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ECE 484: Principles of Safe Autonomy (Fall 2025)
Lecture &8
Control

Professor: Huan Zhang
https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu
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GEM field trip 9/23 11 am (upcoming Tuesday)

Do not come to the ECEB classroom on 9/23 (next class)

GEM car field trip at the Highbay facility:
201 St Marys Rd, Champaign, IL 61820

More information on Campuswire
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Sensing

Physics-based
models of camera,
LIDAR, RADAR, GPS,

etc.

Perception

Programs for object
detection, lane
tracking, scene

understanding, etc.

Decisions and
planning
Programs and multi-
agent models of
pedestrians, cars,
etc.

Control

Dynamical models of
engine, powertrain,
steering, tires, etc.




Control

Dynamical models of
engine, powertrain,
steering, tires, etc.
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Typical planning and control modules

* Global navigation and planner
* Find paths from source to destination with static obstacles
e Algorithms: Graph search, Dijkstra, Sampling-based planning
* Time scale: Minutes
* Qutput: reference center line, does not consider vehicle dynamics

* Local planner
* Dynamically feasible trajectory generation

* Dynamic planning w.r.t. obstacles

 Time scales: 10 Hz

e Controller
* Waypoint follower using steering, throttle
e Algorithms: PID control, MPC, Lyapunov-based controller

 Lateral/longitudinal control

* Time scale: 100 Hz

[ === Front-wheel path
—-- Rear-wheel path
—— Path
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What is control?

Control theory is the art of making things
do what you want them to do

art: tuning or optimizing parameters
things: Differential equation models
what you want: tracking error or stability




Complex control tasks: DARPA Robotics Challenge

* 4 point task

* Robot drives the vehicle through the
course (1)

* Robot gets out of the vehicle and travels
dismounted out of the end zone (2)

e Bonus point (1) if the robot completes all
tasks without human interventions
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https://www.youtube.com/watch?v=bFFMLUDuNCE

https://www.youtube.com/watch?v=0esfwU1rsyg



https://www.youtube.com/watch?v=bFFMLUDuNCE
https://www.youtube.com/watch?v=OesfwU1rsyg
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Outline

* Modeling the control problem
* Differential Equations; solutions and their properties

* Control design
* PID
 State feedback
 MPC (brief)

* Requirements
 Stability
* Lyapunov theory and its relation to invariance



“Thing” being controlled: the Plant
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The system we want to control is the plant

of a control input U, thatis, x;41 = f(x¢, ug)

control signal
Ut
_ﬁ

Plant
Xt+1 = f(xt» Ug)

ant state at time t € R is denoted by a vector x; € R"

ne dynamics function f: R" X R™ — R" models how the plant state

P
The input used to control the plant state is the control signal u; € R™
T
changes in discrete time from a previous state x; under the influence

plant state

Xt+1
#




Discrete time mode and Automata

The dynamics function f: R" X R™ — R" models how the plant state changes in
discrete time from a previous state x; under the influence of a control input u;, that is,

Xer1 = f e u)
This discrete time model defines a (nondeterministic) automaton
A=(Q=R"QD cQxQ)withD ={(x,x)|qu € R" x" = f(x,u)}

Executions of the automaton capture behaviors of the system in discrete time
Xy X1, X2, o

control signal plant state
Uy | Xt+1
N Plant |

Xt+1 = f(xt» Ut)
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Continuous time model of a plant

In continuous time, dynamics function defines how the the plant state changes continuously with time

Instead of discrete values of x; we are interested in how the state changes continuously with time and
this is modeled as a function or a signal x: [0, ) —» R"

Similarly, u: [0, c0) —» R™ models the input signal

Given x(+) and any t, x(t) denotes the state of the system at time t

The Ordinary Differential Equation (ODE) relates the input and the state d’;—(tt) = f(x(t), u(t))

L . d .
This is written in short as d—’: = f(x,u) orx = f(x,u)

control signal plant state
u(t) x(t)
Plant
x = f(x,u)

