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Announcements

 Check CampusWire daily! Important announcements will be
posted there.

* Fill out the form to create groups by

 There have been students who keep requesting access, and it's
because they need to activate their lllinois Google account
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Review: How does an autonomous vehicle work?

—» Perception

Planning

and
decision

Vehicle

Control

dynamics

— Sensing

Lidar / vision

\\

Sensing

Physics-based
models of cameras,
LIDAR, radar, GPS,
and so on.

Perception

Programs for object
tracking, scene
understanding, and
S0 on.

Decisions and
planning
Programs and multi-
agent models of
pedestrians, cars,
and so on.

Control

Dynamical models of
vehicle engine,
powertrain, steering,
tires, and so on.




Role of Perception in Autonomy

Perception module converts signals from the

nvironmen state estimates f r th . ] i
e 0] ent to | . or the Sensors || Perception Planning Actuation
autonomous agent and its environment & Control

Examples of state estimates:
* Type of lead vehicle, traffic sign

e Position of ego on the map, relative to the
lane, distance to the leading vehicle

* Position of lead vehicle, speed, intention of
the pedestrian

Types of estimates:
* Semantic: E.g., type/class of vehicle, sign
 Geometric: E.g., position, speed

.




Image classification problem

o




Goal: Learn a function that predicts the object in an image

Apply a prediction function to a representation of the image to
get the desired output:
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Statistical learning framework: Train classifier from training data

y = f(x)
IR

output prediction feature
function representation

Training: given a training set of labeled examples
{(x,¥1), ..., (Xy,¥Yn)}, €stimate the prediction function f by minimizing the prediction
error on the training set

Validation: tune (hyper)parameters in f, learning rate
Testing: apply f to a never before seen test data x and output predicted value y = f(x)
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Outline

Linear classifiers

Neural networks

e Universal approximators

* Forward pass

 Backpropagation; Gradient descent

* Common neural network architectures
 *Exploding and vanishing gradients
Best practices
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Linear classifiers

If interested, read Support

vector machines (SVM)
\ https://greitemann.dev/svm-
! demo
] m ®
\ o ®
\
Images or feature [ [N
representation of ] \ ®
images O ' o
[] \
1
!

Find a linear function (w,b) to separate the classes:

f(x) = sgn(w - x + b)
&=

Read more about SIFT, HOG, bag of

visual words to learn more about
image features.



https://greitemann.dev/svm-demo
https://publish.illinois.edu/safe-autonomy/files/2020/09/Fall20-Lecture5_recognition.pdf

Visualizing linear classifiers with many classes

stretch pixels into single column

02 (05| 01 | 20 56 1.1 -96.8 | cat score

15| 13 |21 | 00 231 + 3.2 | — | 437.9 dog score

0 : 0. -0.3 -1. ;
input image 023 <=0 24 1ie 61.95 ship score

W 2 b f(xi;wib)

XL;
plane car bird cat deer dog frog horse ship truck

Source: Andrej Karpathy, http://cs231n.qgithub.io/linear-classify/
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http://cs231n.github.io/linear-classify/

Limitations of Linear Classifiers

Input: A feature vector
Weights and bias: ,

Prediction (binary classification example): = = +
Limitations: Linear decision boundaries may not capture e
complex relationships between classes e
— | $ o
How to address this limitation and build more [ ]
practical verifiers? .
How about “stacking” multiple linear functions? Will that work? []
Is just using linear functions enough? [
[ ]



Nonlinearity via Neural Networks

A neural network is a function : - defined as a composition

of layers of linear and transformations.

2-Layer Network: d=3, m=4, k=2

Simple 2-layer network with one hidden layer and input

e = o+ 1 (hidden layer)
« T= 2 4+ 2 (output layer)
- = 2 1 + 1 =+ 2
1 x 2 % for m of hidden units are the weights _
Multi-Layer
1 2 are the biases Perceptron (MLP)

: Activation function e.g. =max ,0 , =—
Example k=2 for lane boundary parameters, k=6 for pose component&w\ﬁ'\

v
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Activation functions and their derivatives

Activation Functions Derivatives
57 — PRelU 1.0 — ReLV!
—— Sigmoid —— Sigmoid'
4+ 0.8 A
“Rectified linear unit”
3 0.6 -
S £
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Universal Approximation Theorem [Cybenko, G 1989]

1.00 A

Any continuous function on a compact domain can be
approximated to arbitrary precision with a sufficientl
large (but finite) single-hidden-layer feedforward
network with a suitable activation function.

