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Announcements
• Check CampusWire daily! Important announcements will be 

posted there.
• Fill out the form to create groups by 11:59 pm CT Friday (9/5)
• There have been students who keep requesting access, and it's 

because they need to activate their Illinois Google account



Review: How does an autonomous vehicle work?
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Role of Perception in Autonomy
Perception module converts signals from the 

environment to state estimates for the 
autonomous agent and its environment 

Examples of state estimates: 
• Type of lead vehicle, traffic sign
• Position of ego on the map, relative to the 

lane, distance to the leading vehicle
• Position of lead vehicle, speed, intention of 

the pedestrian
Types of estimates: 
• Semantic: E.g., type/class of vehicle, sign
• Geometric: E.g., position, speed

PerceptionSensors Planning 
& Control

Actuation



Image classification problem



Goal: Learn a function that predicts the object in an image

Apply a prediction function to a representation of the image to 
get the desired output:

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”



Statistical learning framework: Train classifier from training data

y = f(x)

Training: given a training set of labeled examples 
{(x1,y1), …, (xN,yN)}, estimate the prediction function f by minimizing the prediction 
error on the training set

Validation: tune (hyper)parameters in f, learning rate
Testing: apply f to a never before seen test data x and output predicted value y = f(x)

output prediction 
function

feature 
representation



Outline
Linear classifiers 
Neural networks
• Universal approximators
• Forward pass
• Backpropagation; Gradient descent
• Common neural network architectures
• *Exploding and vanishing gradients
Best practices



Prediction

Training 
Labels

Training 
Images

Training

Training

Image 
Features

Image 
Features

Testing

Test Image

Learned 
model

Learned 
model

Slide credit: D. Hoiem



Linear classifiers

Find a linear function (w,b) to separate the classes:

f(x) = sgn(w  x + b)

If interested, read Support 
vector machines (SVM) 
https://greitemann.dev/svm-
demo 

Images or feature 
representation of 
images

Read more about SIFT, HOG, bag of 
visual words to learn more about 
image features.

https://greitemann.dev/svm-demo
https://publish.illinois.edu/safe-autonomy/files/2020/09/Fall20-Lecture5_recognition.pdf


Visualizing linear classifiers with many classes

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/


Limitations of Linear Classifiers

• How to address this limitation and build more 
practical verifiers?
• How about “stacking” multiple linear functions? Will that work?
• Is just using linear functions enough?

• Input: A feature vector � ∈ ℝ�.
• Weights and bias: � ∈ ℝ� , � ∈ ℝ.
• Prediction (binary classification example): � = ��� + � 
• Limitations: Linear decision boundaries may not capture 

complex relationships between classes



Nonlinearity via Neural Networks
A neural network is a function ���: ℝ� → ℝ� defined as a composition 
of layers of linear and nonlinear transformations.

Simple 2-layer network with one hidden layer and input � ∈ ℝ�

• � = � � 1 � + � 1  (hidden layer)

• � = � 2 � + � 2   (output layer)
� = � 2 � � 1 � + � 1  + � 2 

� 1 ∈ ℝ�×� � 2 ∈ ℝ�×�,  for m of hidden units are the weights
� 1 ∈ ℝ� � 2 ∈ ℝ� are the biases

�: Activation function e.g. 푅푒�� � =max  �, 0 ,  푠푖푔��푖� � = ��

1+��

Example  k=2 for lane boundary parameters, k=6 for pose components

� �
�

� 1 � 2 

Multi-Layer 
Perceptron (MLP)



Activation functions and their derivatives

푅푒�� � =max  �, 0  �푅푒�� � 
��

= {0,1

� � = ��

1+��  �′ � = � �  1 − � �  

“Rectified linear unit”



Universal Approximation Theorem [Cybenko, G. 1989]
Any continuous function � on a compact domain can be 

approximated to arbitrary precision with a  sufficiently 
large (but finite) single-hidden-layer feedforward 
network with a suitable activation function.

