

Principles of Autonomy

Fall 2025 Lecture 3: Checking Safety

Professor: Huan Zhang

Aug 26, 2025

<https://publish.illinois.edu/safe-autonomy/>

<https://huan-zhang.com>

huanz@illinois.edu

More about labs and MPs

- ▶ More time for forming your team: MPO has been changed to individual
- ▶ Deadline for finalizing all teams: Friday, **Sep 5**
- ▶ All team members must be in the same lab session
- ▶ You can switch your lab section through the regular course registration portal (if the section you want to switch to is not full)
- ▶ MP1 and HW1 will be released this **Friday 9 am** - check Gradescope

More about labs and MPs

- ▶ If you cannot make the switch yourself, because the section you want to switch to is always full, send a request to the lead TA Hanna Chen (hannac4@illinois.edu) **on Tuesday, Sep 2 (TODAY!)**
 - ▶ cc your email to the corresponding lab TAs: the one you are moving out from and the one you are moving to
 - ▶ **early/late requests will not be handled**
- ▶ You will be notified whether your lab switch is approved by the end of Wednesday, Sep 3
 - ▶ Not guaranteed - we need to balance the enrollments of each section
- ▶ All teams must be formed by **Friday, Sep 5**
 - ▶ You will need to submit the team member names - pay attention to announcements on **Campuswire**
 - ▶ **All team members must be in the same lab section**

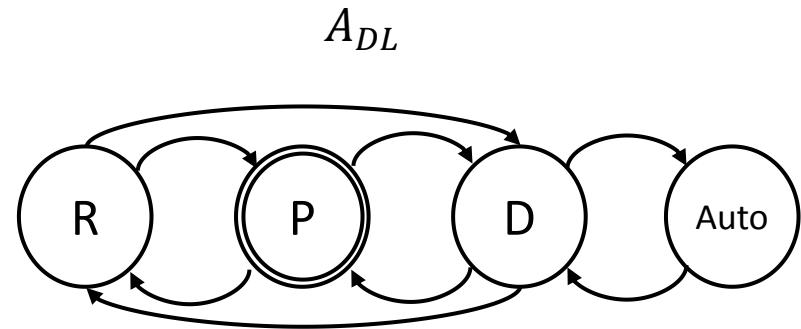
Outline

- ▶ Safety requirements
- ▶ Reachability
 - ▶ Data structures
- ▶ Inductive invariants
 - ▶ Example

Recall: Automata

An **automaton** A is defined by a triple $\langle Q, Q_0, D \rangle$, where

- ▶ Q is a set of **states**
- ▶ $Q_0 \subseteq Q$ is a set of **initial states**
- ▶ $D \subseteq Q \times Q$ is a set of **transitions**



An **execution** of an automaton A is a finite or infinite sequence of states $\alpha = q_0, q_1, q_2, \dots$ such that

- ▶ $q_0 \in Q_0$
- ▶ For all i in α , $(q_i, q_{i+1}) \in D$
- ▶ We write $q_{i+1} = D(q_i)$

A nondeterministic automata has many executions

E.g. P,D,P,D,... ; P, D, Auto; ...

Requirements and Counter-examples

A **requirement** defines a collection of executions

$$R_{noAuto} = \{\alpha \mid \forall i \alpha_i \neq Auto\};$$

$$R_{noD2R} = \{\alpha \mid \forall i \text{ if } \alpha_i = D, \alpha_{i+1} \neq R\}$$

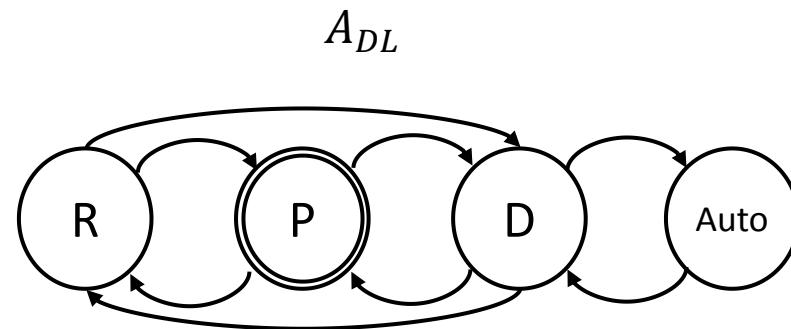
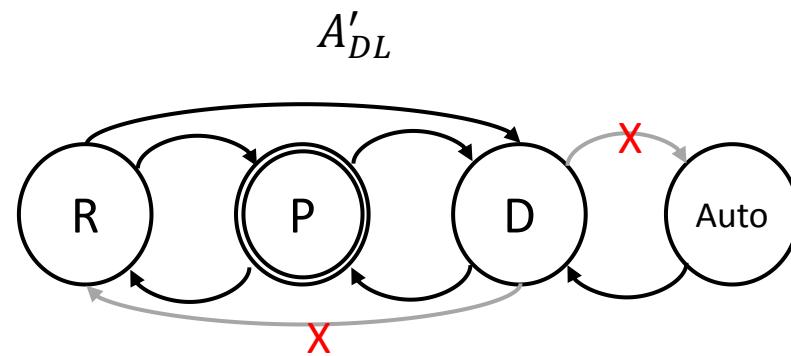
An automaton A **satisfies** a requirement R if **all** executions of A are contained in R

A_{DL} does not **satisfy** either requirement R_{noAuto} R_{noD2R}

because there are **counter-example** executions $\alpha^{(1)} = P, D, Auto$ and $\alpha^{(2)} = P, D, R$

