

ECE 484: Principles of Safe Autonomy (Fall 2025)

Lecture 8

Control

Professor: Huan Zhang

<https://publish.illinois.edu/safe-autonomy/>

<https://huan-zhang.com>

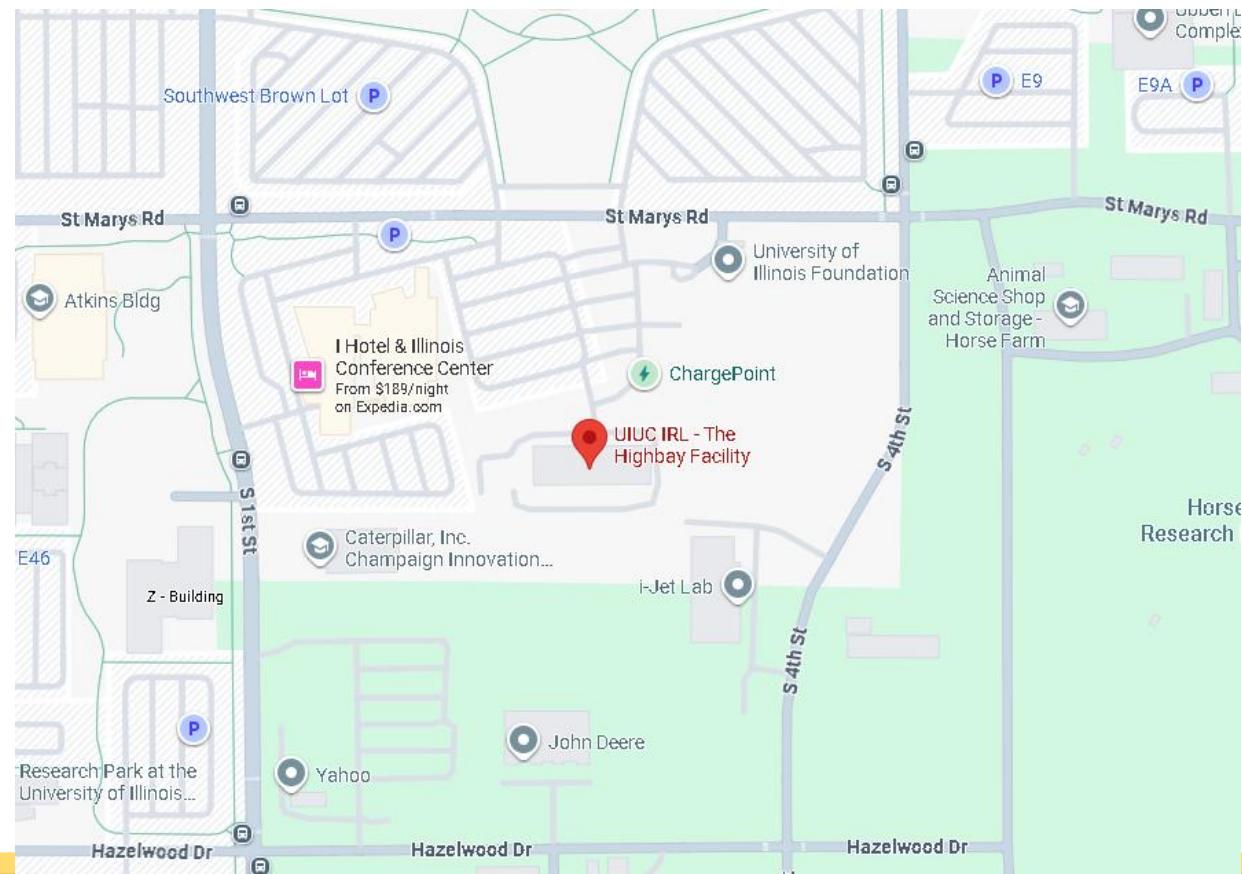
huanz@illinois.edu

GEM field trip 9/23 11 am (upcoming Tuesday)

Do not come to the ECEB classroom on **9/23 (next class)**

GEM car field trip at the Highbay facility:
201 St Marys Rd, Champaign, IL 61820

More information on **Campuswire**



GEM platform

Autonomy pipeline

Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,
etc.

Perception

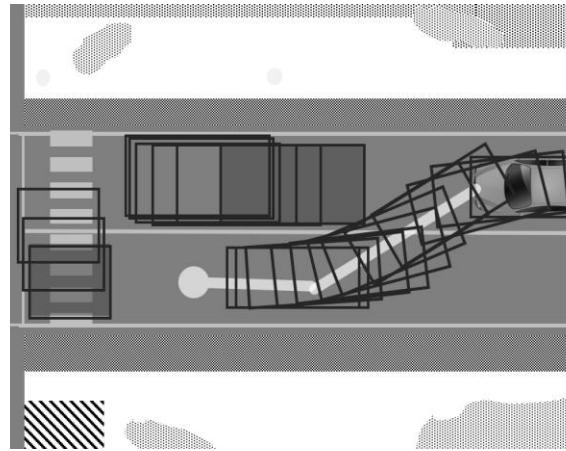
Programs for object
detection, lane
tracking, scene
understanding, etc.

Decisions and planning

Programs and multi-
agent models of
pedestrians, cars,
etc.

