
ECE 484: Principles of Safe Autonomy
Fall 2025 Lecture 4: Perception Part I:

Neural Networks

Professor: Huan Zhang
Sep 4, 2025

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com

huanz@illinois.edu

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com

Announcements
• Check CampusWire daily! Important announcements will be

posted there.
• Fill out the form to create groups by 11:59 pm CT Friday (9/5)
• There have been students who keep requesting access, and it's

because they need to activate their Illinois Google account

Review: How does an autonomous vehicle work?

Environment

Vehicle
dynamicsPerception Control

Lidar / vision

Planning
and

decision

Sensing

Role of Perception in Autonomy
Perception module converts signals from the

environment to state estimates for the
autonomous agent and its environment

Examples of state estimates:
• Type of lead vehicle, traffic sign
• Position of ego on the map, relative to the

lane, distance to the leading vehicle
• Position of lead vehicle, speed, intention of

the pedestrian
Types of estimates:
• Semantic: E.g., type/class of vehicle, sign
• Geometric: E.g., position, speed

PerceptionSensors Planning
& Control

Actuation

Image classification problem

Goal: Learn a function that predicts the object in an image

Apply a prediction function to a representation of the image to
get the desired output:

f() = “apple”
f() = “tomato”
f() = “cow”

Statistical learning framework: Train classifier from training data

y = f(x)

Training: given a training set of labeled examples
{(x1,y1), …, (xN,yN)}, estimate the prediction function f by minimizing the prediction
error on the training set

Validation: tune (hyper)parameters in f, learning rate
Testing: apply f to a never before seen test data x and output predicted value y = f(x)

output prediction
function

feature
representation

Outline
Linear classifiers
Neural networks
• Universal approximators
• Forward pass
• Backpropagation; Gradient descent
• Common neural network architectures
• *Exploding and vanishing gradients
Best practices

Prediction

Training
Labels

Training
Images

Training

Training

Image
Features

Image
Features

Testing

Test Image

Learned
model

Learned
model

Slide credit: D. Hoiem

Linear classifiers

Find a linear function (w,b) to separate the classes:

f(x) = sgn(w  x + b)

If interested, read Support
vector machines (SVM)
https://greitemann.dev/svm-
demo

Images or feature
representation of
images

Read more about SIFT, HOG, bag of
visual words to learn more about
image features.

https://greitemann.dev/svm-demo
https://publish.illinois.edu/safe-autonomy/files/2020/09/Fall20-Lecture5_recognition.pdf

Visualizing linear classifiers with many classes

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

http://cs231n.github.io/linear-classify/

Limitations of Linear Classifiers

• How to address this limitation and build more
practical verifiers?
• How about “stacking” multiple linear functions? Will that work?
• Is just using linear functions enough?

• Input: A feature vector � ∈ ℝ�.
• Weights and bias: � ∈ ℝ� , � ∈ ℝ.
• Prediction (binary classification example): � = ��� + �
• Limitations: Linear decision boundaries may not capture

complex relationships between classes

Nonlinearity via Neural Networks
A neural network is a function ���: ℝ� → ℝ� defined as a composition
of layers of linear and nonlinear transformations.

Simple 2-layer network with one hidden layer and input � ∈ ℝ�

• � = � � 1 � + � 1 (hidden layer)

• � = � 2 � + � 2 (output layer)
� = � 2 � � 1 � + � 1 + � 2

� 1 ∈ ℝ�×� � 2 ∈ ℝ�×�, for m of hidden units are the weights
� 1 ∈ ℝ� � 2 ∈ ℝ� are the biases

�: Activation function e.g. 푅푒�� � =max �, 0 , 푠푖푔��푖� � = ��

1+��

Example k=2 for lane boundary parameters, k=6 for pose components

� �
�

� 1 � 2

Multi-Layer
Perceptron (MLP)

Activation functions and their derivatives

푅푒�� � =max �, 0 �푅푒�� �
��

= {0,1

� � = ��

1+�� �′ � = � � 1 − � �

“Rectified linear unit”

Universal Approximation Theorem [Cybenko, G. 1989]
Any continuous function � on a compact domain can be

approximated to arbitrary precision with a sufficiently
large (but finite) single-hidden-layer feedforward
network with a suitable activation function.