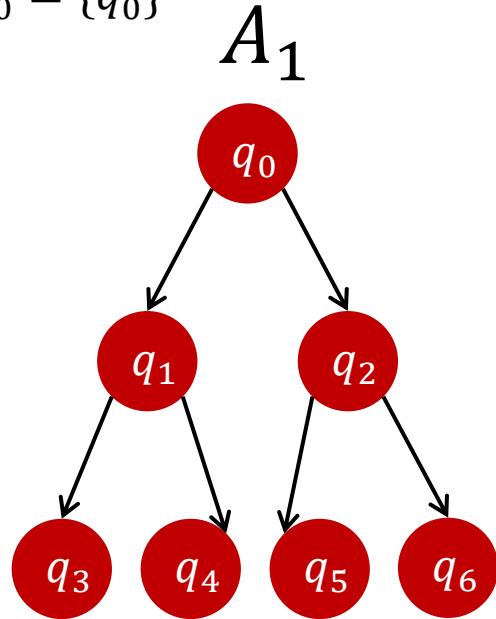
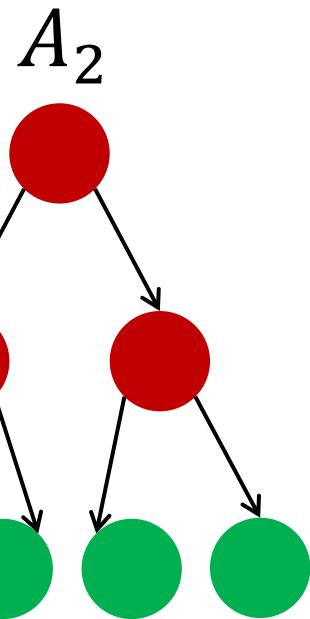
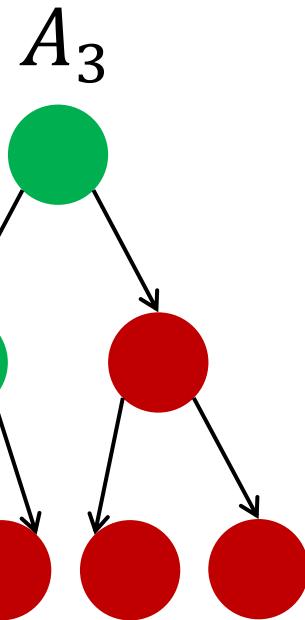
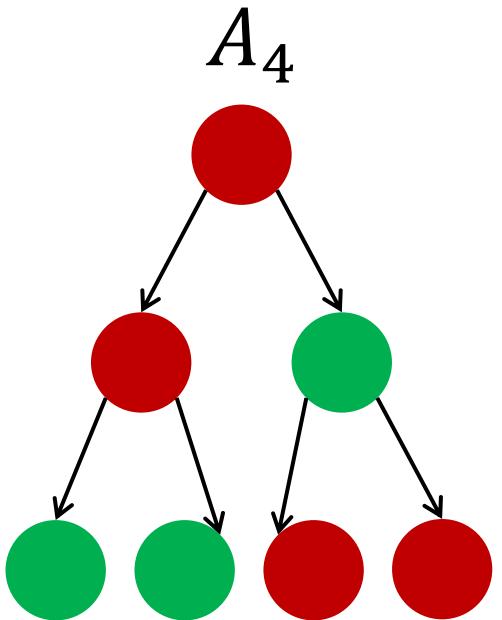
A'_{DL} satisfies both the requirements

Verification problem: Given an automaton A and a requirement R , decide whether all executions of A are in R or find a counter-example that is outside R



Automata and requirements

$$Q_0 = \{q_0\}$$



Which automata satisfy the following requirements

1. $R_{nevergreen} = \{\alpha \mid \forall i, \alpha_i.\text{color} \neq \text{green}\}$
2. $\text{Unsafe} = \{q \mid q.\text{color} = \text{green}\}$

3. $R_{eventuallygreen} = \{\alpha \mid \exists i, \alpha_i.\text{color} = \text{green}\}$
4. $R_{neverred} = \{\alpha \mid \exists i, \alpha_i.\text{color} \neq \text{red}\}$

Safety requirements and verification

A **safety requirement** is a requirement that states that no execution should reach a certain **set of bad (or unsafe) states** $U \subseteq Q$

$$R_{noAuto} = \{\alpha \mid \forall i, \alpha_i \neq Auto\}$$

$$\text{safety } U = \{Auto\}$$

$$R_{nocollision} = \{\alpha \mid \forall i, \alpha_i \cdot x_2 > \alpha_i \cdot x_1\}$$

$$\text{safety } U = \{q \mid q \cdot x_2 - q \cdot x_1 \leq 0\}$$

$$R_{noD2R} = \{\alpha \mid \forall i, \text{ if } \alpha_i = D \text{ then } \alpha_{i+1} \neq R\}$$
 not a safety requirement

$$R_{follows} = \{\alpha \mid \exists i, 2 \geq \alpha_i \cdot x_2 - \alpha_i \cdot x_1 \geq 1\}$$
 not a safety requirement (depending on the entire execution, not a set of states)

Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton A and an unsafe set U , check whether there exists any execution α of A that reaches U

Counter-examples of safety are finite executions $\alpha = q_0 \dots q_k, q_k \in U$

For finite automata safety verification can be solved using depth first search from Q_0

Absence of a counter-example proves that the automaton is safe

Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton A and an unsafe set U , check whether there exists any execution α of A that reaches U

Counter-examples of safety are finite executions

A state $q \in Q$ is **reachable** if there exists an execution α such that $\alpha_i = q$.

