
ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture 8
Control

Professor: Huan Zhang

https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

https://publish.illinois.edu/safe-autonomy/
https://publish.illinois.edu/safe-autonomy/
https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com/
https://huan-zhang.com/
https://huan-zhang.com/


GEM field trip 9/23 11 am (upcoming Tuesday)

Do not come to the ECEB classroom on 9/23 (next class)

GEM car field trip at the Highbay facility:

201 St Marys Rd, Champaign, IL 61820 

More information on Campuswire
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Typical planning and control modules
• Global navigation and planner

• Find paths from source to destination with static obstacles

• Algorithms: Graph search, Dijkstra, Sampling-based planning

• Time scale: Minutes

• Output: reference center line, does not consider vehicle dynamics 

• Local planner 

• Dynamically feasible trajectory generation

• Dynamic planning w.r.t. obstacles

• Time scales: 10 Hz

• Controller

• Waypoint follower using steering, throttle

• Algorithms: PID control, MPC, Lyapunov-based controller

• Lateral/longitudinal control

• Time scale: 100 Hz



What is control?

Control theory is the art of making things 
do what you want them to do

art: tuning or optimizing parameters

things: Differential equation models

what you want: tracking error or stability



Complex control tasks: DARPA Robotics Challenge

• 4 point task
• Robot drives the vehicle through the 

course (1)
• Robot gets out of the vehicle and travels 

dismounted out of the end zone (2)
• Bonus point (1) if the robot completes all 

tasks without human interventions



https://www.youtube.com/watch?v=bFFMLUDuNCE https://www.youtube.com/watch?v=OesfwU1rsyg

https://www.youtube.com/watch?v=bFFMLUDuNCE
https://www.youtube.com/watch?v=OesfwU1rsyg


Outline

• Modeling the control problem 
• Differential Equations; solutions and their properties

• Control design
• PID

• State feedback

• MPC (brief)

• Requirements
• Stability

• Lyapunov theory and its relation to invariance



“Thing” being controlled: the Plant
The system we want to control is the plant

Plant state at time 𝑡 ∈ ℝ is denoted by a vector 𝑥𝑡 ∈ ℝ𝑛

The input used to control the plant state is the control signal 𝑢𝑡 ∈ ℝ𝑚

The dynamics function 𝑓: ℝ𝑛 × ℝ𝑚 → ℝ𝑛 models how the plant state 
changes in discrete time from a previous state 𝑥𝑡 under the influence 
of a control input 𝑢𝑡, that is, 𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡

Plant 
𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡

control signal
𝑢𝑡

plant state
𝑥𝑡+1



Discrete time mode and Automata
The dynamics function 𝑓: ℝ𝑛 × ℝ𝑚 → ℝ𝑛 models how the plant state changes in 
discrete time from a previous state 𝑥𝑡 under the influence of a control input 𝑢𝑡, that is, 
𝑥𝑡+1 = 𝑓 𝑥𝑡 , 𝑢𝑡

This discrete time model defines a (nondeterministic) automaton

 𝐴 = 𝑄 = ℝ𝑛, 𝑄0, 𝐷 ⊆ 𝑄 × 𝑄  with 𝐷 = 𝑥, 𝑥′ ∃𝑢 ∈ ℝ𝑚 𝑥′ = 𝑓 𝑥, 𝑢 }

Executions of the automaton capture behaviors of the system in discrete time 
𝑥0, 𝑥1, 𝑥2, …

Plant 
𝑥𝑡+1 = 𝑓 𝑥𝑡, 𝑢𝑡

control signal
𝑢𝑡

plant state
𝑥𝑡+1



Continuous time model of a plant
In continuous time, dynamics function defines how the the plant state changes continuously with time 

Instead of discrete values of 𝑥𝑡 we are interested in how the state changes continuously with time and 
this is modeled as a function or a signal 𝑥: 0, ∞ → ℝ𝑛

Similarly, 𝑢: 0, ∞ → ℝ𝑚 models the input signal

Given 𝑥 ⋅  and any t, 𝑥(𝑡) denotes the state of the system at time t

The Ordinary Differential Equation (ODE) relates the input and the state 
𝑑𝑥 𝑡

𝑑𝑡
= 𝑓 𝑥(𝑡), 𝑢(𝑡)

