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More about labs and MPs

► More time for forming your team: MP0 has been changed to 
individual

► Deadline for finalizing all teams: Friday, Sep 5
► All team members must be in the same lab session
► You can switch your lab section through the regular course 

registration portal (if the section you want to switch to is not full)

► MP1 and HW1 will be released this Friday 9 am - check Gradescope



More about labs and MPs

► If you cannot make the switch yourself, because the section you want to switch 
to is always full, send a requst to the lead TA Hanna Chen 
(hannac4@illinois.edu) on Tuesday, Sep 2 (TODAY!)

► cc your email to the corresponding lab TAs: the one you are moving out from and the 
one you are moving to

► early/late requests will not be handled
► You will be notified whether your lab switch is approved by the end of 

Wednesday, Sep 3
► Not guaranteed - we need to balance the enrollments of each section

► All teams must be formed by Friday, Sep 5
► You will need to submit the team member names - pay attention to announcements 

on Campuswire
► All team members must be in the same lab section



Outline

► Safety requirements
► Reachability

► Data structures

► Inductive invariants
► Example



Recall: Automata

An automaton � is defined by a triple ⟨�, �0, �⟩, where 
► � is a set of states
► �0 ⊆ � is a set of initial states 
► � ⊆ � × � is a set of transitions 

An execution of an automaton � is a finite or infinite sequence of states � = �0,  �1, �2, … such that
► �0 ∈ �0

► For all � in �,  ��, ��+1 ∈ �
► We write ��+1 = � �� 
A nondeterministic automata has many executions

E.g.  P,D,P,D,… ; P, D, Auto; …

P D AutoR

���



Requirements and Counter-examples
A requirement defines a collection of executions 

������� =  �   ∀� �� ≠ �푢��} ;
����2� =  �   ∀� �� �� = �,  ��+1 ≠ �}

An automaton � satisfies a requirement � if all executions of 
� are contained in  �
��� does not satisfy either requirement ������� ����2� 
because there are counter-example executions � 1 =
�, �,  �푢�� and � 2 = �, �, �
���
′  satisfies both the requirements

Verification problem: Given an automaton � and a 
requirement �, decide whether all executions of � are in � or 
find a counter-example that is outside R

P D AutoR
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Automata and requirements

�0

�1 �2

�3 �4 �5 �6

�1 �2 �3 �4

Which automata satisfy the following requirements
1. ����������� =  �  ∀�,  ��. 푐���� ≠ 푔����}
2. Unsafe =  �   �. 푐���� = 푔���� }

3. ���������������� =  �  ∃�,  ��. 푐���� = 푔����}
4. ��������� =  �  ∃�,  ��. 푐���� ≠ ���}

�0 =  �0}



Safety requirements and verification

A safety requirement is a requitement that states that no execution should reach a 
certain set of bad (or unsafe) states � ⊆ �
������� =  �   ∀�,  �� ≠ �푢��}  safety � =  �푢��}
������������ =  �   ∀�,  ��. �2 > ��. �1}  safety � =  � �. �2 − �. �1 ≤ 0}

����2� =  �   ∀�,   �� �� = � �ℎ�� ��+1 ≠ �} not a safety requirement

�������� =  �   ∃�,   2 ≥ ��. �2 − ��. �1 ≥ 1} not a safety requirement (depending 
on the entire execution, not  a set of states)



Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton � and an unsafe set 
�, check whether there exists any execution � of � that reaches �

Counter-examples of safety are finite executions � = �0…. ��, �� ∈ �

For finite automata safety verification can be solved using depth first 
search from �0

Absence of a counter-example proves that the automaton is safe



Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton � and an unsafe set �, 
check whether there exists any execution � of � that reaches �

Counter-examples of safety are finite executions

A state � ∈ � is reachable if there exists an execution � such that �� = �. 

The reachable states of � is the set ���푐ℎ� ⊆ � of all the states that are 
reachable 

Safety verification problem is equivalent to as checking ���푐ℎ� ∩ � = ∅?