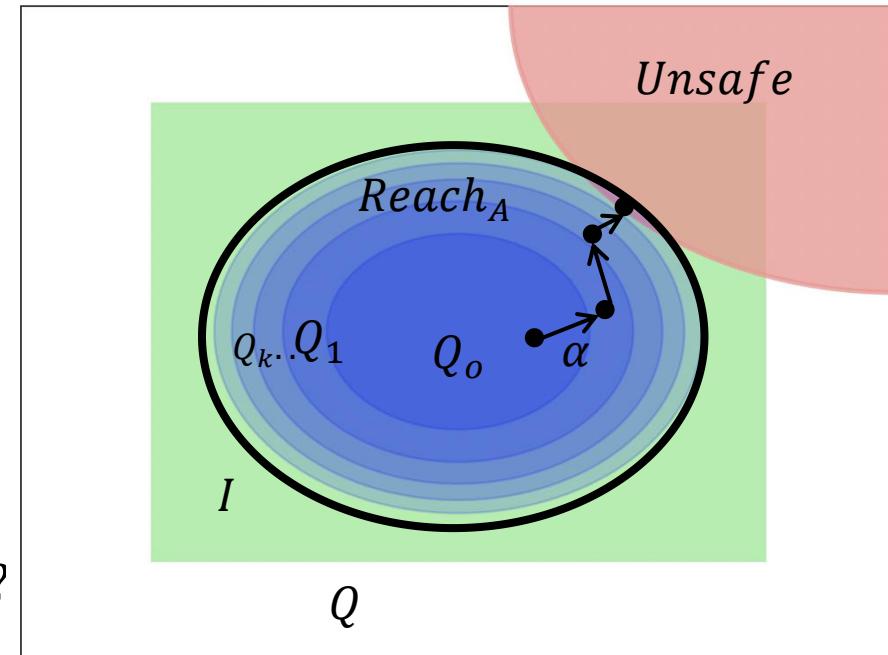
The **reachable states** of A is the set $Reach_A \subseteq Q$ of all the states that are reachable

Safety verification problem is equivalent to as checking $Reach_A \cap U = \emptyset$?

That is, if we can compute $Reach_A$ then we can verify safety

Further, sufficient to compute an over-approximation $Reach_A \subseteq I$ such that $I \cap U = \emptyset$

An **invariant** of A is any set of state $I \subseteq Q$ such that $Reach_A \subseteq I$



Computing reachable sets

Computing the **reachable set** of A allows us to verify safety

Reachability algorithm

$R_0 = Q_0$ // Sets of states

$i = 0$

do

$i = i + 1$

$R_i = \{q' \mid (q, q') \in D, q \in R_{i-1}\} \cup R_{i-1}$

Until $R_i = R_{i-1}$

Return R_i

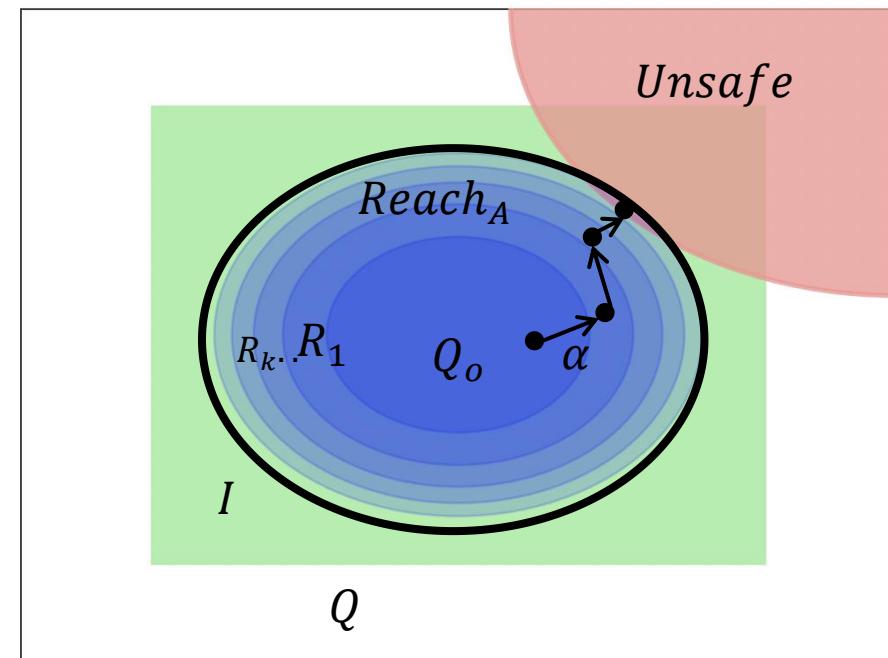
All states that are reachable within k steps $Reach_A(0, k) = R_k$

If the algorithm terminates then $Reach_A$ is the final output of the algorithm

If $Reach_A \cap Unsafe = \emptyset$ then we have a proof of safety

Algorithm may not terminate and computing R_{i+1} for one-step can also be challenging for uncountable R_i

Verse tool you will learn to use in MPO performs reachability analysis



[Verse: A Python library for reasoning about multi-agent hybrid system scenarios arxiv](#) Li et al. CAV 2023.