This is written in short as 
𝑑𝑥

𝑑𝑡
= 𝑓 𝑥, 𝑢  or ሶ𝑥 = 𝑓 𝑥, 𝑢

Plant

ሶ𝑥 = 𝑓 𝑥, 𝑢

control signal
𝑢(𝑡)

plant state
𝑥(𝑡)



Example 1: Free swinging pendulum 
𝑥 ∈ ℝ2 𝑥1: angular position 𝑥2: angular velocity
No input 𝑢; such models are called autonomous ODEs
𝑓: ℝ2 → ℝ2

𝑥2 = ሶ𝑥1

ሶ𝑥2 = −
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

The dynamics equation can be written in vector form:

ሶ𝑥2

ሶ𝑥1
= 

−
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

𝑥2

Model parameters 
𝑘: friction coefficient 𝑚: mass 𝑙: length

𝑙

𝑥1

𝑚

𝑚𝑔𝑚𝑔𝑠𝑖𝑛 𝑥1



Example 2: Simple vehicle model: Dubin’s car

Key assumptions

• Front and rear wheel are in vertical planes

• Front wheel moving at a constant speed 𝑣

• Steering input, front wheel steering angle 𝛿

• No slip: wheels move only in the direction of the plane they reside in

Modeling one wheel is enough

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli. 

2016. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE 

Transactions on Intelligent Vehicles 1 (1): 33–55. 

X1

Y1

X0

Y0



𝛿

𝑙

(𝑥, 𝑦)



Rear Wheel Model (Dubin’s model)

X1

Y1

X0

Y0



𝛿

𝑙

(𝑥, 𝑦)

Plant state: real wheel pose) = 𝒙: ℝ3 =
𝑥
𝑦
𝜃

Control input: front wheel steering angle 𝑢: ℝ = δ

Model parameters: car length (𝑙) speed (𝑣) 

𝑓: ℝ4 → ℝ3

ሶ𝒙 = 𝑓(𝒙, 𝑢)

ሶ𝑥
ሶ𝑦
ሶ𝜃

= 

𝑣 𝑐𝑜𝑠𝜃
𝑣 𝑠𝑖𝑛𝜃
𝑣

𝑙
𝑡𝑎𝑛𝛿

𝑣



Control problem: Cruise control

The controller 𝑔  is the function (implemented 
in software) that computes the control signal 𝑢(𝑡) 
from the state 𝑥(𝑡)

In practice, the controller will not have direct 
access to the state but instead will use sensors to 
get observations 𝑦 𝑡 = ℎ(𝑥 𝑡 ) of the state

ሶ𝒙 𝑡 = 𝑓 𝒙 𝑡 , 𝒖 𝑡

𝒚 𝑡 = ℎ 𝒙 𝑡 + 𝑛(𝑡)

𝒖 𝑡 = 𝑔(𝒚 𝑡 )

Control design is the problem of figuring out 𝑔 
given certain requirements on 𝑥(𝑡)

sensor/VO/
GPS h

Controller
g

Throttle, steering
𝒖(𝑡)

Noise

Car model

ሶ𝑥
ሶ𝑦
ሶ𝜃

= 

𝑣 𝑐𝑜𝑠𝜃
𝑣 𝑠𝑖𝑛𝜃
𝑣

𝑙
𝑡𝑎𝑛𝛿𝒙(𝑡)

𝒚(𝑡)



Behaviors may not be well-defined

Behaviors of physical processes are described in terms of ODEs

ሶ𝑥 𝑡 ≡
𝑑𝑥 𝑡

𝑑𝑡
= 𝑓 𝑥 𝑡 , 𝑢 𝑡  −  Eq. 1 , 

where time 𝑡 ∈ ℝ; state 𝑥 𝑡 ∈ ℝ𝑛; 𝑖𝑛𝑝𝑢𝑡 𝑢 𝑡 ∈ ℝ𝑚;  𝑓: ℝ𝑛 × ℝ𝑚 → ℝ𝑛

Initial value problem: Given ODE (1) and initial state 𝑥0 ∈ ℝ𝑛, 𝑡0 ∈ ℝ, and 

input u: ℝ → ℝ𝑚, find a state trajectory or solution of (1)

Is a solution of (1) always defined? 