That is, if we can compute ���푐ℎ� then we can verify safety

Further, sufficient to compute an over-approximation ReachA ⊆ � such 
that � ∩ U = ∅

An invariant of � is any set of state � ⊆ � such that  ReachA ⊆ � 

�
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Computing reachable sets
Computing the reachable set of  A allows us to verify safety

All states that are reachable within k steps ���푐ℎ� 0, � = ��

If the algorithm terminates then ���푐ℎ� is the final output of the algorithm

If ���푐ℎ� ∩ ��푠��� = ∅ then we have a proof of safety

Algorithm may not terminate and computing ��+1 for one-step can also be challenging 
for uncountable ��

Verse tool you will learn to use in MP0 performs reachability analysis

�
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�

��푠���
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��. . �

Reachability algorithm
�0 = �0 // Sets of states
� = 0
do
    � = � + 1
    �� =  �′    �, �′ ∈ �,  � ∈ ��−1 } ∪ ��−1
Until �� = ��−1
Return ��

https://github.com/AutoVerse-ai/Verse-library

Verse: A Python library for reasoning about multi-agent 
hybrid system scenarios arxiv  Li et al. CAV 2023.

https://link.springer.com/chapter/10.1007/978-3-031-37706-8_18
https://arxiv.org/abs/2301.08714


Computing reachable sets and over-approximations
�′ = ��푠� � = � � =  �′    �, �′ ∈ �,  � ∈ � }

�
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Reachability algorithm
�0 = �0 
� = 0
do
    � = � + 1
    �� = ��푠� ��−1 ∪ ��−1
Until �� = ��−1
Return ��

Here the Post(R) defines the set of states that can reach in one-step, starting from a set of states R

Exercise: Show that Post is monotonic, i.e., If �� ⊆ �� then ��푠� �1 ⊆ ��푠� �2 .



Computing reachable sets and over-approximations
�′ = ��푠� � = � � =  �′    �, �′ ∈ �,  � ∈ � }

All states that are reachable in exactly k steps ���푐ℎ� �, � = ��푠�� �0 

If ��푠� �1  computes an over-approximation of ��푠� �1  then the above algorithm 
computes an over-approximation of ���푐ℎ� ⊆ ���푐ℎ�

���푐ℎ� ∩ ��푠��� = ∅ proves safety, but ���푐ℎ� ∩ ��푠��� ≠ ∅ does not imply that 
there is a real counterexample 
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Reachability algorithm
�0 = �0 
� = 0
do
    � = � + 1
    �� = ��푠� ��−1 ∪ ��−1
Until �� = ��−1
Return ��



Data structures for representing sets
► Intervals: ��:  �, � ∈ ℝ

► � ≔ � + 5  ��+1 =  � + 5, � + 5 
► Similarly for other operations +,-,x any monotonic operation

► Hyperrectangles: ��:  �, � ∈ ℝ�

► Polytopes:  ��, ��, …, ��  represented by the vertices
► Ellipsoids: represented by a center and a shape matrix
► Star sets: represented by a center, basis vectors, and a predicate
Different representations allow different operations to be 
performed on the sets efficiently
In building a reachability algorithm this data structure is an 
important choice

Reachability algorithm 
needs to compute
��+1 = � ��   ∪ ��



class Mode(Enum):
  Normal = auto()
  Up = auto() 
  …
class Track(Enum):
  T0 = auto()
  T1 = auto()
  …
class State:
  x: float
  y: float
  …
  mode: Mode
  track: Track

def decisionLogic(ego: State, others: List[State], map):
  if ego.mode == Normal:
    if any(isClose(ego, other) for other in others):
      if map.exist(ego.track, ego.mode, Up):
         next.mode = Up
         next.track = map.h(ego.track, ego.mode, Up)
      if map.exist(ego.track, ego.mode, Down):
         next.mode = Down
         …

assert not any(isVeryClose(ego, other) for other in others), "Seperation"

Verse: Python library for reachability analysis (MP0)

q1 = QuadrotorAgent(”q1", …) // Defines the dynamics
q1.set_initial([…], (Mode.Normal, Track.T1))
scenario.add_agent(q1)
q2 = …
scenario.set_map(M5())
scenario.simulate(…)
scenario.verify(…)



class Mode(Enum):
  Normal = auto()
  Up = auto() 
  …
class Track(Enum):
  T0 = auto()
  T1 = auto()
  …
class State:
  x: float
  y: float
  …
  mode: Mode
  track: Track

def decisionLogic(ego: State, others: List[State], map):
  if ego.mode == Normal:
    if any(isClose(ego, other) for other in others):
      if map.exist(ego.track, ego.mode, Up):
         next.mode = Up
         next.track = map.h(ego.track, ego.mode, Up)
      if map.exist(ego.track, ego.mode, Down):
         next.mode = Down
         …

assert not any(isVeryClose(ego, other) for other in others), "Seperation"

Verse: Python library for reachability analysis (MP0)

q1 = QuadrotorAgent(”q1", …)
q1.set_initial([…], (Mode.Normal, Track.T1))
scenario.add_agent(q1)
q2 = …
scenario.set_map(M5())
scenario.simulate(…)
scenario.verify(…)

� �
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Reachable states and invariants
An invariant of � is any set of states � ⊆ � such that  ReachA ⊆ � 

An invariant proves safety if � ∩ ��푠��� = ∅ 

In general computing or finding invariants is also hard; it is easier to check whether a given set is an invariant

If Q0 ⊆ � and ��푠� � ⊆ � then � is an invariant, i.e., ReachA ⊆ �. 