<https://github.com/AutoVerse-ai/Verse-library>

Computing reachable sets and over-approximations

$$R' = \text{Post}(R) = D(R) = \{q' \mid (q, q') \in D, q \in R\}$$

Reachability algorithm

$$R_0 = Q_0$$

$$i = 0$$

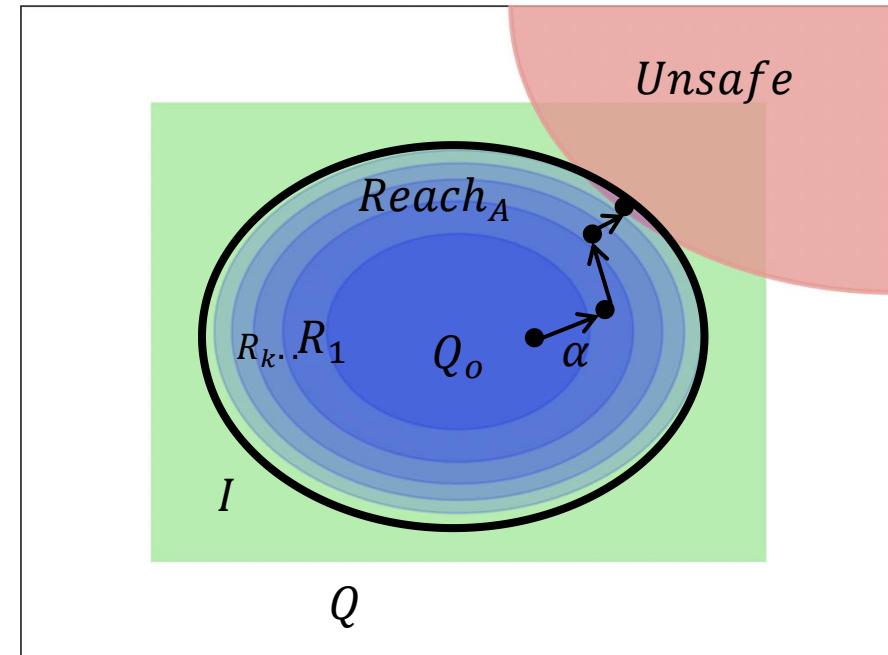
do

$$i = i + 1$$

$$R_i = \text{Post}(R_{i-1}) \cup R_{i-1}$$

Until $R_i = R_{i-1}$

Return R_i



Here the **Post(R)** defines the set of states that can reach in one-step, starting from a set of states R

Exercise: Show that **Post** is monotonic, i.e., If $S_1 \subseteq S_2$ then $\text{Post}(S_1) \subseteq \text{Post}(S_2)$.

Computing reachable sets and over-approximations

$$R' = \text{Post}(R) = D(R) = \{q' \mid (q, q') \in D, q \in R\}$$

Reachability algorithm

$$R_0 = Q_0$$

$$i = 0$$

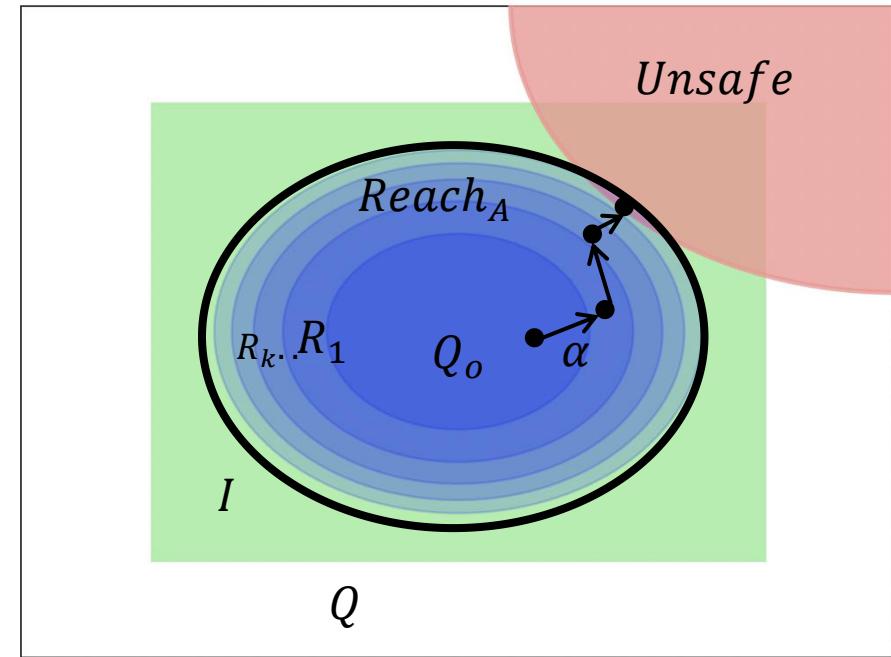
do

$$i = i + 1$$

$$R_i = \text{Post}(R_{i-1}) \cup R_{i-1}$$

Until $R_i = R_{i-1}$

Return R_i



All states that are reachable in exactly k steps $\text{Reach}_A(k, k) = \text{Post}^k(Q_0)$

If $\overline{\text{Post}}(S_1)$ computes an **over-approximation** of $\text{Post}(S_1)$ then the above algorithm computes an over-approximation of $\text{Reach}_A \subseteq \overline{\text{Reach}}_A$

$\overline{\text{Reach}}_A \cap \text{Unsafe} = \emptyset$ proves safety, but $\overline{\text{Reach}}_A \cap \text{Unsafe} \neq \emptyset$ does not imply that there is a real counterexample

Data structures for representing sets

- ▶ Intervals: $R_i: [a, b] \in \mathbb{R}$
 - ▶ $x := x + 5 \rightarrow R_{i+1} = [a + 5, b + 5]$
 - ▶ Similarly for other operations +,-, \times any monotonic operation
- ▶ Hyperrectangles: $R_i: [\mathbf{a}, \mathbf{b}] \in \mathbb{R}^n$
- ▶ Polytopes: $[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ represented by the vertices
- ▶ Ellipsoids: represented by a center and a shape matrix
- ▶ Star sets: represented by a center, basis vectors, and a predicate