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

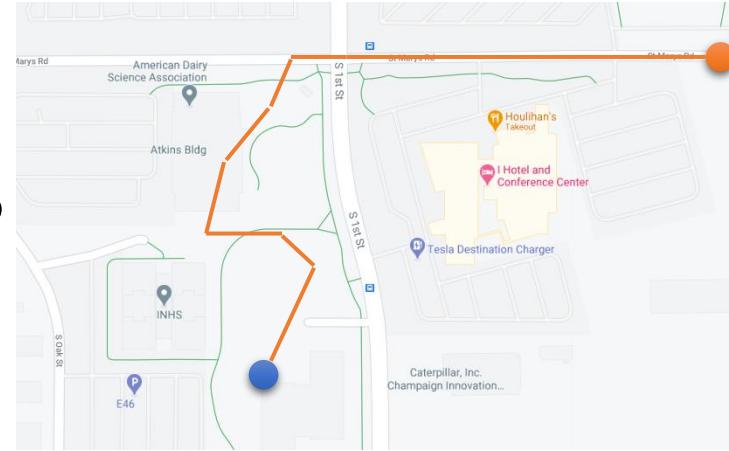
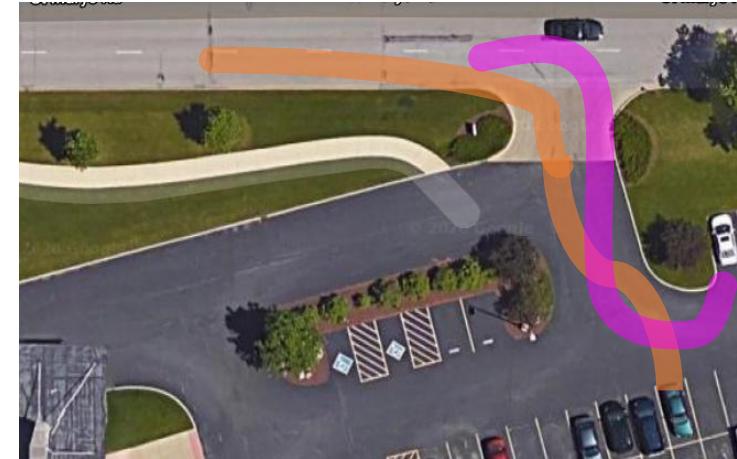
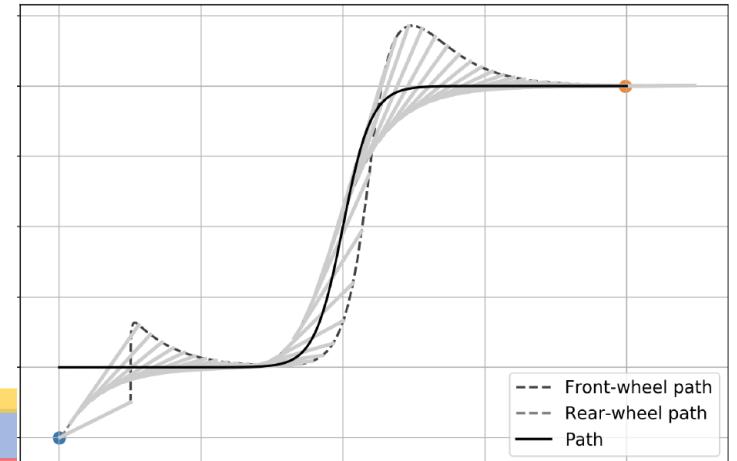


Control

Dynamical models of
engine, powertrain,
steering, tires, etc.

Typical planning and control modules

- Global navigation and planner
 - Find paths from source to destination with static obstacles
 - Algorithms: Graph search, Dijkstra, Sampling-based planning
 - Time scale: Minutes
 - Output: reference center line, does not consider vehicle dynamics
- Local planner
 - Dynamically feasible trajectory generation
 - Dynamic planning w.r.t. obstacles
 - Time scales: 10 Hz
- Controller
 - Waypoint follower using steering, throttle
 - Algorithms: PID control, MPC, Lyapunov-based controller
 - Lateral/longitudinal control
 - Time scale: 100 Hz



What is control?

