 P13 Pisa P11 Piz P13 DPia
P21 P22 P23 D24 ;,W =k [P21 P22 P23 P24] ;]W
P31 P32 P33 P3sa {V P31 P32 P33 D34 i”

Therefore, Projection Matrices P and kP produce the same homogenous pixel
coordinates

Projection matrix is defined only upto a scale factor
Scaling the world and the camera will produce indistinguishable images

That is, we can only find the projection matrix up to scale; we choose ||p|| =1



Least Squares Solution for Projection Matrix

2
We want Ap as close to 0 as possible and ||p|| =1

mpin||Ap||2 such that ||p||2 =1

2
min “pTATAp” such that p'p = 1
p
Lip, ) =p"A"Ap - A(p'p— 1)
Taking derivative S—; = 0 gives 2ATAp —2Ap =0

ATAp = 2p

p is the Eigenvector corresponding to the smallest eigenvalue of AT A

Rearrange p to get the projection matrix P



Homography

Image transformations

2x2 transformations

3x3 transformations
Computing homography
Dealing with outliers RANSAC



Image manipulation

Image filtering: Change range (e.g., brightness)
g(x,y) = Tr(f(x,y))

Image warping: Change domain (e.g., rotation)
g(x,y) = f(Td(x,y))




.

2x2 Linear Transformations

P2 =Tp,
T can be represented by a matrix

val =lass asal by

p1 = (X1,¥1)

P2 = (x2,¥2)




Scaling (stretching or squishing)

Inverse

1 1
Xy = Ex1 Y2 = EYl

Forward
X, = ax; Yy, = by,

vl =shal = Bl s

o alk

. 2

Sk O

X2
Y2

|




2D Rotation

x; =1 cos(y)
y1 =1 sin(y)

Forward Inverse
5 ] 4 e it o B 6 ol Y B A 1 94

.




2x2 Matrix Transformations

Any transformation of the form:

xz] _ [a11 a12] [x1]

Y2 Az1 A2l 1)1

Examples: Scaling, rotation, skew, mirror

Properties

* Origin maps to origin

* Lines map to lines

* Parallel lines remain parallel

* Closed under composition

If p2 = T2101, D3 = T32p2 then pz = T31p; where T3y = T3T>,



.

Translation

Forward
Xy = Xq + tx
Y2 =Y1t 1y

Can a 2x2 matrix express this
transformation? No




Homogeneous coordinates

The homogeneous representation of a 2D point p = (x,y) isa 3D
point p = (X, ¥, Z). The third coordinate Z # 0 is fictitious such
that:

2=l

b
e
1




Translation

Forward

Xy = X1 + T,

Y2 =Y1t 1y

Xy X 1 0 ¢t,0[x
y2| = |72 =[0 1 ty] Y1
1 Zy o o 1/L1

.




3x3 Affine Transformations

Scaling Skew

fz Sy 0 0 1 mx 0 X1

Vo| = [0 sy Of|y1 [ ‘ [ O‘ [3’1

Z; o o 1llL1 1111
Translation Rotation

Xy 1 0 t][x cos® —sinf 0][x;
y21=10 1 t,||n = sm9 cos@® Of[y:
Z; 0 o 1111 0 111

Composition of Transformations

X2 ai; A2 Qi3] X1
General form |V, | =|ax1 azy axs3| |1
Z, 0 0 1 1




Projective Transformations Mhree .. a4

R

X7 hiy hip hiz|[X
General form |V, = |ha1 haa  hy3
Zy hz; hszz; hss

H is called a homography

Origin does not necessarily map to origin

Lines map to lines
Parallel lines do not necessarily remain parallel

Closed under composition

Homographies are defined up to scaling

When h3; = h3; = 0, h33 = 1, it becomes affine homography

(o
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