Lecture Slides by Sayan Mitra mitras@illinois.edu



Solution of an ODE

Definition 1. (First attempt) Given  𝑥0 and  𝑢,  𝜉:  ℝ → ℝ𝑛 is a 
solution or trajectory iff 

(1) 𝜉 𝑡0 = 𝑥0 and 

(2)
𝑑

𝑑𝑡
𝜉 𝑡 = 𝑓(𝜉 𝑡 , 𝑢 𝑡 ), ∀𝑡 ∈ ℝ. 

Mathematically OK, but too restrictive for autonomous 
systems. 

Assumes that 𝜉 is not only continuous, but also differentiable. 
This disallows u(𝑡) to be discontinuous, which is often 
required for optimal control.

Lecture Slides by Sayan Mitra mitras@illinois.edu

Consider the example:
ሶ𝑥 𝑡 = 𝑣 𝑡
ሶ𝑣 𝑡 = 𝑢 𝑡  

and 𝑢(𝑡) is the acceleration input. 
The time points at which 𝑢 𝑡  is 
discontinuous, the solution 𝜉 is not 
differentiable



Solutions may not exist even for autonomous ODEs

Example. ሶ𝑥 𝑡 = −𝑠𝑔𝑛 𝑥 𝑡 ; 𝑥0 = 𝑐; 𝑡0 = 0; 𝑐 > 0 

Solution: 𝜉 𝑡 = 𝑐 − 𝑡 for 𝑡 ≤ 𝑐; check ሶ𝜉 𝑡 = −1 = − sgn 𝜉 𝑡

Problem: Solution undefined at 𝑡 = 𝑐;  𝑓 discontinuous in 𝑥

Example. ሶ𝑥 𝑡 = 𝑥2; 𝑥0 = 𝑐; 𝑡0 = 0; 𝑐 > 0 

Solution: 𝜉 𝑡 =
𝑐

1−𝑡𝑐
 works for 𝑡 < 1/𝑐; check ሶ𝜉

Problem: As 𝑡 →
1

𝑐
 then 𝜉 𝑡 → ∞;     𝑓 grows too fast

We need assumptions on smoothness of 𝑓 .  to assure that solutions 
exist

Lecture Slides by Sayan Mitra mitras@illinois.edu



Lipschitz continuity 

A function 𝑓: ℝ𝑛 → ℝ is Globally Lipschitz continuous if there exist 𝐿 > 0 

such that for any pair 𝑥, 𝑥′ ∈ ℝ𝑛, 𝑓 𝑥 − 𝑓 𝑥′ ≤ 𝐿 𝑥 − 𝑥′

Examples: 6𝑥 + 4; 𝑥  are Lipschitz continuous 
All differentiable functions with bounded derivatives are Lipschitz continuous

Exercise: Are Lipschitz continuous functions closed under addition, 
multiplication?

Non-examples: 𝑥; 𝑥2 (locally Lipschitz but not globally Lipschitz) 

Lecture Slides by Sayan Mitra mitras@illinois.edu



Dynamical Systems
Describe behavior in terms of instantaneous laws

𝑑𝑥 𝑡

𝑑𝑡
= 𝑓(𝑥 𝑡 , 𝑢 𝑡 )

𝑡 ∈ ℝ, 𝑥 𝑡 ∈ ℝ𝑛, 𝑢 𝑡 ∈ ℝ𝑚

𝑓: ℝ𝑛 × ℝ𝑚 → ℝ𝑛dynamic function

Theorem. If 𝑓(𝑥 𝑡 , 𝑢(𝑡)) is Lipschitz continuous in the first argument and 
𝑢(𝑡) is piece-wise continuous then (1) has unique solutions.



