.5

Principles of Autonomy
Fall 2025 Lecture 3: Checking Safety

Professor: Huan Zhang
Aug 26, 2025
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com

5

More about labs and MPs

More time for forming your team: MPO has been changed to
individual

Deadline for finalizing all teams: Friday, Sep 5
All team members must be in the same lab session

You can switch your lab section through the regular course
registration portal (if the section you want to switch to is not full)

MP1 and HW1 will be released this Friday 9 am - check Gradescope

AN

More about labs and MPs

If you cannot make the switch yourself, because the section you want to switch
to is always full, send a requst to the lead TA Hanna Chen
(hannac4@illinois.edu) on Tuesday, Sep 2 (TODAY!)

cc your email to the corresponding lab TAs: the one you are moving out from and the
one you are moving to

early/late requests will not be handled

You will be notified whether your lab switch is approved by the end of
Wednesday, Sep 3
Not guaranteed - we need to balance the enrollments of each section

All teams must be formed by Friday, Sep 5

You will need to submit the team member names - pay attention to announcements
on Campuswire

All team members must be in the same lab section

Outline

~ Safety requirements

~ Reachability
» Data structures

~ Inductive invariants
~ Example

Recall: Automata

An is defined by a triple , o, , where
is a set of
0 is a set of
X s asetof
An of an automaton s a finite or infinite sequence of states
0 0
Forall in , |, 44
We write 41 =

A nondeterministic automata has many executions

E.g. P,D,P,D,

AN

... P, D, Auto; ...

OJ0B0ORS

= o 1, 2, ..suchthat

-' é (o}

Requirements and Counter-examples

A defines a collection of executions
— + }
2 = =, 1%}
An automaton a requirement if all executions of

are contained in

does not either requirement 2
because there are executions 1 =
. and 2 = | |

satisfies both the requirements

: Given an automaton and a
requirement , decide whether all executions of arein or
find a counter-example that is outside R

OJ0B0ORS

(1) () (o) (=

Automata and requirements

0= o}
1 2 3 4
Which automata satisfy the following requirements

1. - T # }o3 = o = }
2. Unsafe = . = } 4. = o z }

e

Safety requirements and verification

A IS a requitement that states that no execution should reach a
certain
— 2 1 safety = }
= . o> L 4} safety = . o— . 1 =0}
, = | = +1 7 } notasafety requirement
= , 2= . ,— . 1=1} notasafety requirement (depending

on the entire execution, not a set of states)

-' é (o}

-' é (o}

Safety verification: Reachable states, invariants

: Given an automaton and an unsafe set
, check whether there exists any execution of thatreaches

Counter-examples of safety are finite executions = ...

For finite automata safety verification can be solved using depth first
search from g

Absence of a counter-example proves that the automaton is safe

Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton and an unsafe set
check whether there exists any execution of thatreaches

Counter-examples of safety are finite executions
A state is reachable if there exists an execution suchthat =

The reachable states of isthe set of all the states that are

reachable

Safety verification problem is equivalent to as checking n = 72

That is, if we can compute then we can verify safety

Further, sufficient to compute an over-approximation Reachp such
that NnU =

An invariant of is any set of state such that Reachp

o

Computing reachable sets

Computing the reachable set of A allows us to verify safety

Reachability algorithm
o = o// Sets of states
=0
do
= +1
= 7 : N
Until == -1
Return
All states that are reachable within k steps 0, =
If the algorithm terminates then is the final output of the algorithm
If N = then we have a proof of safety

Algorithm may not terminate and computing ,; for one-step can also be challenging

for uncountable
Verse: A Python library for reasoning about multi-agent

Verse tool you will learn to use in MPO performs reachability analysis hybrid system scenarios arxiv Li et al. CAV 2023.

https://github.com/AutoVerse-ai/Verse-library

(g

https://link.springer.com/chapter/10.1007/978-3-031-37706-8_18
https://arxiv.org/abs/2301.08714

Computing reachable sets and over-approximations

— — — ' ’ }
Reachability algorithm

0— O

=0
do

= +1
- -1 -1

Until = -1
Return

Here the Post(R) defines the set of states that can reach in one-step, starting from a set of states R