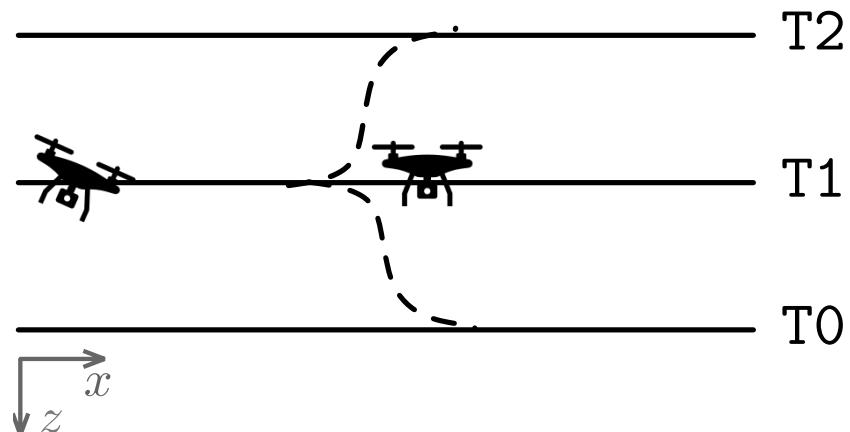
Reachability algorithm
needs to compute
 $R_{i+1} = D(R_i) \cup R_i$

Different representations allow different operations to be performed on the sets efficiently

In building a reachability algorithm this data structure is an important choice

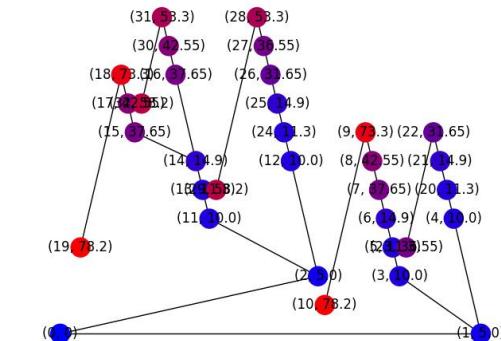
Verse: Python library for reachability analysis (MPO)

```
class Mode(Enum):  
    Normal = auto()  
    Up = auto()  
...  
class Track(Enum):  
    T0 = auto()  
    T1 = auto()  
...  
class State:  
    x: float  
    y: float  
...  
    mode: Mode  
    track: Track
```



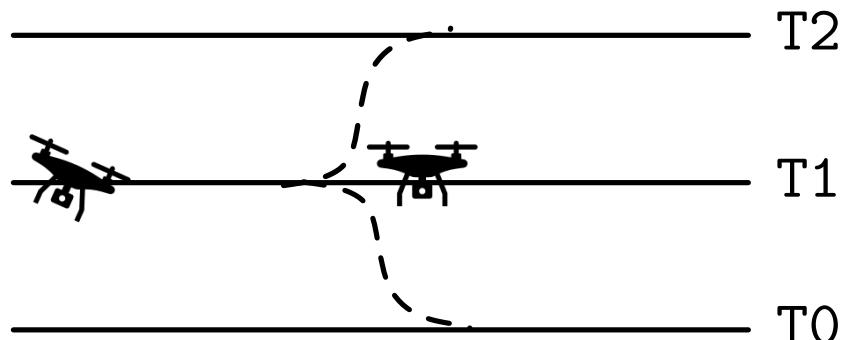
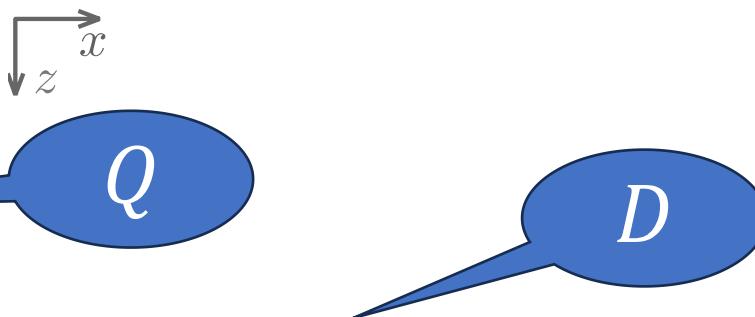
```
def decisionLogic(ego: State, others: List[State], map):  
    if ego.mode == Mode.Normal:  
        if any(isClose(ego, other) for other in others):  
            if map.exist(ego.track, ego.mode, Mode.Up):  
                next.mode = Mode.Up  
                next.track = map.h(ego.track, ego.mode, Mode.Up)  
            if map.exist(ego.track, ego.mode, Mode.Down):  
                next.mode = Mode.Down  
    ...  
    assert not any(isVeryClose(ego, other) for other in others), "Separation"
```

```
q1 = QuadrotorAgent("q1", ...) // Defines the dynamics  
q1.set_initial(..., (Mode.Normal, Track.T1))  
scenario.add_agent(q1)  
q2 = ...  
scenario.set_map(M5())  
scenario.simulate(...)  
scenario.verify(...)
```