• �can be approximated arbitrarily by a sum of towers
• A tower function can be represented by a network with

a single hidden layer (think of large w and b)
• Sum of towers can be created by adding more

elements in the hidden layer
Neural networks are expressive enough to infer complex

state estimates from raw pixels

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal
function." Mathematics of Control, Signals and Systems, 2(4), 303–314.

https://www.youtube.com/watch?v=Ijqkc7OLenI

Neural Network Forward Propagation
For a given input �:

• Compute hidden layer pre-activation: � 1 = � 1 � + � 1 .
• Apply activation: � = � � 1 .
• Compute output layer: � = � 2 � + � 2 .

This results in a prediction �​, e.g.:
• For lane estimation: � ∈ ℝ�×�if predicting per-pixel

segmentation, �� � ∈ ℝ� if predicting lane embedding.
• For 6DOF pose: � ∈ ℝ6, representing �, �, �, �, �, � or other

parameterization of rotation and translation.

�
�

�3,4
 1 �4,2

 2

� 1 � 1

Backpropagation and Gradient-Based Training
Loss Function: A scalar function � �, � measures how well predictions

match the ground truth �. (lower is better)

For lane segmentation (classification per pixel) cross-entropy loss

� =− 1
�
 푖=1

� [�� log �� + 1 − �� log 1 − ��], �� ∈ {0,1} �� ∈ [0,1]

For pose regression, L2 distance: � = 1
�
 푖=1

� |�� − �� ​|22

The loss function (L) function is minimized during training by changing the
weights (W) and the biases (b) of the neural network (f) using back
propagation + gradient descent

� W

W

��
��

Backpropagation and Gradient-Based Training

 � 1 = � 1 � + � 1

� = � � 1
� = � 2 � + � 2

For pose regression: � = 1
�
 푖=1

� |�� − �� ​|22

Computing Gradients (Backprop):

• We compute ��
�� 2 ,

��
�� 2 ,

��
�� 1 ,

��
�� 1 using chain rule

• For example: ��
�� 2 =

��
��

 ��
�� 2

Gradient Descent Update: With learning rate �

� � ≔ � � − � ��
�� � , � � ≔ � � − � ��

�� �

� W

W

��
��

�

� 1

�

� 1

 ��
��

 is a vector with two elements: ��
��1

, ��
���

��
��1

= �1 − �� ,
��
���

= �2 − ��

Example: � = 1
2
[�1 − �� � + �2 − �� �], solve ��

��

� = �1
�2

 = �11ℎ1 + �12ℎ2 + �13ℎ3 + �1
�21ℎ1 + �22ℎ2 + �23ℎ3 + �2

Number of elements in ��
��

: 2 × 2 × 3 (two outputs, 2 × 3 elements in W)

For simplicity, we can “vectorize” W into a vector with 6 elements. Then we calculate
the 2x6 Jacobian matrix:

��
�vec �

=

��1
��11

��1
��12

��1
��13

��2
��11

��2
��12

��2
��13

��1
��21

��1
��22

��1
��23

��2
��21

��2
��22

��2
��23

 = ℎ1 ℎ2 ℎ3
0 0 0 0 0 0

ℎ1 ℎ2 ℎ3

Exercise: � = �� + � 2 , solve ��
��

Abusing the notation a little bit for simplicity -
we can call this ��

��

Finally, ��
�� 2 =

��
��

��
�� 2 = [�1 − ��, �2 − ��]

ℎ1 ℎ2 ℎ3
0 0 0 0 0 0

ℎ1 ℎ2 ℎ3

Shape 1x6

Shape 1x2 Shape 2x6

 � 1 = � 1 � + � 1

� 1 = 푅푒�� � 1
� = � 2 � + � 2

 Now how about ��
�� 1 ? How many elements in this gradient?