Control theory is the *art* of making *things* do *what you want* them to do

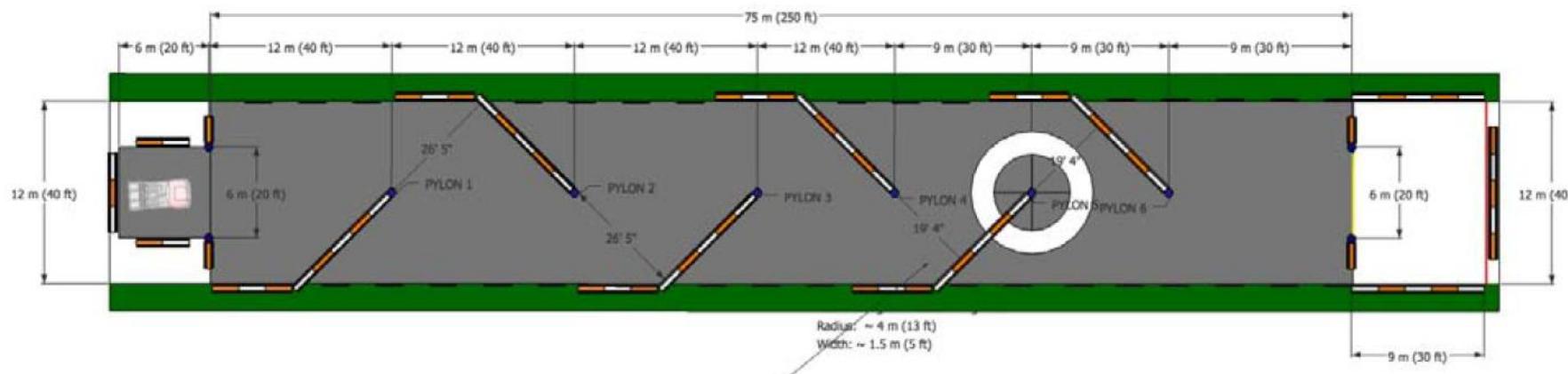
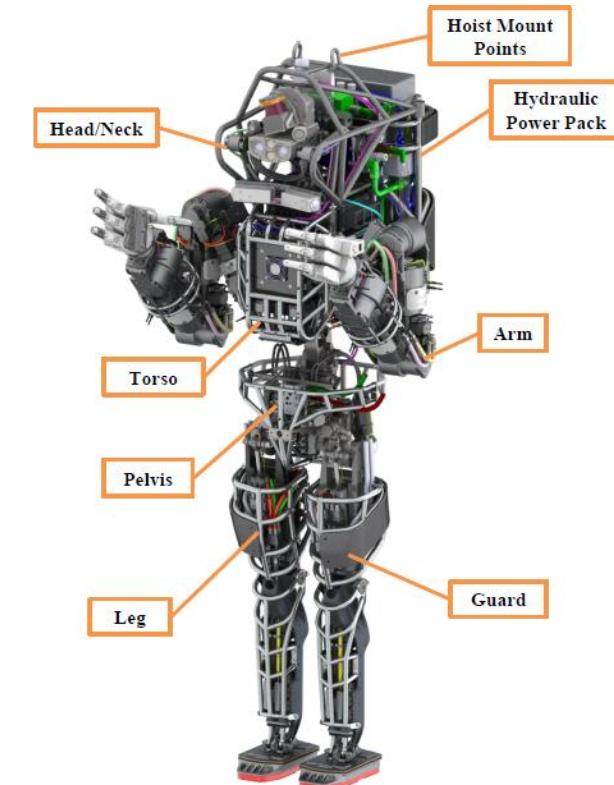
art: tuning or optimizing parameters

things: Differential equation models

what you want: tracking error or stability

Complex control tasks: DARPA Robotics Challenge

- 4 point task
 - Robot drives the vehicle through the course (1)
 - Robot gets out of the vehicle and travels dismounted out of the end zone (2)
 - Bonus point (1) if the robot completes all tasks without human interventions



<https://www.youtube.com/watch?v=bFFMLUDuNCE>

<https://www.youtube.com/watch?v=OesfwU1rsyg>

Outline

- Modeling the control problem
 - Differential Equations; solutions and their properties
- Control design
 - PID
 - State feedback
 - MPC (brief)
- Requirements
 - Stability
 - Lyapunov theory and its relation to invariance

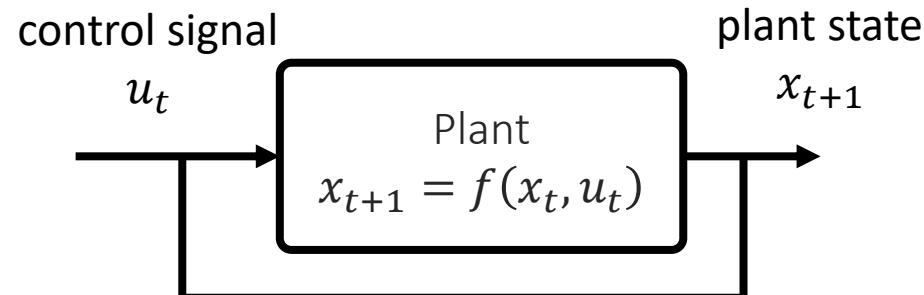
“Thing” being controlled: the Plant

The system we want to control is the **plant**

Plant state at time $t \in \mathbb{R}$ is denoted by a vector $x_t \in \mathbb{R}^n$

The input used to control the plant state is the **control signal** $u_t \in \mathbb{R}^m$

The **dynamics function** $f: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$ models how the plant state changes in *discrete time* from a previous state x_t under the influence of a control input u_t , that is, $x_{t+1} = f(x_t, u_t)$



Discrete time mode and Automata

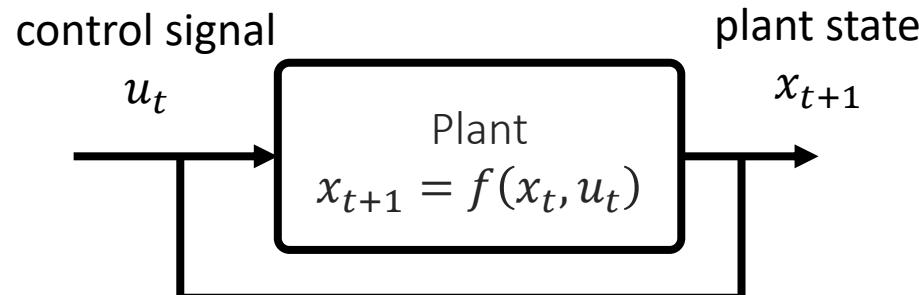
The dynamics function $f: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$ models how the plant state changes in discrete time from a previous state x_t under the influence of a control input u_t , that is, $x_{t+1} = f(x_t, u_t)$

This discrete time model defines a (nondeterministic) automaton

$$A = \langle Q = \mathbb{R}^n, Q_0, D \subseteq Q \times Q \rangle \text{ with } D = \{(x, x') \mid \exists u \in \mathbb{R}^m \ x' = f(x, u)\}$$