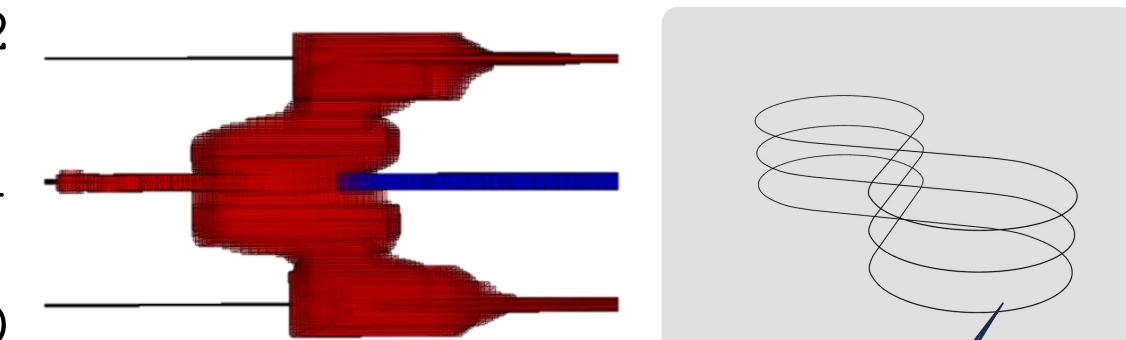
Verse: Python library for reachability analysis (MPO)

```
class Mode(Enum):  
    Normal = auto()  
    Up = auto()  
...  
class Track(Enum):  
    T0 = auto()  
    T1 = auto()  
...  
class State:  
    x: float  
    y: float  
...  
    mode: Mode  
    track: Track
```



```
def decisionLogic(ego: State, others: List[State], map):  
    if ego.mode == Mode.Normal:  
        if any(isClose(ego, other) for other in others):  
            if map.exist(ego.track, ego.mode, Mode.Up):  
                next.mode = Mode.Up  
                next.track = map.h(ego.track, ego.mode, Mode.Up)  
            if map.exist(ego.track, ego.mode, Mode.Down):  
                next.mode = Mode.Down  
    ...
```

```
assert not any(isVeryClose(ego, other) for other in others), "Separation"
```



```
q1 = QuadrotorAgent("q1", ...)  
q1.set_initial(..., (Mode.Normal, Track.T1))  
scenario.add_agent(q1)  
q2 = ...  
scenario.set_map(M5())  
scenario.simulate(...)  
scenario.verify(...)
```


Unsafe

Reach_A

Reachable states and invariants

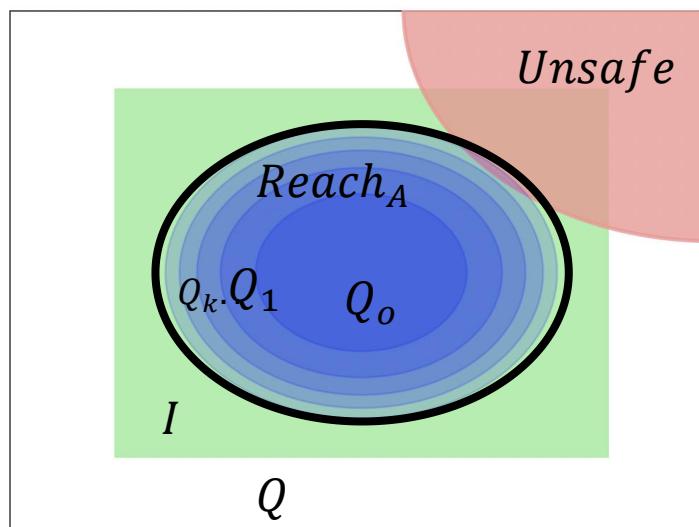
An **invariant** of A is any set of states $I \subseteq Q$ such that $\text{Reach}_A \subseteq I$

An invariant proves safety if $I \cap \text{Unsafe} = \emptyset$

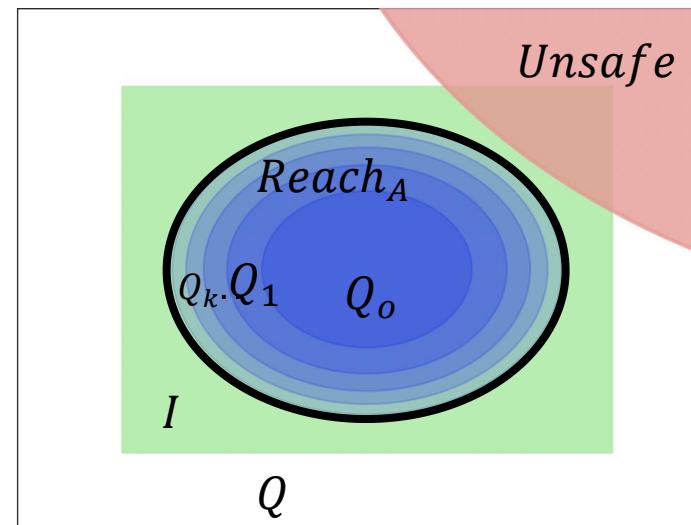
In general computing or finding invariants is also hard; it is easier to check whether a given set is an invariant

If $Q_0 \subseteq I$ and $\text{Post}(I) \subseteq I$ then I is an invariant, i.e., $\text{Reach}_A \subseteq I$.

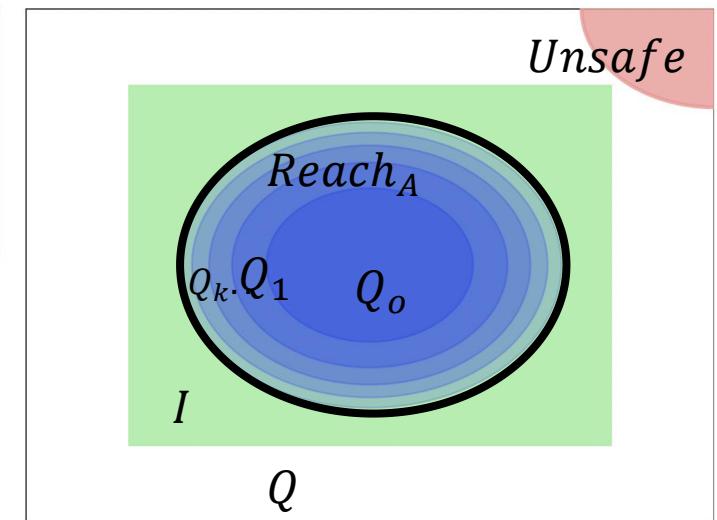
Such invariants are called **inductive invariants**



Unsafe with counter-example



Safe but not proved by invariant I



Safety proved by computing invariant I

Inductive invariants

Theorem. If $Q_0 \subseteq I$ and $Post(I) \subseteq I$ then I is an invariant, i.e., $Reach_A \subseteq I$.