• �can be approximated arbitrarily by a sum of towers
• A tower function can be represented by a network with 

a single hidden layer (think of large w and b)
• Sum of towers can be created by adding more 

elements in the hidden layer
Neural networks are expressive enough to infer complex 

state estimates from raw pixels

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal 
function." Mathematics of Control, Signals and Systems, 2(4), 303–314. 

https://www.youtube.com/watch?v=Ijqkc7OLenI



Neural Network Forward Propagation
For a given input �:

• Compute hidden layer pre-activation:  � 1 = � 1 � + � 1 .
• Apply activation: � = � � 1  .
• Compute output layer: � = � 2 � + � 2 .

This results in a prediction �​, e.g.:
• For lane estimation: � ∈ ℝ�×�if predicting per-pixel 

segmentation, �� � ∈ ℝ� if predicting lane embedding.
• For 6DOF pose: � ∈ ℝ6, representing  �, �, �, �, �, �  or other 

parameterization of rotation and translation.

�
�

�3,4
 1 �4,2

 2 

� 1 � 1 



Backpropagation and Gradient-Based Training
Loss Function: A scalar function � �, �  measures how well predictions 

match the ground truth �. (lower is better)

For lane segmentation (classification per pixel) cross-entropy loss

� =− 1
�
 푖=1

� [�� log  �� +  1 − �� log  1 − �� ], �� ∈ {0,1} �� ∈ [0,1]

For pose regression, L2 distance:  � = 1
�
 푖=1

� |�� − �� ​|22

The loss function (L) function is minimized during training by changing the 
weights (W) and the biases (b) of the neural network (f) using back 
propagation + gradient descent

� W 

W

��
��



Backpropagation and Gradient-Based Training

 � 1 = � 1 � + � 1 

� = � � 1  
� = � 2 � + � 2 

For pose regression:  � = 1
�
 푖=1

� |�� − �� ​|22

Computing Gradients (Backprop):

• We compute ��
�� 2  , 

��
�� 2  , 

��
�� 1  , 

��
�� 1  using chain rule

• For example: ��
�� 2 =

��
��

 ��
�� 2  

Gradient Descent Update: With learning rate �

� � ≔ � � − � ��
�� � ,  � � ≔ � � − � ��

�� � 

� W 

W

��
��

�

� 1 

�

� 1 



 ��
��

 is a vector with two elements:  ��
��1

,  ��
���

 
��
��1

=  �1 − �� ,    
��
���

=  �2 − �� 

 

Example:  � = 1
2
[ �1 − �� � +  �2 − �� �], solve ��

��



� =  �1
�2

 =  �11ℎ1 + �12ℎ2 + �13ℎ3 + �1
�21ℎ1 + �22ℎ2 + �23ℎ3 + �2

 

Number of elements in  ��
��

: 2 × 2 × 3   (two outputs, 2 × 3 elements in W)

For simplicity, we can “vectorize” W into a vector with 6 elements. Then we calculate 
the 2x6 Jacobian matrix:

��
�vec � 

=  

��1
��11

��1
��12

��1
��13

��2
��11

��2
��12

��2
��13

    

��1
��21

��1
��22

��1
��23

��2
��21

��2
��22

��2
��23

  

 =  ℎ1 ℎ2 ℎ3
0 0 0     0 0 0

ℎ1 ℎ2 ℎ3
     

Exercise:  � = �� + � 2 , solve ��
��

Abusing the notation a little bit for simplicity - 
we can call this ��

��



Finally, ��
�� 2 =

��
��

��
�� 2   = [�1 − ��, �2 − ��]  

ℎ1 ℎ2 ℎ3
0 0 0     0 0 0

ℎ1 ℎ2 ℎ3
 

 

Shape 1x6

Shape 1x2 Shape 2x6



 � 1 = � 1 � + � 1 

� 1 = 푅푒�� � 1  
� = � 2 � + � 2 

 Now how about ��
�� 1 ? How many elements in this gradient? 