Exercise: Show that Post is monotonig, i.e., If then

(g

Computing reachable sets and over-approximations

1 4 _ _ _ y 1 4
- - - | |

Reachability algorithm

0— O

=0
do

= +1
- -1 -1

Until = -1
Return

All states that are reachable in exactly k steps =

, 0
If 1 computes an over-approximation of 1 then the above algorithm
computes an over-approximation of

N = proves safety, but N % does not imply that

there is a real counterexample

(g

-' é (o}

Data structures for representing sets

Intervals: © | Reachability algorithm
+5> L, = +5 +5 needs to compute
Similarly for other operations +,-,x any monotonic operation +1
Hyperrectangles: .
Polytopes: L represented by the vertices
Ellipsoids: represented by a center and a shape matrix
Star sets: represented by a center, basis vectors, and a predicate

Different representations allow different operations to be
performed on the sets efficiently

In building a reachability algorithm this data structure is an
important choice

Verse: Python Ilbrary for reachability analysis (MPO)

class Mode(Enum): - T2
Normal = auto() d
Up = auto()

!
class Track(Enum): ;§|i S (o)
TO auto()

T1 auto() \

- = TO
class State: | X

x: float <

y: float

= QuadrotorAgent(”ql", ..) // Defines the dynamics
gl.set initial([..], (Mode.Normal, Track.Tl))
scenario.add agent(ql)
g2 = ..
scenario.set map(M5())
scenario.simulate(..)
scenario.verify(..) 1 Goge

(30,@®.55) (27/@®.55)

mode: Mode
track: Track

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):
if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)
if map.exist(ego.track, ego.mode, Down):
next.mode = Down

assert not any(isVeryClose(ego, other) for other in others), "Seperation” (“

5

Verse: Python I|brary for reachability analysis (MPO)

class Mode(Enum): - T2

Normal = auto() ,’

Up = auto() |

%@, .2 T1
class Track(Enum): \"“‘

TO = auto() \

T1 = auto

() N TO

class State: ‘ X
x: float <

y: float
mode: Mode

track: Track

= QuadrotorAgent(”ql", ..)
gl.set initial([..], (Mode.Normal, ack.T1))
scenario.add agent(ql)
92 = ..
scenario.set map(M5())
scenario.simulate(..)
scenario.verify(..)

def decisionLogic(ego: State, others: List[State], map):
if ego.mode == Normal:
if any(isClose(ego, other) for other in others):
if map.exist(ego.track, ego.mode, Up):
next.mode = Up
next.track = map.h(ego.track, ego.mode, Up)
if map.exist(ego.track, ego.mode, Down):
next.mode = Down

(31@@8.3) (284@8.3)

assert not any(isVeryClose(ego, other) for other in others), "Seperation”

e

(g

Reachable states and invariants

An invariant of s any set of states such that Reachp

An invariant proves safety if n =

In general computing or finding invariants is also hard; it is easier to check whether a given set is an invariant
If Qo and then isaninvariant, i.e., Reachp

Such invariants are called inductive invariants

Unsafe with counter-example Safe but not proved by
invariant |

Safety proved by computing invariant |

W X

Inductive invariants

Theorem. If Qg and then isaninvariant, i.e., Reachy

Such invariants are called
Proof. Consider any reachable state

By definition of reachable state, there is an execution with =

By induction on k we will show that

Base case, fork=0, o= o 0 [using definition of execution and inductive inv]
Induction. By inductive hypothesis, suppose . We have to show

, implies which implies [by monotonicity of Post and :
Take away: Guess a candidate inductive invariant n = and check Qq and

successful then safety is verified.

Automaton model a bouncing ball

Automaton = | o,

0= ..’ .: o :O}

2 . 2 written as a program

f <0and <O
=— =0

else Assume each transition is one “unit time step”:

|

+

I
N |-

I

Automaton model a bouncing ball

Candidate invariant 1 <

Can we prove this inductively?