Such invariants are called **inductive invariants**

Proof. Consider any reachable state $q \in Reach_A \subseteq Q$

By definition of reachable state, there is an execution α with $\alpha_k = q$

By induction on k we will show that $q \in I$

Base case, for $k=0$, $\alpha_0 = q_0 \in Q_0 \subseteq I$ [using definition of execution and inductive inv]

Induction. By inductive hypothesis, suppose $\alpha_k \in I$. We have to show $q = \alpha_{k+1} \in I$.

$(\alpha_k, q) \in D$ implies $q \in Post(\alpha_k)$ which implies [by monotonicity of Post and $\alpha_k \in I$]:

$q \in Post(\alpha_k), Post(\alpha_k) \subseteq Post(I) \Rightarrow q \in Post(I) \subseteq I$

Take away: Guess a candidate inductive invariant $I \cap Unsafe = \emptyset$ and check $Q_0 \subseteq I$ and $Post(I) \subseteq I$. If successful then safety is verified.

Automaton model a bouncing ball

Automaton $A = \langle Q, Q_0, D \rangle$

- ▶ $Q = \mathbb{R}^2$
 - ▶ $q \in Q$ $q.x, q.v \in \mathbb{R}$
- ▶ $Q_0 = \{q \mid q.x = h, q.v = 0\}$
- ▶ $D: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ written as a program

If $x \leq 0$ and $v < 0$

$v = -v; x = 0$

else

Assume each transition is one “unit time step”:

$$v = v - g$$

$$x = x + v - \frac{1}{2}g$$

$$q'.x = q.x + q.v - \frac{1}{2}g$$

$$q'.v = q.v - g$$

Automaton model a bouncing ball

Automaton $A = \langle Q, Q_0, D \rangle$

- $Q = \mathbb{R}^2$
- $Q_0 = \{q \mid q.x = h, q.v = 0\}$
- $D: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ written as a program

We write $q' = D(q)$

If $x \leq 0$ and $v < 0$

$v = -v; x=0$

else

$v = v - g$

$x = x + v - \frac{1}{2}g$

$$q.x = q.x + q.v - \frac{1}{2}g$$

$$q'.v = q.v - g$$

Candidate invariant $I_1: x \leq h$

Can we prove this inductively?

Use If $Q_0 \subseteq I_1$ and $Post(I_1) \subseteq I_1$ then I_1 is an invariant, i.e., $\text{Reach}_A \subseteq I_1$.

Base: We have to show $Q_0 \subseteq I_1$ that is for any $q \in Q_0$, $q \in I_1$

Consider $q \in Q_0$, $q.x = h$

Inductive step: We have to show $Post(I_1) \subseteq Post(I_1) \subseteq I_1$, that is, for any $q \in I_1$, $D(q) \in I_1$

What do we know about $q \in I_1$? $q.x \leq h$.

Two cases to consider based on if-else

(a) if $q.x \leq 0$ then $q'.x = 0$, and therefore $q' \in I_1$

(b) Otherwise $q.x \leq h$ and $q'.x = q.x + q.v - \frac{1}{2}g \leq h + q.v - \frac{1}{2}g$

I_1 does not impose any constraints on $q.v$ to be able to show that $q.v \leq \frac{1}{2}g$

Conclusion $I_1: x \leq h$ is not an inductive invariant

Although it is true through physical intuitions, we cannot prove it through this invariant

Automaton model a bouncing ball

Automaton $A = \langle Q, Q_0, D \rangle$

- $Q = \mathbb{R}^2$
- $Q_0 = \{q \mid q.x = h, q.v = 0\}$
- $D: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ written as a program

We write $q' = D(q)$

If $x \leq 0$ and $v < 0$

$v = -v; x=0$

else

$v = v - g$

$x = x + v - \frac{1}{2}g$

$q.x = q.x + q.v - \frac{1}{2}g$

$q'.v = q.v - g$

Candidate invariant $I_2: v^2 = 2g(h - x)$

Can we prove this inductively?

Use If $Q_0 \subseteq I_2$ and $Post(I_2) \subseteq I_2$ then I_2 is an invariant, i.e., $Reach_A \subseteq I_2$.

Base: We have to show $Q_0 \subseteq I_2$ that is for any $q \in Q_0$, $q \in I_2$

Consider $q \in Q_0$, $q.v^2 = 0 = 2g(h - q.x)$ (since $q.x = h$)

Inductive step: We have to show $Post(I_2) \subseteq Post(I_2) \subseteq I_2$, that is, for any

$q \in I_2$, $D(q) \in I_2$, What do we know about $q \in I_2$? $q.v^2 = 2g(h - q.x)$ --- Eq. (1)

Two cases to consider based on if-else

(a) if $q.x \leq 0$ then $q'.v^2 = q.v^2 = 2g(h - q.x) = 2g(h - q'.x)$ [by def of D and (1)]

(b) Otherwise $q'.v^2 = (q.v - g)^2 = q.v^2 - 2g q.v + g^2$

$$= 2g(h - q.x) - 2q.v + g^2 = 2g(h - q.x - q.v + \frac{1}{2}g) = 2g(h - q.x')$$

Conclusion: $v^2 = g(h - x)$ is an inductive invariant of A

Can we use this inductive invariant to prove $x \leq h$?