Such invariants are called inductive invariants
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Unsafe with counter-example Safety proved by computing invariant ISafe but not proved by 
invariant I 



Inductive invariants
Theorem. If Q0 ⊆ � and ��푠� � ⊆ � then � is an invariant, i.e., ReachA ⊆ �. 

Such invariants are called inductive invariants

Proof. Consider any reachable state � ∈ ���푐ℎ� ⊆ �

By definition of reachable state, there is an execution � with �� = �

By induction on k we will show that � ∈ �

Base case, for k=0, �0 = �0 ∈ �0 ⊆ � [using definition of execution and  inductive inv]

Induction. By inductive hypothesis, suppose �� ∈ �. We have to show � = ��+1 ∈ �.

 ��, � ∈ � implies � ∈ ��푠� ��  which implies [by monotonicity of Post and �� ∈ �]:

 � ∈ ��푠� �� , ��푠� �� ⊆ ��푠� �     ⇒  � ∈ ��푠� �      ⊆ �

Take away: Guess a candidate inductive invariant � ∩ ��푠��� = ∅ and check Q0 ⊆ � and ��푠� � ⊆ �. If 
successful then safety is verified.



Automaton model a bouncing ball

Automaton � = ⟨�, �0, �⟩
► � = ℝ2 

► � ∈ � �. �, �. �  ∈ ℝ
► �0 =  �   �. � = ℎ, �. � = 0}
► �:ℝ2 → ℝ2 written as a program

If � ≤ 0 and � < 0
      � =− �; � = 0
else
     � = � − 푔
     � = � + � − 1

2
푔

Assume each transition is one “unit time step”: 
                          �′. � = �. � + �. � − 1

2
푔

�′. � = �. � − 푔



Automaton model a bouncing ball
Candidate invariant �1: � ≤ ℎ

Can we prove this inductively? 

Use If Q0 ⊆ �1 and ��푠� �1 ⊆ �1 then �1 is an invariant, i.e., ReachA ⊆ �1. 

Base: We have to show Q0 ⊆ �1 that is for any � ∈ �0,  � ∈ �1 

Consider � ∈ �0,  �. � = ℎ

Inductive step: We have to show ��푠� �1 ⊆ ��푠� �1 ⊆ �1, that is, for any � ∈ �1, D � ∈ �1
What do we know about � ∈ �1? �. � ≤ ℎ. 

Two cases to consider based on if-else

(a) if �. � ≤ 0 then �′. � = 0,  and therefore �′ ∈ �1

(b) Otherwise �. � ≤ ℎ and �′. � = �. � + �. � − 1
2
푔  ≤ ℎ + �. � − 1

2
푔 

�1 does not impose any constraints on �. � to be able to show that �. � ≤ 1
2
푔 

Conclusion �1: � ≤ ℎ is not an inductive invariant

Although it is true through physical intuitions, we cannot prove it through this invariant

Automaton � = ⟨�, �0, �⟩

• � = ℝ2 

• �0 =  �   �. � = ℎ, �. � = 0}

• �:ℝ2 → ℝ2 written as a program

We write �′ = � � 

If � ≤ 0 and � < 0

      � =− �; x=0

else

     � = � − 푔

     � = � + � − 1
2
푔

�. � = �. � + �. � −
1
2
푔

�′. � = �. � − 푔



Automaton model a bouncing ball

Automaton � = ⟨�, �0, �⟩

• � = ℝ2 

• �0 =  �   �. � = ℎ, �. � = 0}

• �:ℝ2 → ℝ2 written as a program

We write �′ = � � 

If � ≤ 0 and � < 0

      � =− �; x=0

else

     � = � − 푔

     � = � + � − 1
2
푔

Candidate invariant �2: �2 = 2푔 ℎ − � 

Can we prove this inductively? 

Use If Q0 ⊆ �2 and ��푠� �2 ⊆ �2 then �2 is an invariant, i.e., ReachA ⊆ �2. 