Executions of the automaton capture behaviors of the system in discrete time

$$x_0, x_1, x_2, \dots$$



Continuous time model of a plant

In *continuous time*, dynamics function defines how the the plant state changes continuously with time

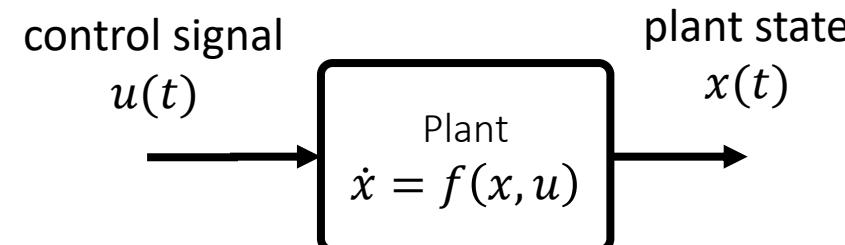
Instead of discrete values of x_t we are interested in how the state changes continuously with time and this is modeled as a function or a signal $x: [0, \infty) \rightarrow \mathbb{R}^n$

Similarly, $u: [0, \infty) \rightarrow \mathbb{R}^m$ models the input signal

Given $x(\cdot)$ and any t , $x(t)$ denotes the state of the system at time t

The Ordinary Differential Equation (ODE) relates the input and the state $\frac{dx(t)}{dt} = f(x(t), u(t))$

This is written in short as $\frac{dx}{dt} = f(x, u)$ or $\dot{x} = f(x, u)$



Example 1: Free swinging pendulum

$x \in \mathbb{R}^2$ x_1 : angular position x_2 : angular velocity

No input u ; such models are called autonomous ODEs

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$$

$$x_2 = \dot{x}_1$$

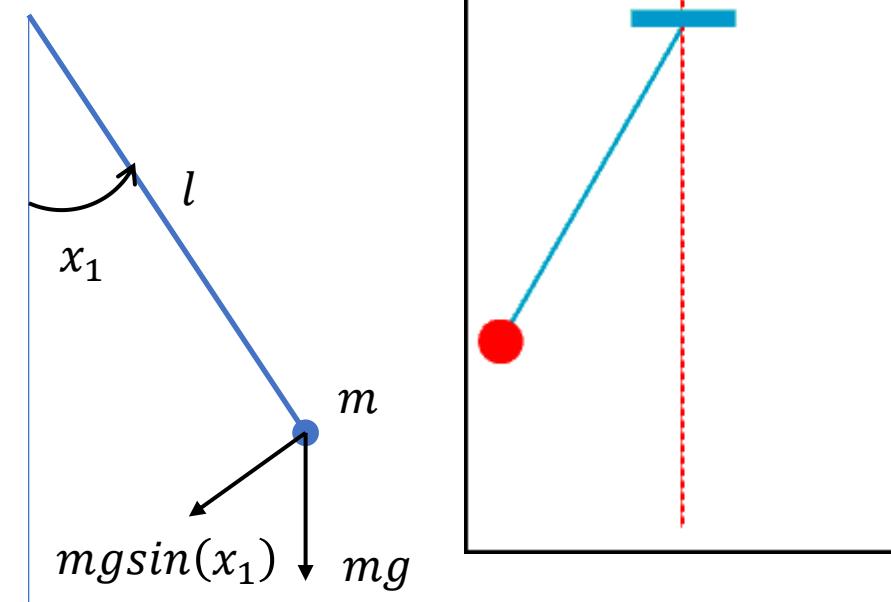
$$\dot{x}_2 = -\frac{g}{l} \sin(x_1) - \frac{k}{m} x_2$$

The dynamics equation can be written in vector form:

$$\begin{bmatrix} \dot{x}_2 \\ \dot{x}_1 \end{bmatrix} = \begin{bmatrix} -\frac{g}{l} \sin(x_1) - \frac{k}{m} x_2 \\ x_2 \end{bmatrix}$$