 ��
�� 1 =

��
��

��
�� 1

�� 1

�� 1
�� 1

�� 1

Exercises:
1. What is the shape of each Jacobian matrix?

2. What is ��
 1

�� 1
?

�

� 1

�

� 1

1x2, 2x4, 4x4, 4x(4x3)

A Diagonal matrix with 0 or 1 on its diagonal, depending
on the value of z(1) during forward propagation

NN architectures
In the above example, we used a simple matrix W in neural network:
 � 1 = � 1 � + � 1

� = � � 1
� = � 2 � + � 2

� 1 � + � 1 is called a fully-connected (FC) layer, and a neural network
with multiple layers of FC layers with nonlinear function is called a
“Multilayer perceptron” (MLP) network

32*32*3 pixels

flatten

column vector with
3072 elements MLP

prediction
score “apple” = 0.8

score “orange” = 0.1
...

flatten

NN architectures: convolutional layers
Fully connected layer � 1 � + � 1 can be replaced by other linear or

nonlinear operators.
For images, flatten then into a 1-d vector may not be ideal - we lose the
spacial insight of the input.

Layers that are often used in NNs for perception:
1. Convolutional layers
2. Pooling layers (maxpool, avgpool)
3. Transposed convolution layers
4. Normalization layers
5. Dropout
...

NN architectures: convolutional layers
The convolution operator instead operate on a 1D, 2D, or 3D inputs directly, focusing on
input features that are sptially adjacent
“Kernel” or “filter” K replaces the weights W
Typically, spatial dimension is reduced after convolution

� (5x5) � (3x3) � ∗ � 3�3

https://www.analytixlabs.co.in/blog/convolutional-neural-network/

NN architectures: convolutional layers
The convolution operator instead operate on a 1D, 2D, or 3D inputs directly, focusing on
input features that are sptially adjacent
“Kernel” or “filter” K replaces the weights W
Typically, spatial dimension is reduced after convolution

� (5x5) � (3x3) � ∗ � 3�3

https://www.analytixlabs.co.in/blog/convolutional-neural-network/

https://developersbreach.com/convolution-neural-network-deep-learning/

Convolutional layers with stride and padding

 (how many columns/rows to skip when moving the kernel) (how many extra rows/columns of
zeros added to all sides of inputs)

=1

Image from https://www.mdpi.com/2072-4292/11/19/2220

Convolutional layers with dilation

Input dimension: 6x6x3
Kernel (filter) size: 3*3*3
Output channel: 2
Stride: 1
Padding: 0

Convolutional layers with multiple input channels and
output channels

HW: given input dimension, kernel size, stride, padding, dilation, calculate output dimension

Transposed convolution

https://viso.ai/deep-learning/convolution-operations/

• Transposed convolution can increase the spatial dimension (2x2 -> 3x3 in this example)
• Useful for upsampling

Pooling layers

https://developersbreach.com/convolution-neural-network-deep-learning/

• Pooling parameters: kernel size, stride, padding (typically, kernel size = stride)
• Pooling layer has no parameters to learn (it is a fixed operation)
• Average pooling is a special case of convolution (why?)