4o



Example 1: Free swinging pendulum

x € R? x4: angular position x,: angular velocity
No input u,; such models are called autonomous ODEs

f:R? > R?

x2=561

. n(x) k
Xy = lSlnx1 mxz

The dynamics equation can be written in vector form:
: g . k
[xz]: [—TSIH(Xl) ——X;

X2
Model parameters
k: friction coefficient m: mass [: length

4o

mgsin(x;)

mg
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Example 2: Simple vehicle model: Dubin’s car

Key assumptions
* Front and rear wheel are in vertical planes
* Front wheel moving at a constant speed v
e Steering input, front wheel steering angle 6

* No slip: wheels move only in the direction of the plane they reside in

Modeling one wheel is enough

Reference: Paden, Brian, Michal Cap, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli.
2016. A survey of motion planning and control techniques for self-driving urban vehicles. IEEE
Transactions on Intelligent Vehicles 1 (1): 33-55.
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Rear Wheel Model (Dubin’s model)

X

y
0

Control input: front wheel steering angle u: R =9

Plant state: real wheel pose) = x: R3 =

Model parameters: car length (1) speed (v)

f:R* > R>

x = f(xu)
x1 v cosf
[y = |v sin6
0 %tanS




Control problem: Cruise control

The controller g( ) is the function (implemented
in software) that computes the control signal u(t)

from the state x(t)

In practice, the controller will not have direct

access to the state but instead will use sensors to

get observations y(t) = h(x(t)) of the state

x(t) = f(x(t), u(®))
y(t) = h(x(t)) + n(t)
u(t) = g(y())

Control design is the problem of figuring out g
given certain requirements on x(t)

( (:6 o

Noise
_1_ Throttle, steering
y(t) u(t)
sensor/VO/ Controller
GPS h g
Car model

%1 [v cos6
[y]z v sin6

x(t) ol |Ztans




Behaviors may not be well-defined

Behaviors of physical processes are described in terms of ODEs

20 =2 = f(x(O,u®) - Eq.(D),

where time t € R; state x(t) € R"; input u(t) € R™; f:R® X R™ - R"

Initial value problem: Given ODE (1) and initial state x, € R™,t, € R, and
input u: R - R™, find a state trajectory or solution of (1)

Is a solution of (1) always defined?

4o
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Solution of an ODE

Definition 1. (First attempt) Given xgand u, &: R - R™is
solution or trajectory iff

(1) £(to) = xo and
(2) 2§® = FEWD,u®), vt R,

Mathematically OK, but too restrictive for autonomous
systems.

Assumes that ¢ is not only continuous, but also differentiable.
This disallows u(t) to be discontinuous, which is often
required for optimal control.

.

/

200 400 600 800 1000

Consider the example:

x(t) = v(t)

v(t) = u(t)
and u(t) is the acceleration input.
The time points at which u(t) is
discontinuous, the solution ¢ is not
differentiable



Solutions may not exist even for autonomous ODEs

Example. x(t) = —Sgn(x(t));xo =cC;ty=0;c>0
Solution: é(t) = ¢ — t fort < c; check é(t) = —1 = — sgn(f(t))
Problem: Solution undefined at t = ¢; f discontinuous in x

Example. a'c(t)—x i Xg=C;tg =0;c>0
Solution: é(t) =

Problem: As t — = - then E(t) - oo f grows too fast

We need assumptions on smoothness of f(.) to assure that solutions
exist

4o
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Lipschitz continuity

A function f: R"™ — R is Globally Lipschitz continuous if there exist L > 0
such that for any pair x, x’ € R™, [|f(x) — f(x')l‘ < L‘Ix — x’H

Examples: 6x + 4; |x| are Lipschitz continuous
All differentiable functions with bounded derivatives are Lipschitz continuous

Exercise: Are Lipschitz continuous functions closed under addition,
multiplication?