X 0.00+

. can be approximated arbitrarily by a sum of towers

 Atower function can be represented by a network w s/
a single hidden layer (think of large w and b) —0.75 ]

 Sum of towers can be created by adding more ~1.00

elements in the hidden layer

Neural networks are expressive enough to infer complex
state estimates from raw pixels

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal
function." Mathematics of Control, Signals and Systems, 2(4), 303—314.
https://www.youtube.com/watch?v=Ijgkc7O0Lenl
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Neural Network Forward Propagation

For a given input

« Compute hidden layer pre-activation:. 1 = 1 + 1
« Apply activation: = 1
« Compute output layer: "= 2 + 2,
This results in a prediction ~, e.g.:
* For lane estimation: ™ X if predicting per-pixel
segmentation, if predicting lane embedding.
* For 6DOF pose: 6, representing , , , , , orother

parameterization of rotation and translation.

2-Layer Network: d=3, m=4, k=2




Backpropagation and Gradient-Based Training

Loss Function: A scalar function ~, measures how well predictions
match the ground truth . (lower is better)

For lane segmentation (classification per pixel) cross-entropy loss

=—= _[log”~ +1— logl-"1 {01}~ [01]

A

: . 1 ~
For pose regression, L2 distance: = — =1| — |§

The loss function (L) function is minimized during training by changing the
weights (W) and the biases (b) of the neural network (f) using back
propagation + gradient descent

4o
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Backpropagation and Gradient-Based Trainin 2tever Network d=3. m=s, k=2

1 — 1 4 1
— 1
~— 2 4 2
. 1 ~ )
For pose regression: = I - 5
Computing Gradients (Backprop):
* We compute —5,—, ——, — using chain rule

* For example:

Gradient Descent Update: With learning rate

’
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1 P
Example: = 5[ 1— + T, — ], solve —

— is a vector with two elements: —,—
1




P

Exercise: = = + 2 solve —
~_ 1 _ 11t 1p22% 133F 3
2 21 11T 922 2+ 23 31+ >

s

Number of elements in—: 2 x 2 x 3 (two outputs, 2 X 3 elements in W)

For simplicity, we can “vectorize” Winto a vector with 6 elements. Then we calculate

the 2x6
1 1 1 1 1 1
- — 11 12 13 21 22 23
vec " "o ) ) "2 "2
11 12 13 21 22 23
1 5 3 0 0 0
= Abusing the notation a little bit for simplicity -
O O 0 1 2 3 L
we can call this —



Shape 1x6

\

_ ~ 1 2 30 00

Fina”y, > — = > — [Al — y 2 ] O

\

Shape 1x2 Shape 2x6




2-Layer Network: d=3, m=4, k=2

H
I

? How many elements in this gradient?

Now how about —

Exercises:
1. What is the shape of each Jacobian matrix? 1x2, 2x4, 4x4, 4x(4x3)
A Diagonal matrix with 0 or 1 on its diagonal, depending

2. What is ?
on the value of z(%) during forward propagation

4o



PN

NN architectures

In the above example, we used a simple matrix W in neural network:
1 4 1
— 1
~— 2 4 2
1+ 1 jscalled a fully-connected (FC) layer, and a neural network
with multiple layers of FC layers with nonlinear function is called a

“Multilayer perceptron” (MLP) network

1

column vector with
3072 elements

flatten prediction
I I score“ apple ”=_0.8
score “orange” = 0.1

32*32*3 pixels



NN architectures: convolutional layers

Fully connected layer 1 + 1 can be replaced by other linear or

nonlinear operators.