Take max of all numbers
in the 2x2 square of the

same color

Take the average of all
numbers in the 2x2

square of the same color

Batch normalization

Normalized

unnormalized

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-
b18919692739/
Read about different types of normalization layers: https://arxiv.org/pdf/1803.08494

mean and average calculated
using activations during

training

Further learnable scale
and shift is optional

• Simple idea: let the network always processes features that have zero
mean and a variance of 1, so normalize the features

Dropout

https://www.kaggle.com/code/ryanholbrook/dropout-and-batch-normalization

• During training, randomly remove some connections in the NN
• Avoid learning spurious patterns in training data, and tend to obtain a

more robust and generalizable NN
• During testing, no neuron is removed and Dropout becomes identity

More general NN architecutres

Inception-v3 U-Net

ResNet (residual network)

Vanishing gradient problem
Consider MLP with:
• Input � ∈ ℝ�

• 3 hidden layers, each with sigmoid.
• 1 output � ∈ ℝ for a regression or binary classification.
That is
1. � 1 = � 1 � + � 1 ∈ ℝ�

2. � 1 = � � 1        ∈ ℝ�

3. � � = � � � �−1 + � � ∈ ℝ�, 푖 = 2,3,4

4. � � = � � 푖     ∈ ℝ�, 푖 = 2,3

5. � = � � 4   ∈ ℝ�

Loss L = 1
2
 � − � 2

As the number of layers increase gradient can vanish

��
�� 4 =

��
��

��
�� 4 = � − �

��
�� 4 = � − � � 1 − �

��
�� 3 =

��
�� 4

�� 4

�� 3 = � − � � 1 − � .� 4

��
�� 3 =

��
�� 3

�� 3

�� 3 = � − � � 1 − � .� 4 ⊙ �′ � 3
��

�� ℓ =
��

�� ℓ+1 �
ℓ+1�′ � ℓ

If each �′ � ℓ ≤ 0.25 the gradient vanishes

� 1 = � 1 � + � 1

� 1 = � � 1       
� 2 = � 2 � 1 + � 2

� 2 = � � 2    
� 3 = � 3 � 2 + � 3

� 3 = � � 3    
� 4 = � 4 � 3 + � 4

� = � � 4  

� =
1
2
 � − � 2

� � = ��

1+�� �′ � = � � 1 − � �

Exploding gradient problem
Consider MLP with:
• Input � ∈ ℝ�

• 3 hidden layers, each with RELU.
• 1 output � ∈ ℝ for a regression or binary classification.
That is
1. � 1 = � 1 � + � 1 ∈ ℝ� = �퐼� for simplicity � � = 0 � � = �퐼
2. � 1 = 푅푒�� � 1    = �� if � 1 is positive in each component

3. � � = �퐼� �−1 = ���, 푖 = 2,3,4

4. � � = 푅푒�� � 푖    = ���, 푖 = 2,3

5. � = 푅푒�� � 4   = �4�

Loss L = 1
2
 � − � 2

Exploding gradient continued
��

�� 4 =
��
��

��
�� 4 = �4� − �. 1

��
�� 3 =

��
�� 4

�� 4

�� 3 = �4� − �. 1 �퐼

��
�� 3 =

��
�� 3

�� 3

�� 3 = �4� − �. 1 �. 1

��
�� 2 =

��
�� 3

�� 3

�� 2 = �4� − �. 1 ��. 퐼 = �2 �4� − �. 1

…
��

�� 1 = �3 �4� − �. 1

If � ≫ 1 the factor �3 explodes in the gradient computation

Caution: Sigmoid activations clip the gradient and can lead to vanishing gradients
ReLU can make the gradients large

� 1 = � 1 � + � 1 = �퐼�
� 1 = 푅푒�� � 1    = ��
� � = �퐼� �−1

� � = 푅푒�� � 푖   
� = 푅푒�� � 4  

� =
1
2
 � − � 2

Example NN training in Python: Setup
Dataset: a circle N = 200 # samples

X = np.random.randn(N, 2) # shape: (N, 2) r = 1.0
Y = (X[:,0]**2 + X[:,1]**2 < r**2).astype(np.float32) shape: (N, 1) 0 or 1

Define NN architecture
input_dim = 2 hidden_dim = 8 output_dim = 1 # binary classification