Model parameters

k : friction coefficient m : mass l : length

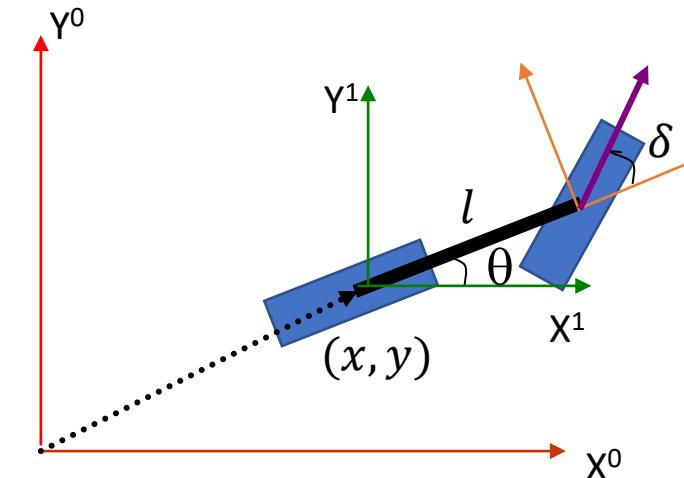


Example 2: Simple vehicle model: Dubin's car

Key assumptions

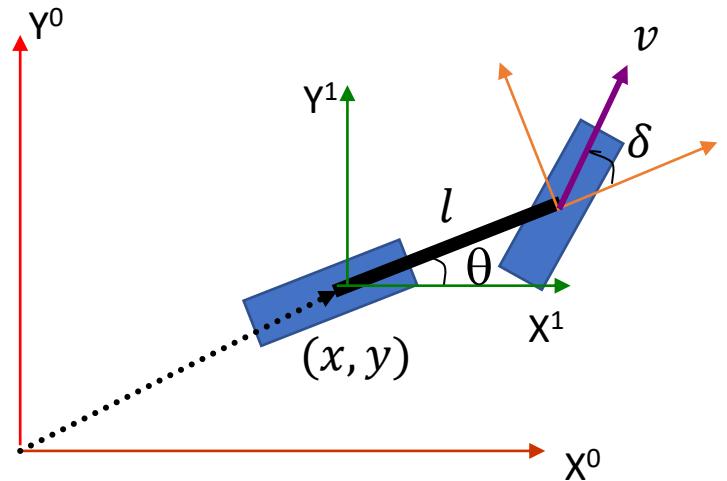
- Front and rear wheel are in vertical planes
- Front wheel moving at a constant speed v
- Steering input, front wheel steering angle δ
- No slip: wheels move only in the direction of the plane they reside in

Modeling one wheel is enough



Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 2016. A survey of motion planning and control techniques for self-driving urban vehicles. *IEEE Transactions on Intelligent Vehicles* 1 (1): 33–55.

Rear Wheel Model (Dubin's model)



Plant state: real wheel pose) = $x: \mathbb{R}^3 = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$

Control input: front wheel steering angle $u: \mathbb{R} = \delta$

Model parameters: car length (l) speed (v)

$$f: \mathbb{R}^4 \rightarrow \mathbb{R}^3$$

$$\dot{x} = f(x, u)$$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \frac{v}{l} \tan \delta \end{bmatrix}$$

Control problem: Cruise control

The controller $g(\cdot)$ is the function (implemented in software) that computes the control signal $u(t)$ from the state $x(t)$

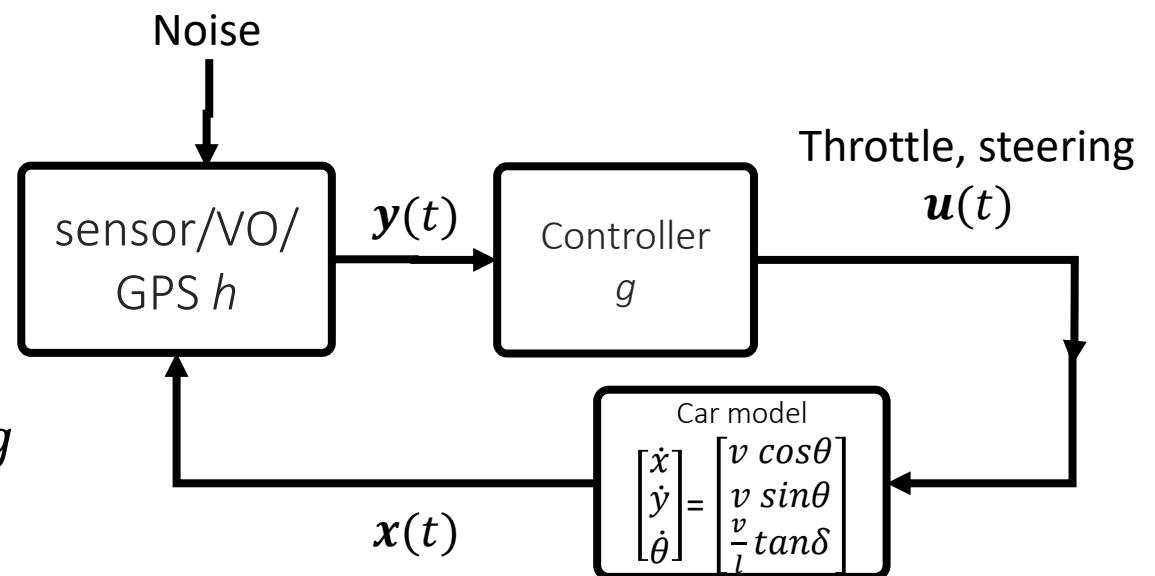
In practice, the controller will not have direct access to the state but instead will use sensors to get observations $y(t) = h(x(t))$ of the state

$$\dot{x}(t) = f(x(t), u(t))$$

$$y(t) = h(x(t)) + n(t)$$

$$u(t) = g(y(t))$$

Control design is the problem of figuring out g given certain requirements on $x(t)$



Behaviors may not be well-defined

Behaviors of physical processes are described in terms of ODEs

$$\dot{x}(t) \equiv \frac{dx(t)}{dt} = f(x(t), u(t)) \quad - \text{ Eq. (1),}$$

where time $t \in \mathbb{R}$; state $x(t) \in \mathbb{R}^n$; *input* $u(t) \in \mathbb{R}^m$; $f: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$

Initial value problem: Given ODE (1) and initial state $x_0 \in \mathbb{R}^n$, $t_0 \in \mathbb{R}$, and input $u: \mathbb{R} \rightarrow \mathbb{R}^m$, find a state trajectory or *solution* of (1)

Is a solution of (1) always defined?