For images, flatten then into a 1-d vector may not be ideal - we lose the
spacial insight of the input.

Layers that are often used in NNs for perception:
1. Convolutional layers

2. Pooling layers (maxpool, avgpool)

3. Transposed convolution layers

4. Normalization layers

5. Dropout



NN architectures: convolutional layers

The convolution operator instead operate on a 1D, 2D, or 3D inputs directly, focusing on
input features that are sptially adjacent

“Kernel” or “filter” K replaces the weights W

Typically, spatial dimension is reduced after convolution

10/1.0/0.9/0.6/0.6/0.61.01.0/10[1.010]1.0 : S ; '4:
1.0/050.0/0.0/0.0/0.0/0.0/0.0/05/1.0 1.0 1.0 3 = S
[1.0/0.2/0.2/05/0.6/0.6/0.5/0.0/0.0/051.01.0
10/0.2/10[10[10/1.0[10]09/0.0/0.0/091.0

[1ol1010/10)101010/10/05/00/0510 0

___________________

[10/1.0/10|05/05/05/0.5/0.5/0.4/0.0/0.5/1.0
| [1.0/0.4/0.0/0.0/0.00.00.0/0.0/0.0/0.0/05/1.0
| |os/0.0/0.0/06/101.0 1.0/1.0/05/0.0/05/1.0

|05/0.0/06/1.0[10/1.0/10/1.0/05/0.0/05/1.0 i
|o5/0.0/07/1.0[10/1.010/1.0 /0.0j0.0/05 1.0 0 !
losjoojos/10[1010[10/05/0000000510] 0 fres Toeees NeEseas PR P
[0.9/01]0.0/0.6/0.7/0.7/05/0.0 0.50.0 0.5 1.0 o I 'I i 'I t 0 ! 0
10/07/10/00/0.00.0/01/09/080.0 0510 : : ; : Kernel Convoluted feature
10/10/1.0/0.8/0.8/0.9/1.0/1.0/1.0/10 10[10

S R ) It S S SRS ot RIS

* % ¥ ¥ X ¥ X ¥ ¥
muommumnmonmmmimmmamn

4
N - O0O=0=000=—=

o
-t
o
i
o
—l

Input Data

(5x5) (3x3) 33

https://www.analytixlabs.co.in/blog/convolutional-neural-network/



NN architectures: convolutional layers

The convolution operator instead operate on a 1D, 2D, or 3D inputs directly, focusing on
input features that are sptially adjacent
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Convolutional layers with stride and padding

Stride =1 Stride =2
757 = e

i
V1

\

\ ‘ ! |

Feature 3x3
5x5 Map

(how many columns/rows to skip when moving the kernel)

PADDING

Input
o[ otol o otolo Output
0 [ o1 ""'--P‘(-e..rffa_l‘
0 0
0 o X =
0 ‘ﬁn‘\hz
0 0
0 0|0 Feature Map

=1

(how many extra rows/columns of
zeros added to all sides of inputs)

https://developersbreach.com/convolution-neural-network-deep-learning/

PN



Convolutional layers with dilation

dilation=1 dilation=2 dilation=3

Image from https://www.mdpi.com/2072-4292/11/19/2220

(«Q )



Convolutional layers with multiple input channels and
output channels

Input dimension: 6x6x3 ofefe]e]s ::* SR - \hﬁh?
Kernel (filter) size: 3*3*3 i ey ritter =

Output channel: 2 5|8 ;6:3 s |4 | 1 = 4x4xz
Stride: 1 L n

Padding: 0

HW: given input dimension, kernel size, stride, padding, dilation, calculate output dimension



Transposed convolution

* Transposed convolution can increase the spatial dimension (2x2 -> 3x3 in this example)
e Useful for upsampling

Input
10 (12
3| 4 0
1 2 0| 21| 4 0|0 | O OO0 | O
=|3|0|0|* | o|6|0|+| 3|6 |0|+  0]|a]|38s
1| 2 0| 0] O 0| 0|0 910 |0 012 O
S )
Filter

https://viso.ai/deep-learning/convolution-operations/




Pooling layers

POOLING
Max pooling Average pooling
32 10
Take max of all numbers 3 4 | 14 15 Take the average of all
in the 2x2 square of the - . I H numbers in the 2x2
same color e " L square of the same color
8 |12 | 7 | 14