Revisiting AEB

If $x_2 - x_1 \leq d_s$

If $v_1 \geq a_b$

$v_1 = v_1 - a_b$

else

$v_1 = 0$

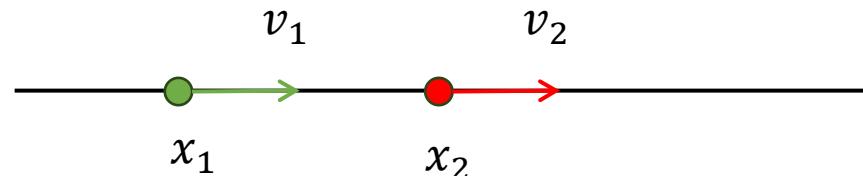
else

v_1 never increased

$v_1 = v_1$

$x_2 = x_2 + v_2$

$x_1 = x_1 + v_1$



initial conditions ($x_{10}, x_{20}, v_{10}, v_{20}$)

sensing distance (d_s)

braking acceleration (a_b)

Revisiting AEB

To prove no crash $x_2 > x_1$ in all reachable states, we will need assumptions about initial conditions ($x_{10}, x_{20}, v_{10}, v_{20}$), sensing distance (d_s), and braking acceleration (a_b)

Discovering these assumptions (for system correctness) is a valuable side-effect of verification

$$\text{Assumption: } x_{20} - x_{10} > d_s > \frac{v_{10}^2}{a_b}$$

The proof of correctness (as expected) will relate total time of braking with the initial separation. We need a timer

Invariants in AEB

Bound on total braking time in terms of velocity (v_{10}) and deceleration (a_b)

Invariant. I_1 : timer + $\frac{v_1}{a_b} \leq \frac{v_{10}}{a_b}$.

Proof. We need to check two conditions for this to be an inductive invariant: (i) $Q_0 \in I_1$ and (ii) $Post(I_1) \subseteq I_1$.

(i) Consider any $q \in Q_0$. We need to show $q \in I_1$.

$$q.\text{timer} + \frac{q.v_1}{a_b} = 0 + \frac{v_{10}}{a_b} \leq \frac{v_{10}}{a_b}$$

(ii) Consider any $(q, q') \in D$ with $q \in I_1$. We need to show $q' \in I_1$.

As there are three branches in D , there are 3 cases.

$$(a) \quad q'.\text{timer} + \frac{q'.v_1}{a_b} = q.\text{timer} + 1 + \frac{q.v_1 - a_b}{a_b} = q.\text{timer} + \frac{q.v_1}{a_b} \leq \frac{v_{10}}{a_b}$$

$$(b) \quad q'.\text{timer} + \frac{q'.v_1}{a_b} = q.\text{timer} + 0 \leq \frac{v_{10}}{a_b}$$

$$(c) \quad q'.\text{timer} + \frac{q'.v_1}{a_b} = q.\text{timer} + \frac{q.v_1}{a_b} \leq \frac{v_{10}}{a_b}$$

Now consider the **bounds on breaking time** I_2 : $\text{timer} \leq \frac{v_{10}}{a_b}$, is it true?

Invariants for correctness proof

Consider any two reachable states q_1, q_2 :

q_1 is where $x_2 - x_1 \leq d_s$ became true first, and

q_2 is reached from q_1 with $q_2 \cdot x_2 - q_2 \cdot x_1 \leq d_s$ (other reachable states are safe).

There could be multiple intermediate states between q_1 and q_2

Then, we evaluate: $q_2 \cdot x_2 - q_2 \cdot x_1$

$$> q_1 \cdot x_2 - q_2 \cdot x_1$$

[Because the car moves forward, x_2 increased]

$$> q_1 \cdot x_2 - q_1 \cdot x_1 - \nu_{10} \cdot \frac{\nu_{10}}{a_b}$$

[$I_2 \Rightarrow$ timer $\leq \frac{\nu_{10}}{a_b}$ and $q_2 \cdot x_1 \leq q_1 \cdot x_1 + \nu_{10} \cdot \frac{\nu_{10}}{a_b}$]

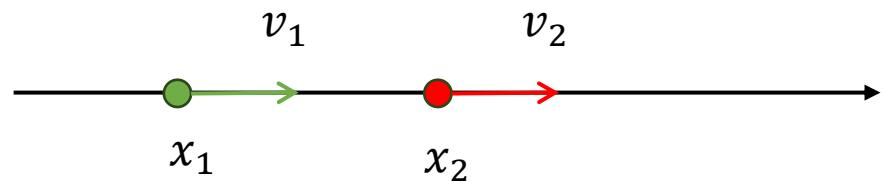
$$> d_s - \frac{\nu_{10}^2}{a_b}$$

[By def of q_1]

maximum bounds on
speed breaking time

$$> 0$$

[By Assumption $x_{20} - x_{10} > d_s > \frac{\nu_{10}^2}{a_b}$]



Summary

- ▶ Testing alone is inadequate---in theory and practice
- ▶ Automaton (state machine) models, executions, and requirements give us the language to state correctness claims precisely
- ▶ Verification is the problem of proving/disproving such claims
- ▶ Safety claims are a (prevalent) subset of correctness claims
- ▶ Reachability analysis can prove/disprove safety
- ▶ In general, reachability and verification are hard (state space explosion, undecidability)
- ▶ Inductive invariants over-approximating reachable states give a practical method for proving safety