Solution of an ODE

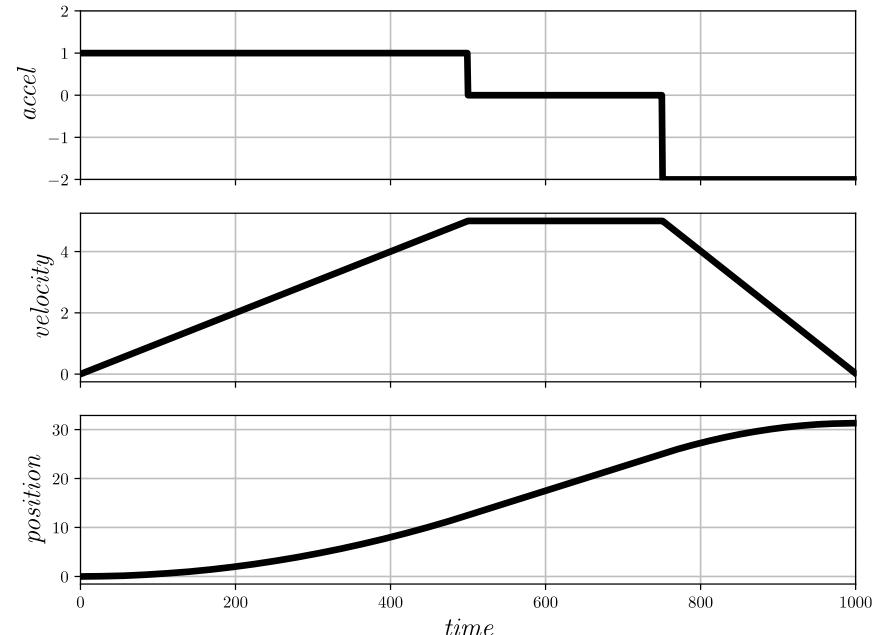
Definition 1. (First attempt) Given x_0 and u , $\xi: \mathbb{R} \rightarrow \mathbb{R}^n$ is solution or trajectory iff

$$(1) \xi(t_0) = x_0 \text{ and}$$

$$(2) \frac{d}{dt} \xi(t) = f(\xi(t), u(t)), \forall t \in \mathbb{R}.$$

Mathematically OK, but too restrictive for autonomous systems.

Assumes that ξ is not only continuous, but also differentiable. This disallows $u(t)$ to be discontinuous, which is often required for optimal control.



Consider the example:

$$\dot{x}(t) = v(t)$$

$$\dot{v}(t) = u(t)$$

and $u(t)$ is the acceleration input. The time points at which $u(t)$ is discontinuous, the solution ξ is not differentiable

Solutions may not exist even for autonomous ODEs

Example. $\dot{x}(t) = -\text{sgn}(x(t)); x_0 = c; t_0 = 0; c > 0$

Solution: $\xi(t) = c - t$ for $t \leq c$; check $\dot{\xi}(t) = -1 = -\text{sgn}(\xi(t))$

Problem: Solution undefined at $t = c$; f discontinuous in x

Example. $\dot{x}(t) = x^2; x_0 = c; t_0 = 0; c > 0$

Solution: $\xi(t) = \frac{c}{1-tc}$ works for $t < 1/c$; check $\dot{\xi}$

Problem: As $t \rightarrow \frac{1}{c}$ then $\xi(t) \rightarrow \infty$; f grows too fast

We need assumptions on smoothness of $f(\cdot)$ to assure that solutions exist

Lipschitz continuity

A function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is **Globally Lipschitz continuous** if there exist $L > 0$ such that for any pair $x, x' \in \mathbb{R}^n$, $\|f(x) - f(x')\| \leq L\|x - x'\|$

Examples: $6x + 4$; $|x|$ are Lipschitz continuous

All differentiable functions with bounded derivatives are Lipschitz continuous

Exercise: Are Lipschitz continuous functions closed under addition, multiplication?

Non-examples: \sqrt{x} ; x^2 (locally Lipschitz but not globally Lipschitz)

Dynamical Systems

Describe behavior in terms of instantaneous laws

$$\frac{dx(t)}{dt} = f(x(t), u(t))$$

$$t \in \mathbb{R}, x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m$$

$$f: \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}^n$$
 dynamic function

Theorem. If $f(x(t), u(t))$ is Lipschitz continuous in the first argument and $u(t)$ is piece-wise continuous then (1) has unique solutions.