Initialize NN: small random values for weights, and zeros for biases

W1 = 0.01 * np.random.randn(input_dim, hidden_dim) # shape: (2, 8)
b1 = np.zeros((1, hidden_dim)) # shape: (1, 8)
W2 = 0.01 * np.random.randn(hidden_dim, output_dim) # shape: (8, 1)
b2 = np.zeros((1, output_dim)) # shape: (1, 1)

def compute_loss(Y_pred, Y_true): # Cross-entropy loss: � = − 1
�
 푖 ��log �� + 1 − �� log 1 − ��

return -1/N*sum(Y_true*log(Y_pred+epsilon) + (1-Y_true)*log(1 - Y_pred+epsilon))

Training loop
learning_rate = 0.05 num_iterations = 1000
for i in range(num_iterations):
 # Forward pass Layer 1: Z1 = XW1 + b1; Layer 2: Z2 = A1W2 + b2

Z1 = np.dot(X, W1) + b1 # shape: (N, 8)
A1 = relu(Z1) # shape: (N, 8)
Z2 = np.dot(A1, W2) + b2 # shape: (N, 1)
A2 = sigmoid(Z2) # Y_pred
loss = compute_loss(A2, Y)

Backward pass; For cross-entropy and sigmoid, dL/dZ2 = A2 - Y
dZ2 = A2 - Y # shape: (N, 1)
dW2 = np.dot(A1.T, dZ2) # shape: (8, 1)
dB2 = np.sum(dZ2, axis=0, keepdims=True) # shape: (1,1)
dA1 = np.dot(dZ2, W2.T) # shape: (N,8)
dZ1 = dA1 * relu_derivative(Z1) # shape: (N,8)
dW1 = np.dot(X.T, dZ1) # shape: (2,8)
dB1 = np.sum(dZ1, axis=0, keepdims=True) # shape: (1,8)

Update parameters
W1 -= learning_rate * dW1
b1 -= learning_rate * dB1
W2 -= learning_rate * dW2
b2 -= learning_rate * dB2

Example in Pytorch
class TwoLayerNet(nn.Module):

def __init__(self, input_dim=2, hidden_dim=8, output_dim=1):
 super(TwoLayerNet, self).__init__()

 self.layer1 = nn.Linear(input_dim, hidden_dim) # W1, b1
 self.layer2 = nn.Linear(hidden_dim, output_dim) # W2, b2

 def forward(self, x): # x shape: (N, 2)
 z1 = self.layer1(x) a1 = self.relu(z1) z2 = self.layer2(a1)
 y_hat = self.sigmoid(z2)
 return y_hat

2layer NN Binary Cross Entropy ; SGD
model = TwoLayerNet() criterion = nn.BCELoss() optimizer = optim.SGD(…)
for i in range(num_iterations): # Training loop
 optimizer.zero_grad() # 1. Zero the parameter gradients
 y_pred = model(X_torch) # 2. Forward pass
 loss = criterion(y_pred, Y_torch) # 3. Compute loss
 loss.backward() # 4. Backward pass (compute gradients)
 optimizer.step() # 5. Update parameters

Best practices for training classifiers

Goal: obtain a classifier with good generalization or performance
on never before seen data

1. Learn parameters on the training set
2. Tune hyperparameters on the held out validation set
3. Evaluate performance on the test set

Always keey an eye on your training and validation losses!

Crucial: do not peek at the test set when iterating steps 1 and 2!

Under and overfitting
• Underfitting: training and test error are both high

• Model does an equally poor job on the training and the test set
• The model is too “simple” to represent the data or the model is not trained well

• Overfitting: Training error is low but test error is high
• Model fits irrelevant characteristics (noise) in the training data
• Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

Bias-variance tradeoff
Training loss/ error of learning algorithms has two main components:

• Bias: error due to simplifying model assumptions
• Variance: error due to randomness of training set

Bias-variance tradeoff can be tuned with hyperparameters during the validation phase
• E.g. hyperparameters: number of layers, activation type, network architecture, etc.

High bias, low variance Low bias, high variance

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