Automaton = | o,
. _ 2 Use If then q1isaninvariant,i.e.,, Reachy, ;.
« o= =, . =0} Base: We have to show that is for any O 1
« : 2. Zwritten as a program Consider o - =
We write | = Inductive step: We have to show 1 , that is, for any 1, D
What do we know about 1?7 . =<

f <0and <0 Two cases to consider based on if-else

—— . x=0 (a)if . <O0then . =0, andtherefore ~
else (b) Otherwise and = . + . —% + . —%

- . 1 does not impose any constraintson . to be able toshow that . = %

= 7 2 Conclusion ;: < isnotan inductive invariant

_ N B l Although it is true through physical intuitions, we cannot prove it through this invariant

2

AN

Automaton model a bouncing ball

Candidate invariant ,: 2 =2 —

Automaton =, |, Can we prove this inductively?
. = 2 . . : :
— Use If then sisaninvariant,i.e.,, Reachy ».
. = .=, . = 0)
0 J Base: We have to show that is for any O >
« : 2, 2written as a program _ 5 .
, Consider o - =0=2 - . (since . =)
We write =
Inductive step: We have to show > , that is, for any
f <0and <O 5, D >, What do we know about 2?7 . %= — . -—Eq.(2)
=— ,;x=0 Two cases co consider based on if-else
else (a)if . <Othen . 2= . 2= — . =2 — ' [bydefofDand(1)]
-) (b) Otherwise . 2= 2= 2-2 . + 2
= + —=
2) - -2 o+ 2 _ 2 S 1 =92 _ ’
1 2
- + 2 Conclusion: 2 = — isaninductive invariant of A

Can we use this inductive invariant to prove < ?

AN

Revisiting AEB

If =
1= 1~
else

1 hever increased

AN

1 2

(@)

. >
2

initial conditions (19, 20, 10,
sensing distance
braking acceleration

20

O]

Revisiting AEB

To prove no crash 5, = 1 inall reachable states, we will need
assumptions about initial conditions (109, 20, 10, 20 ,Sensing
distance , and braking acceleration

Discovering these assumptions (for system correctness) is a valuable

side-effect of verification
2

Assumption: .9 — 10 > @ > =2

The proof of correctness (as expected) will relate total time of braking
with the initial separation. We need a timer

Invariants in AEB

timer=0
hc 2_ 1S
If =

case (a) 1= 1
timer :=timer+1

else
case (b) | = 0
else
case (c) 1= 1
2= 2%t
1= 11+t 1

AN

Bound on total braking time in terms of

velocity (1g) and deceleration ()

Invariant. 1: timer + =+ < =2,

Proof. We need to check two conditions for this to be an inductive invariant: (i)

1 and (II) 1 1-
(i) Consider any
4+ 1 — 0O+ 10 -~ _10

(i) Consider any , with 1. We need toshow " 4.

As there are three branchesin , there are 3 cases.
a " 4 — 1 — +1+—-1r = 4+ 1< 10
b +—== +0<—=
C '. -+ - = 1 — + _l S ﬂ

Now consider the

o- We need to show 1.

o0 timer < 22 is it true?

0

Invariants for correctness proof

(©
?
%

Consider any two reachable states 1, »: 1
1iswhere ,— 1< became true first, and
> isreached from withQ,. »— 5. { < (otherreachable states are safe).
There could be multiple intermediate states beween 1 and -

Then, we evaluate: 5. o — 5. 1

> 4. 00— 2.1 [Because the car moves forward, 5 increased]
: 10
> 1. 271 17 10 [l tmer=s—and > 1= 1. 1+ 10
2. maximum
= T [By def of 1] speed
3
>0 [By Assumption 59— 10> = —]

v

-' é (o}

Summary

Testing alone is inadequate---in theory and practice

Automaton (state machine) models, executions, and requirements
give us the language to state correctness claims precisely

Verification is the problem of proving/disproving such claims
Safety claims are a (prevalent) subset of correctness claims
Reachability analysis can prove/disprove safety

In general, reachability and verification are hard (state space explosion,
undecidability)

Inductive invariants over-approximating reachable states give a
practical method for proving safety