* Pooling parameters: kernel size, stride, padding (typically, kernel size = stride)
* Pooling layer has no parameters to learn (it is a fixed operation)
* Average pooling is a special case of convolution (why?)

https://developersbreach.com/convolution-neural-network-deep-learning/
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Batch normalization

* Simple idea: let the network always processes features that have zero
mean and a variance of 1, so normalize the features
unnormalized
[ ]

o **
st 'Y

31 'Y
2l PY Normalize Scale and Shift
@
0@ @ o - Ai —Lon. _ =
b K ‘ o As = BN; =70 A+ |- o

f= SR
Beta Gamma
(B) (y)

5 1

Batch Norm (Inference) \

| | I
T T T

1 4 1 ] 1
T 1 T | 1
5 4 3 =2 1@ " ® > :: 4
E

@ o
s o o
Norméﬁzed ® - ® mean and average calculated  Fyrther learnable scale
*T using activations during and shift is optional
sl training

https://towardsdatascience.com/batch-norm-explained-visually-how-it-works-and-why-neural-networks-need-it-
b18919692739/
Read about different types of normalization layers: https://arxiv.org/pdf/1803.08494

/AR




Dropout

* During training, randomly remove some connections in the NN
* Avoid learning spurious patterns in training data, and tend to obtain a
more robust and generalizable NN

* During testing, no neuron is removed and Dropout becomes identity

Hidden

Hidden

O o
o
o

https://www.kaggle.com/code/ryanholbrook/dropout-and-batch-normalization

4o



More general NN architecutres

X3 X4 X23 X3

Conv2_x identity ", Conv3_x identity ', Convd_x identity ', Conv5_x identity '
Y
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.




Vanishing gradient problem

Consider MLP with:

* |nput

* 3 hidden layers, each with sigmoid.

* 1output”™
That is

for a regression or binary classification.

-+ . =234



As the number of layers increase gradient can vanish

R R =1 4
4 2 — 2 1 4
= = — 1 — 4 =
3 4 3
3 3 — 3 2 4
— — — 1— 4 3 —
3 3
3 4 — 4 3 4
— e+1 " @ ~ 4
e e+1 _1
= ~_ 2
2
e

If each




Exploding gradient problem

Consider MLP with:

* 3 hidden layers, each with RELU.

* |nput
* 1output”™
That is
1 1 — 1
2 1 =
3 =
4. =
5 " =

_1 A
Loss L = >

for a regression or binary classification.

1 —

= for simplicity =0 =
L= if 1 ispositivein each component
= , =234
= , =23
— 4
2



Exploding gradient continued

— — 4
47 e 1 1 —
4 L -
_ - 4 _ =
3 4 3 1
3 =
— — 4 _
3~ 3 3 11 =
3 ~ _
_ — 4 _ — 2 4 _ -
2~ 3 2 1 - 1 1
-2
— 3 4 _
= 1
If 1 the factor 3 explodes in the gradient computation

Caution: Sigmoid activations clip the gradient and can lead to vanishing gradients
ReLU can make the gradients large



Example NN training in Python: Setup

# Dataset: a circle N = 200 # samples

X
Y

np.random.randn(N, 2) # shape: (N, 2) r = 1.0
(X[:,0]**2 + X[:,1]1**2 < r**2).astype(np.float32) shape: (N, 1) 0 or 1

# Define NN architecture
input dim = 2 hidden dim = 8 output dim = 1 # binary classification

# Initialize NN: small random values for weights, and zeros for biases

Wl = 0.01 * np.random.randn(input dim, hidden dim) # shape: (2, 8)
bl = np.zeros((1l, hidden dim)) # shape: (1, 8)
W2 = 0.01 * np.random.randn(hidden dim, output dim) # shape: (8, 1)
b2 = np.zeros((1l, output dim)) # shape: (1, 1)




def compute loss(Y pred, Y true): # Cross-entropy loss:

1

~

log

return -1/N*sum(Y true*log(Y pred+epsilon) + (1-Y true)*log(l - Y pred+epsilon))

# Training loop
learning rate = 0.05 num iterations = 1000
for 1 in range(num iterations):

# Forward pass Layer 1: Z1 = XW1 + bl; Layer 2: Z2 = AIW2 + b2

Z1
Al
Z2
A2
los

S

np.dot(X, Wl1) + bl # shape: (N, 8)
relu(Zl) # shape: (N, 8)

np.dot(Al, W2) + b2 # shape: (N, 1)
sigmoid(Z2) # Y pred

= compute loss(A2, Y)

# Backward pass; For cross-entropy and sigmoid, dL/dZ2 = A2 - Y

dz2
dw?2
dB2
dAl
dz1
dwl
dB1

A2 - Y # shape: (N, 1)

np.dot(Al.T, dZ2) # shape: (8, 1)
np.sum(dZ2, axis=0, keepdims=True) # shape:
np.dot(dZ2, W2.T) # shape: (N,8)

dAl * relu derivative(Zl) # shape: (N,8)
np.dot(X.T, dZ1l) # shape: (2,8)

np.sum(dZl, axis=0, keepdims=True) # shape:

(1,1)

(1,8)

# Update parameters

W1l -= learning rate
bl -= learning rate
W2 -= learning rate
b2 -= learning rate

+ 1— logl—"

dwl
dBl
dw2
dB2
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Example in Pytorch

class TwolLayerNet(nn.Module):
def init (self, input dim=2, hidden dim=8, output dim=1):
super(TwoLayerNet, self). init ()
self.layerl nn.Linear(input dim, hidden dim) # W1, bl
self.layer2 = nn.Linear(hidden dim, output dim) # W2, b2

def forward(self, x): # x shape: (N, 2)

z1 = self.layerl(x) al = self.relu(zl) z2 = self.layer2(al)
y hat = self.sigmoid(z2)

return y hat

# 2layer NN Binary Cross Entropy ; SGD
model = TwolLayerNet() criterion = nn.BCELoss() optimizer = optim.SGD(..)

for 1 in range(num iterations): # Training loop
optimizer.zero grad() # 1. Zero the parameter gradients
y pred = model (X torch) # 2. Forward pass
loss = criterion(y pred, Y torch) # 3. Compute loss
loss.backward() # 4. Backward pass (compute gradients)
optimizer.step() # 5. Update parameters



Best practices for training classifiers

Goal: obtain a classifier with good generalization or performance
on never before seen data

1. Learn parameters on the training set
2. Tune hyperparameters on the held out validation set
3. Evaluate performance on the test set

Always keey an eye on your training and validation losses!

Crucial: do not peek at the test set when iterating steps 1 and 2!

Training
Data

Held-Out
Data

Test
Data




Under and overfitting

* Underfitting: training and test error are both high
e Model does an equally poor job on the training and the test set
e The model is too “simple” to represent the data or the model is not trained well

* Overfitting: Training error is low but test error is high
* Model fits irrelevant characteristics (noise) in the training data
e Model is too complex or amount of training data is insufficient

Underfitting Good tradeoff Overfitting

A% K¢ | A y O X/ O
X C b 4 s . % ) .
X, | X '_. X, | X x X, | % X
5 " O3 - (
X X X XX o
h XX X XX X
X ) X4 i X

Figure source


http://www.holehouse.org/mlclass/07_Regularization.html

Bias-variance tradeoff

Training loss/ error of learning algorithms has two main components:
* Bias: error due to simplifying model assumptions
* Variance: error due to randomness of training set

Bias-variance tradeoff can be tuned with hyperparameters during the validation phase
* E.g. hyperparameters: number of layers, activation type, network architecture, etc.

High bias, low variance Low bias, high variance

6 o Figure source


http://www.holehouse.org/mlclass/07_Regularization.html