 ��
�� 1 =

��
��

��
�� 1 

�� 1 

�� 1 
�� 1 

�� 1 

Exercises:
1. What is the shape of each Jacobian matrix?

2. What is ��
 1 

�� 1 
? 

�

� 1 

�

� 1 

1x2, 2x4, 4x4, 4x(4x3)

A Diagonal matrix with 0 or 1 on its diagonal, depending 
on the value of z(1) during forward propagation



NN architectures
In the above example, we used a simple matrix W in neural network: 
 � 1 = � 1 � + � 1 

� = � � 1  
� = � 2 � + � 2 

� 1 � + � 1  is called a fully-connected (FC) layer, and a neural network 
with multiple layers of FC layers with nonlinear function is called a 
“Multilayer perceptron” (MLP) network

32*32*3 pixels

flatten

column vector with 
3072 elements MLP

prediction
score “apple” = 0.8

score “orange” = 0.1
...

flatten



NN architectures: convolutional layers
Fully connected layer � 1 � + � 1  can be replaced by other linear or 

nonlinear operators.
For images, flatten then into a 1-d vector may not be ideal - we lose the 
spacial insight of the input.

Layers that are often used in NNs for perception:
1. Convolutional layers
2. Pooling layers (maxpool, avgpool)
3. Transposed convolution layers
4. Normalization layers
5. Dropout
...



NN architectures: convolutional layers
The convolution operator instead operate on a 1D, 2D, or 3D inputs directly, focusing on 
input features that are sptially adjacent
“Kernel” or “filter” K replaces the weights W
Typically, spatial dimension is reduced after convolution

� (5x5) � (3x3) � ∗ �  3�3 

https://www.analytixlabs.co.in/blog/convolutional-neural-network/



NN architectures: convolutional layers
The convolution operator instead operate on a 1D, 2D, or 3D inputs directly, focusing on 
input features that are sptially adjacent
“Kernel” or “filter” K replaces the weights W
Typically, spatial dimension is reduced after convolution

� (5x5) � (3x3) � ∗ �  3�3 

https://www.analytixlabs.co.in/blog/convolutional-neural-network/



https://developersbreach.com/convolution-neural-network-deep-learning/

Convolutional layers with stride and padding

 (how many columns/rows to skip when moving the kernel) (how many extra rows/columns of 
zeros added to all sides of inputs)

=1



Image from https://www.mdpi.com/2072-4292/11/19/2220

Convolutional layers with dilation



Input dimension: 6x6x3
Kernel (filter) size:  3*3*3
Output channel: 2
Stride: 1
Padding: 0 

Convolutional layers with multiple input channels and 
output channels

HW: given input dimension, kernel size, stride, padding, dilation, calculate output dimension



Transposed convolution

https://viso.ai/deep-learning/convolution-operations/

• Transposed convolution can increase the spatial dimension (2x2 -> 3x3 in this example)
• Useful for upsampling 



Pooling layers

https://developersbreach.com/convolution-neural-network-deep-learning/

• Pooling parameters: kernel size, stride, padding (typically, kernel size = stride)
• Pooling layer has no parameters to learn (it is a fixed operation)
• Average pooling is a special case of convolution (why?)

Take max of all numbers 
in the 2x2 square of the 

same color

Take the average of all 
numbers in the 2x2 

square of the same color



Batch normalization

Normalized

unnormalized

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-
b18919692739/
Read about different types of normalization layers: https://arxiv.org/pdf/1803.08494

mean and average calculated 
using activations during 

training

Further learnable scale 
and shift is optional

• Simple idea: let the network always processes features that have zero 
mean and a variance of 1, so normalize the features



Dropout

https://www.kaggle.com/code/ryanholbrook/dropout-and-batch-normalization

• During training, randomly remove some connections in the NN
• Avoid learning spurious patterns in training data, and tend to obtain a 

more robust and generalizable NN
• During testing, no neuron is removed and Dropout becomes identity