Base: We have to show Q0 ⊆ �2 that is for any � ∈ �0,  � ∈ �2 

Consider � ∈ �0,  �. �2 = 0 = 2푔 ℎ − �. �    (since  �. � = ℎ)

Inductive step: We have to show ��푠� �2 ⊆ ��푠� �2 ⊆ �2, that is, for any

� ∈ �2, D � ∈ �2, What do we know about � ∈ �2? �. �2 = 2푔 ℎ − �. �  --- Eq. (1)

Two cases co consider based on if-else

(a) if �. � ≤ 0 then �′. �2 = �. �2 = 2푔 ℎ −  �. � = 2푔 ℎ −  �′. � [by def of D and (1)]

(b) Otherwise �′. �2 =  �. � − 푔 2 = �. �2 − 2푔 �. � + 푔2 

= 2푔 ℎ − �. � − 2 �. � + 푔2 = 2푔  ℎ − �. � −  �. � + 1
2
푔 = 2푔 ℎ − �. �′ 

Conclusion: �2 = 푔 ℎ − �  is an inductive invariant of A

Can we use this inductive invariant to prove � ≤ ℎ?

�. � = �. � + �. � −
1
2
푔

�′. � = �. � − 푔



Revisiting AEB

�1 �2

�1 �2

If �2 − �1 ≤ ��
   If �1 ≥ ��
       �1 = �1 − ��
   else
      �1 = 0
else 
   �1 = �1
�2 = �2 + �2
�1 = �1 + �1

initial conditions (�10, �20, �10,  �20  
sensing distance  �� 

braking acceleration  �� 

�1 never increased



Revisiting AEB

To prove no crash �2 > �1 in all reachable states, we will need 
assumptions about initial conditions (�10, �20, �10,  �20 , sensing 
distance  �� , and braking acceleration  �� 

Discovering these assumptions (for system correctness) is a valuable 
side-effect of verification

Assumption: �20 − �10 > �� >
�102

��
The proof of correctness (as expected) will relate total time of braking 
with the initial separation. We need a timer 



Invariants in AEB

timer = 0
If �2 − �1 ≤ ��
   If �1 ≥ ��
       �1 = �1 − ��
       timer := timer+1
   else
      �1 = 0
else 
   �1 = �1
�2 = �2 + �2
�1 = �1 + �1

Invariant. �1:  timer + �1
��

≤ �10
��

.

Proof. We need to check two conditions for this to be an inductive invariant: (i) �0 ∈
�1 and (ii) ��푠� �1 ⊆ �1.
(i) Consider any � ∈ �0. We need to show � ∈ �1.
�. ����� + �.�1

��
= 0 + �10

��
≤ �10

��
.

(ii) Consider any  �, �′ ∈ � with � ∈ �1. We need to show �′ ∈ �1. 
As there are three branches in �, there are 3 cases.

 a �′. ����� + �′.�1
��

= �. ����� + 1 + �.�1−��
��

= �. ����� + �.�1
��

≤ �10
��

 b �′. ����� + �′.�1
��

= �. ����� + 0 ≤ �10
��

 c �′. ����� + �′.�1
��

= �. ����� + �.�1
��

≤ �10
��

Now consider the bounds on breaking time �2:  timer ≤ �10
��

 , is it true?

Bound on total braking time in terms of 
velocity (�10) and deceleration (��)

case (a)

case (b)

case (c)



Invariants for correctness proof
Consider any two reachable states �1 , �2: 

�1 is where �2 − �1 ≤ �� became true first, and 

�2 is reached from �1 with q2. �2 − �2. �1 ≤ �� (other reachable states are safe). 

There could be multiple intermediate states beween �1 and �2
Then, we evaluate: �2. �2 − �2. �1
  > �1. �2 − �2. �1 [Because the car moves forward, �2 increased]

  > �1. �2 −�1. �1 − �10.
�10
��

                  [I2 ⇒ timer ≤ �10
��

 and �2. �1 ≤ �1. �1 + �10.
�10
��

 ]

  > �� −
�102

��
 [By def of �1 ]

  > 0 [By Assumption �20 − �10 > �� >
�102

��
]

�1 �2

�1 �2

bounds on 
breaking time

maximum 
speed



Summary
► Testing alone is inadequate---in theory and practice
► Automaton (state machine) models, executions, and requirements 

give us the language to state correctness claims precisely
► Verification is the problem of proving/disproving such claims
► Safety claims are a (prevalent) subset of correctness claims
► Reachability analysis can prove/disprove safety 
► In general, reachability and verification are hard (state space explosion, 

undecidability) 
► Inductive invariants over-approximating reachable states give a 

practical method for proving safety