Control design



On-off control of a room heater with a thermostat

ሶ𝒙 𝑡 = 𝑓 𝒙 𝑡 , 𝑢(𝑡)

𝒖 𝑡 = 𝑔(𝑥 𝑡 )

A simple thermostat controller 

𝑔 𝑥 𝑡 : 

if 𝑥 𝑡 ≥ 𝑥𝑑 then 𝑢(𝑡) = off

else if 𝑥 𝑡 ≤ 𝑥𝑑 − 𝜀 then 𝑢(𝑡) = on

This is called bang-bang control

Controller
g

Heat
𝒖 𝑡 = 𝑜𝑛 𝑜𝑟 𝑜𝑓𝑓

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



On-off control of a room heater with a thermostat

Bang-bang control is a feasible strategy 

when the controlled variable is 

observable

Disadvantages

• Usually not energy efficient

• Overshoots and undershoots because 

of inertia and delays 

• Causes excess stress on the actuators

• Can cause the system to become 

unstable (to be defined later)

Controller
g

Heat
𝒖 𝑡 = 𝑜𝑛 𝑜𝑟 𝑜𝑓𝑓

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



A Proportional controller
Plant ሶ𝑥 𝑡 = 𝑢 𝑡 + 𝑑 𝑡 , where 𝑑 𝑡  is a small disturbance signal

The goal is the drive the plant state to a target steady state value, say 𝑥𝑑 = 70∘

Idea: Make the control input negatively proportional to the error: Negative feedback

Error: 𝑒 𝑡 = 𝑥 𝑡 − 𝑥𝑑

Proportional controller: 𝑢 𝑡 = −𝐾𝑝𝑒 𝑡 , the constant  𝐾𝑝 is called controller gain

Using proportional (P) negative feedback

 𝑢 𝑡 = −𝐾𝑃𝑒 𝑡 = −𝐾𝑃(𝑥 𝑡 − 𝑥𝑑)

 ሶ𝑥 𝑡 = −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑 𝑡

Consider a constant disturbance 𝑑𝑠𝑠

 ሶ𝑥 𝑡 = −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑𝑠𝑠

What is the steady state value? Trick: set RHS = 0

Set −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑𝑠𝑠 = 0

 𝑥 𝑡 = 𝑥𝑠𝑠 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑦𝑑

Controller
g=-Ke

𝒖 𝑡 = 𝑔(𝑒)

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



Proportional controller example
With constant disturbance 𝑑𝑠𝑠 we rewrite the ODE

 ሶ𝑥 𝑡 = −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑𝑠𝑠 with 𝑥𝑠𝑠 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑥𝑑

 ሶ𝑥 𝑡 = −𝐾𝑃(𝑥𝑠𝑠 −  𝑥 𝑡 )

The solution of this ODE

 𝑥 𝑡 = 𝑥𝑠𝑠 + (𝑥 0 − 𝑥𝑠𝑠)𝑒−𝑡𝐾𝑝

Transient behavior

 𝑥 𝑡 = 𝑥 0 𝑒−𝑡𝐾𝑝 + 𝑥𝑠𝑠 1 − 𝑒−𝑡𝐾𝑝

General solution of first-order linear DE
𝑥 𝑡 = 𝑥𝑠𝑠 + 𝐶𝑒−𝐾𝑝𝑡

Setting  t=0
𝑥 0 = 𝑥𝑠𝑠 + 𝐶

Controller
g=-Ke

𝒖 𝑡 = 𝑔(𝑒)

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



Proportional Controller
Transient behavior of the control system

 𝑥 𝑡 = 𝑥 0 𝑒−𝑡𝐾𝑝 + 𝑥𝑠𝑠 1 − 𝑒−𝑡𝐾𝑝 ; 𝑥𝑠𝑠 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑥𝑑

The proportional controller uses negative feedback to 
track the desired setpoint smoothly

Steady state error may not be 0

Larger proportional gain 𝐾𝑃 more reactive the controller 
and faster the system converges to the target state 𝐾𝑃

Larger 𝐾𝑃 implies smaller steady state tracking error

For systems with delays and inertia high proportional gain 
can cause oscillations or overshoots

There may be actuator limits that prevent  𝑢 𝑡 =
− 𝐾𝑃𝑒 𝑡 = −𝐾𝑃(𝑥 𝑡 − 𝑥𝑑) to be a feasible control 
input

Controller
g=-Ke

𝒖 𝑡 = 𝑔(𝑒)

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 
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