More general NN architecutres

Inception-v3 U-Net

ResNet (residual network)



Vanishing gradient problem
Consider MLP with:
• Input � ∈ ℝ�

• 3 hidden layers, each with sigmoid.
• 1 output � ∈ ℝ for a regression or binary classification.
That is
1. � 1 = � 1 � + � 1 ∈ ℝ�

2. � 1 = � � 1         ∈ ℝ�

3. � � = � � � �−1 + � � ∈ ℝ�, 푖 = 2,3,4

4. � � = � � 푖      ∈ ℝ�, 푖 = 2,3

5. � = � � 4    ∈ ℝ�

Loss L = 1
2
 � − � 2



As the number of layers increase gradient can vanish

��
�� 4 =

��
��

��
�� 4 =  � − � 

��
�� 4 =  � − � � 1 − � 

��
�� 3 =

��
�� 4 

�� 4 

�� 3 =  � − � � 1 − � .� 4 

��
�� 3 =

��
�� 3 

�� 3 

�� 3 =  � − � � 1 − � .� 4 ⊙ �′ � 3  
��

�� ℓ =
��

�� ℓ+1 �
ℓ+1�′ � ℓ  

If each �′ � ℓ  ≤ 0.25 the gradient vanishes

� 1 = � 1 � + � 1 

� 1 = � � 1        
� 2 = � 2 � 1 + � 2 

� 2 = � � 2     
� 3 = � 3 � 2 + � 3 

� 3 = � � 3     
� 4 = � 4 � 3 + � 4 

� = � � 4   

� =
1
2
 � − � 2

� � = ��

1+��    �′ � = � �  1 − � �  



Exploding gradient problem
Consider MLP with:
• Input � ∈ ℝ�

• 3 hidden layers, each with RELU.
• 1 output � ∈ ℝ for a regression or binary classification.
That is
1. � 1 = � 1 � + � 1 ∈ ℝ� = �퐼� for simplicity � � = 0 � � = �퐼
2. � 1 = 푅푒�� � 1     = �� if � 1  is positive in each component

3. � � = �퐼� �−1 = ���,  푖 = 2,3,4

4. � � = 푅푒�� � 푖     = ���, 푖 = 2,3

5. � = 푅푒�� � 4    = �4�

Loss L = 1
2
 � − � 2



Exploding gradient continued
��

�� 4 =
��
��

��
�� 4 = �4�  − �. 1

��
�� 3 =

��
�� 4 

�� 4 

�� 3 =  �4�  − �. 1 �퐼

��
�� 3 =

��
�� 3 

�� 3 

�� 3 =  �4�  − �. 1 �. 1

��
�� 2 =

��
�� 3 

�� 3 

�� 2 =  �4�  − �. 1 ��. 퐼 = �2 �4�  − �. 1 

… 
��

�� 1 = �3 �4�  − �. 1 

If � ≫ 1 the factor �3 explodes in the gradient computation

Caution: Sigmoid activations clip the gradient and can lead to vanishing gradients
ReLU can make the gradients large

� 1 = � 1 � + � 1 = �퐼� 
� 1 = 푅푒�� � 1     = ��
� � = �퐼� �−1 

� � = 푅푒�� � 푖    
� = 푅푒�� � 4   

� =
1
2
 � − � 2



Example NN training in Python: Setup
# Dataset: a circle N = 200 # samples

X = np.random.randn(N, 2) # shape: (N, 2) r = 1.0
Y = (X[:,0]**2 + X[:,1]**2 < r**2).astype(np.float32) shape: (N, 1) 0 or 1