Control design

On-off control of a room heater with a thermostat

$$\dot{x}(t) = f(x(t), u(t))$$

$$u(t) = g(x(t))$$

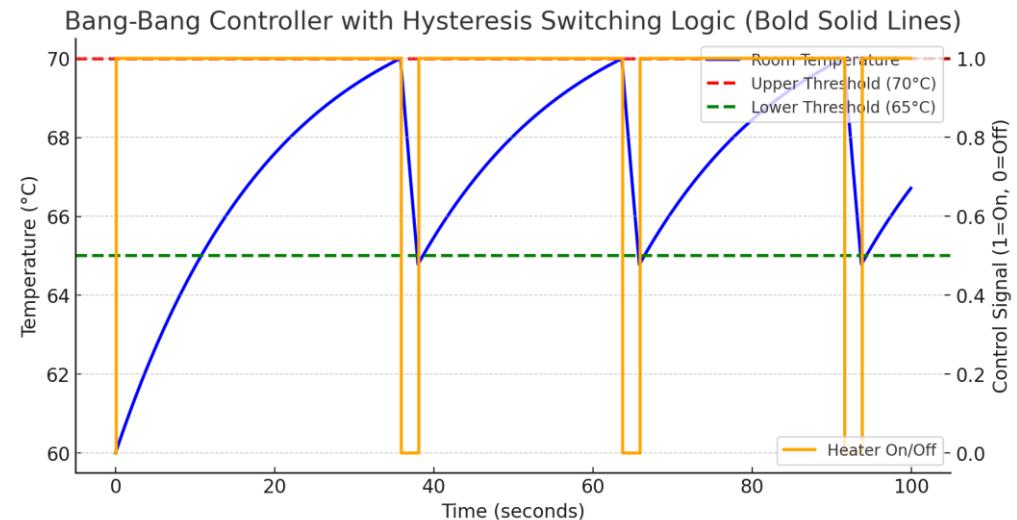
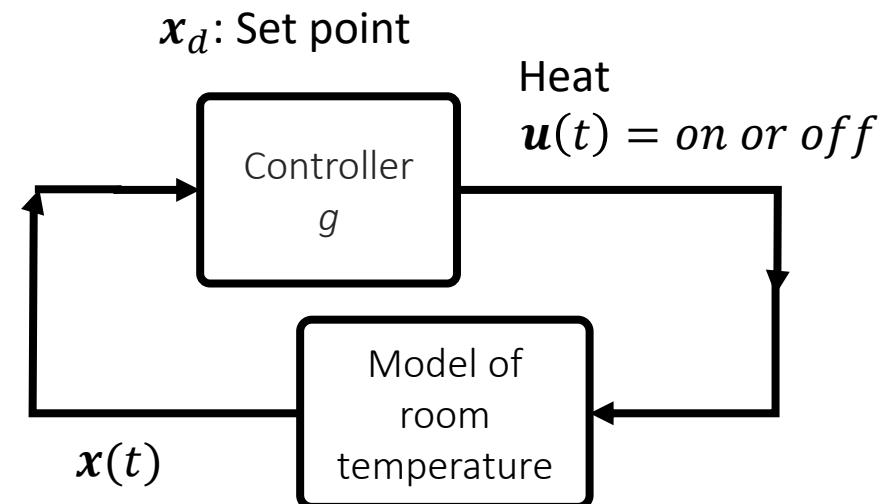
A simple thermostat controller

$$g(x(t)):$$

if $x(t) \geq x_d$ then $u(t) = \text{off}$

else if $x(t) \leq x_d - \varepsilon$ then $u(t) = \text{on}$

This is called bang-bang control

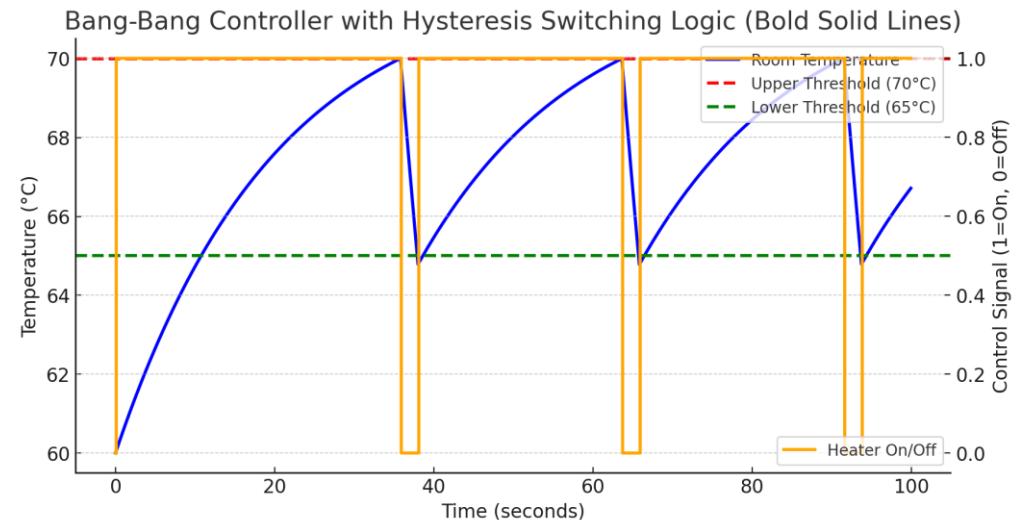
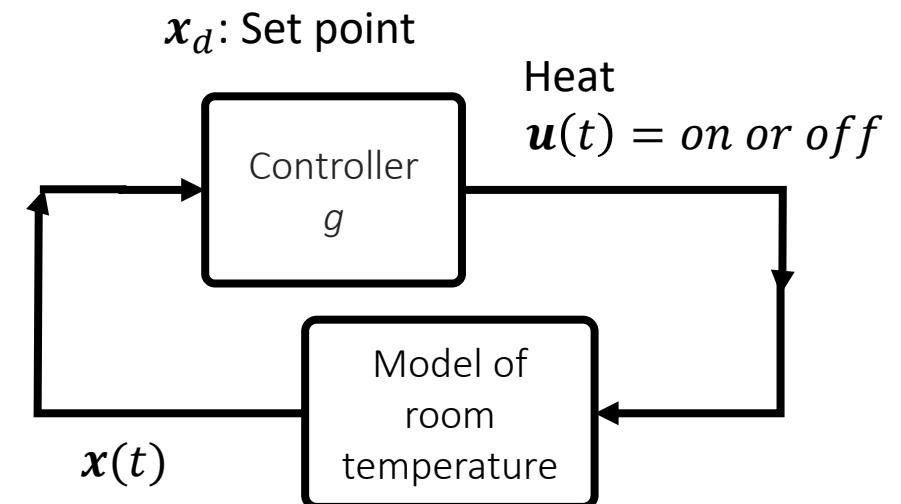