# Define NN architecture
input_dim = 2 hidden_dim = 8 output_dim = 1 # binary classification

# Initialize NN: small random values for weights, and zeros for biases

W1 = 0.01 * np.random.randn(input_dim, hidden_dim) # shape: (2, 8)
b1 = np.zeros((1, hidden_dim)) # shape: (1, 8)
W2 = 0.01 * np.random.randn(hidden_dim, output_dim) # shape: (8, 1)
b2 = np.zeros((1, output_dim)) # shape: (1, 1)



def compute_loss(Y_pred, Y_true): # Cross-entropy loss: �  =   − 1
�
   푖 ��log  ��   +   1 − �� log  1 − ��  

return -1/N*sum(Y_true*log(Y_pred+epsilon) + (1-Y_true)*log(1 - Y_pred+epsilon))

# Training loop
learning_rate = 0.05 num_iterations = 1000
for i in range(num_iterations):
 # Forward pass Layer 1: Z1 = XW1 + b1; Layer 2: Z2 = A1W2 + b2

Z1 = np.dot(X, W1) + b1 # shape: (N, 8)
A1 = relu(Z1) # shape: (N, 8)
Z2 = np.dot(A1, W2) + b2 # shape: (N, 1)
A2 = sigmoid(Z2) # Y_pred
loss = compute_loss(A2, Y)

# Backward pass; For cross-entropy and sigmoid, dL/dZ2 = A2 - Y
dZ2 = A2 - Y # shape: (N, 1)
dW2 = np.dot(A1.T, dZ2) # shape: (8, 1)
dB2 = np.sum(dZ2, axis=0, keepdims=True) # shape: (1,1)
dA1 = np.dot(dZ2, W2.T) # shape: (N,8)
dZ1 = dA1 * relu_derivative(Z1) # shape: (N,8)
dW1 = np.dot(X.T, dZ1) # shape: (2,8)
dB1 = np.sum(dZ1, axis=0, keepdims=True) # shape: (1,8)

# Update parameters
W1 -= learning_rate * dW1
b1 -= learning_rate * dB1
W2 -= learning_rate * dW2
b2 -= learning_rate * dB2



Example in Pytorch
class TwoLayerNet(nn.Module):

def __init__(self, input_dim=2, hidden_dim=8, output_dim=1):
   super(TwoLayerNet, self).__init__()

      self.layer1 = nn.Linear(input_dim, hidden_dim) # W1, b1
      self.layer2 = nn.Linear(hidden_dim, output_dim) # W2, b2
  
   def forward(self, x): # x shape: (N, 2)
    z1 = self.layer1(x)     a1 = self.relu(z1)    z2 = self.layer2(a1)
    y_hat = self.sigmoid(z2)
    return y_hat

# 2layer NN Binary Cross Entropy ; SGD 
model = TwoLayerNet() criterion = nn.BCELoss()  optimizer = optim.SGD(…)
for i in range(num_iterations): # Training loop
  optimizer.zero_grad() # 1. Zero the parameter gradients
  y_pred = model(X_torch) # 2. Forward pass
  loss = criterion(y_pred, Y_torch) # 3. Compute loss
  loss.backward() # 4. Backward pass (compute gradients)
  optimizer.step() # 5. Update parameters



Best practices for training classifiers

Goal: obtain a classifier with good generalization or performance 
on never before seen data

1. Learn parameters on the training set
2. Tune hyperparameters on the held out validation set
3. Evaluate performance on the test set

Always keey an eye on your training and validation losses!

Crucial: do not peek at the test set when iterating steps 1 and 2!



Under and overfitting
• Underfitting: training and test error are both high

• Model does an equally poor job on the training and the test set
• The model is too “simple” to represent the data or the model is not trained well

• Overfitting: Training error is low but test error is high
• Model fits irrelevant characteristics (noise) in the training data
• Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html


Bias-variance tradeoff
Training loss/ error of learning algorithms has two main components:

• Bias: error due to simplifying model assumptions
• Variance: error due to randomness of training set

Bias-variance tradeoff can be tuned with hyperparameters during the validation phase
• E.g. hyperparameters: number of layers, activation type, network architecture, etc.

High bias, low variance Low bias, high variance

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