On-off control of a room heater with a thermostat

Bang-bang control is a feasible strategy when the controlled variable is observable

Disadvantages

- Usually not energy efficient
- Overshoots and undershoots because of inertia and delays
- Causes excess stress on the actuators
- Can cause the system to become unstable (to be defined later)



A Proportional controller

Plant $\dot{x}(t) = u(t) + d(t)$, where $d(t)$ is a small disturbance signal

The goal is to drive the plant state to a target steady state value, say $x_d = 70^\circ$

Idea: Make the control input negatively proportional to the error: **Negative feedback**

Error: $e(t) = x(t) - x_d$

Proportional controller: $u(t) = -K_p e(t)$, the constant K_p is called **controller gain**

Using proportional (P) **negative feedback**

$$u(t) = -K_p e(t) = -K_p(x(t) - x_d)$$

$$\dot{x}(t) = -K_p x(t) + K_p x_d + d(t)$$

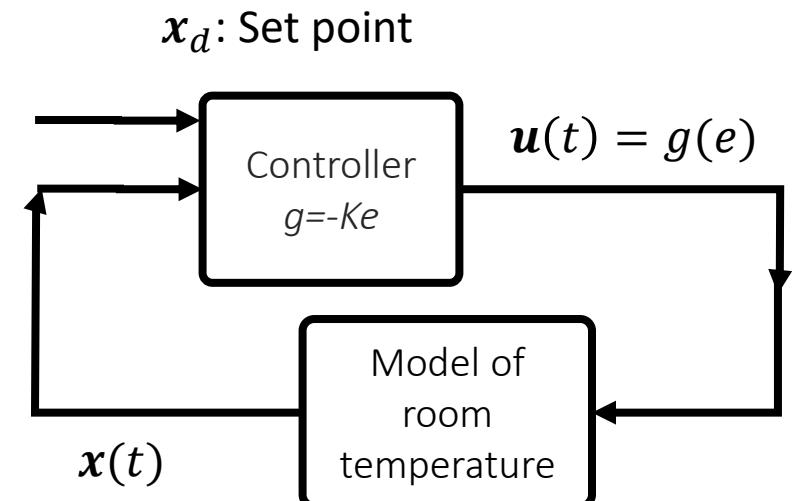
Consider a constant disturbance d_{ss}

$$\dot{x}(t) = -K_p x(t) + K_p x_d + d_{ss}$$

What is the steady state value? Trick: set RHS = 0

$$\text{Set } -K_p x(t) + K_p x_d + d_{ss} = 0$$

$$x(t) = x_{ss} = \frac{d_{ss}}{K_p} + y_d$$



Proportional controller example

With constant disturbance d_{ss} we rewrite the ODE

$$\dot{x}(t) = -K_P x(t) + K_P x_d + d_{ss} \text{ with } x_{ss} = \frac{d_{ss}}{K_P} + x_d$$

$$\dot{x}(t) = -K_P(x_{ss} - x(t))$$

The solution of this ODE

$$x(t) = x_{ss} + (x(0) - x_{ss})e^{-tK_p}$$

Transient behavior

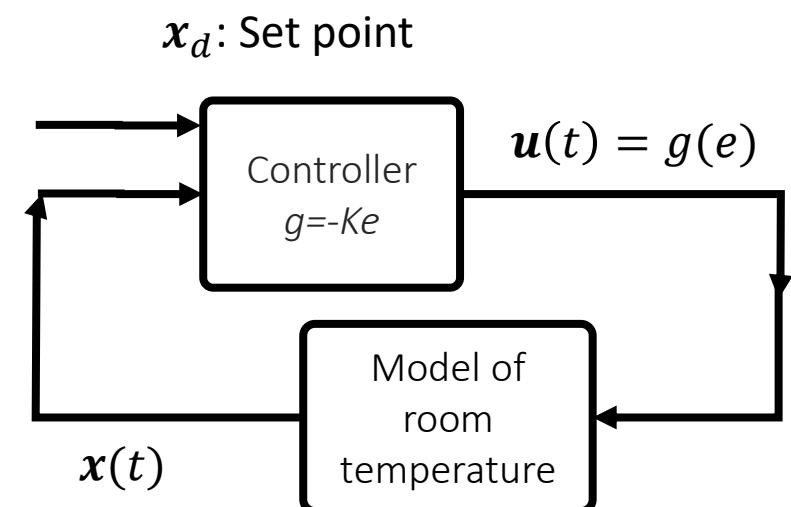
$$x(t) = x(0)e^{-tK_p} + x_{ss}(1 - e^{-tK_p})$$

General solution of first-order linear DE

$$x(t) = x_{ss} + Ce^{-K_p t}$$

Setting $t=0$

$$x(0) = x_{ss} + C$$



Proportional Controller

Transient behavior of the control system

$$x(t) = x(0)e^{-tK_p} + x_{ss}(1 - e^{-tK_p}); x_{ss} = \frac{d_{ss}}{K_p} + x_d$$

The proportional controller uses negative feedback to track the desired setpoint smoothly

Steady state error may not be 0

Larger proportional gain K_p more reactive the controller and faster the system converges to the target state K_p

Larger K_p implies smaller steady state tracking error

For systems with delays and inertia high proportional gain can cause oscillations or overshoots

There may be actuator limits that prevent $u(t) = -K_p e(t) = -K_p(x(t) - x_d)$ to be a feasible control input

x_d : Set point