Non-examples: \/x; x? (locally Lipschitz but not globally Lipschitz)
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Dynamical Systems

Describe behavior in terms of instantaneous laws

dx(t)
— = F®), u()

t € R x(t) e R, u(t) e R™
f:R"™ X R™ — R"dynamic function

Theorem. If f(x(t),u(t)) is Lipschitz continuous in the first argument and
u(t) is piece-wise continuous then (1) has unique solutions.
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On-off control of a room heater with a thermostat

70 ==

Bang-Bang Controller with Hysteresis Switching Logic (Bold Solid Lines)

tture -1.0

x(t) = f(x(t),u(t))
u(t) = g(x(1))
A simple thermostat controller
g(x(®)):

if x(t) = x4 then u(t) = off

else if x(t) < x; — € then u(t) =on —

X4: Set point

Heat

This is called bang-bang control

u(t) =onoro
Controller ( ) ff

g

Model of

x(t)

4o

room
temperature




On-off control of a room heater with a thermostat

Bang-bang control is a feasible strategy
when the controlled variable is
observable

Disadvantages
e Usually not energy efficient

e Overshoots and undershoots because
of inertia and delays

e Causes excess stress on the actuators

e Can cause the system to become
unstable (to be defined later)
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70

Bang-Bang Controller with Hysteresis Switching Logic (Bold Solid Lines)

pe = - - w=—RooTr Termperatare -1.0
== UpperThreshald (70°C)
= = Lower Threshold (65°C)

Heater On/Off - 9.0

0 20 40 60 80 100
Time (seconds)

X4: Set point

Heat
u(t) =onoro
Controller ( ) ff
: g
Model of
room
x(t) temperature




A Proportional controller

Plant x(t) = u(t) + d(t), where d(t) is a small disturbance signal

The goal is the drive the plant state to a target steady state value, say x; = 70°

Idea: Make the control input negatively proportional to the error: Negative feedback
Error: e(t) = x(t) — x4

Proportional controller: u(t) = —K,e(t), the constant K, is called controller gain
Using proportional (P) negative feedback

u(t) = —Kpe(t) = —Kp(x(t) — x4)

x(t) = —Kpx(t) + Kpxg + d(t) X4: Set point
Consider a constant disturbance d
e ' u(t) = g(e)
x(t) = —Kpx(t) + Kpxy + dgs — Controller
. : g=-Ke
What is the steady state value? Trick: set RHS =0

Set —pr(t) + Kpxg + dss =0 Model of
d
x(t) = x55 = KSS T Va oo
P x(t) temperature

4o



Proportional controller example
With constant disturbance d¢¢ we rewrite the ODE
x(t) = —Kpx(t) + Kpxy + d with xgo = i—‘g: + x4

x(t) = —Kp(xss — x(¢))
The solution of this ODE
x(t) = x55 + (x(0) — xg55)e P

X4: Set point

ﬁ

r—b

u(t) = g(e)

Controller

g=-Ke

Model of

x(t)

room
temperature

General solution of first-order linear DE

Transient behavior
ansient behavio () = x.. + Ce~Fot
x(t) = x(0)e v + x4(1 — e Hp) Setting t=0
x(0) = x4+ C

4o



Proportional Controller

Transient behavior of the control system
_ _ d
x(t) = x(0)e™™p + x5 (1 — e 7P ); x5y = =+ x4
Kp
The proportional controller uses negative feedback to
track the desired setpoint smoothly

Steady state error may not be O

Larger proportional gain Kp more reactive the controller
and faster the system converges to the target state Kp

Larger Kp implies smaller steady state tracking error

For systems with delays and inertia high proportional gain
can cause oscillations or overshoots

There may be actuator limits that prevent u(t) =

— Kpe(t) = —Kp(x(t) — x4) to be a feasible control
input

4o

Temperature (°C)

70

68

66

62

60 '

X4: Set point

——
Controller u(t) - g(e)
1 g=-Ke
Model of
room
x(t) temperature

Exponential Convergence for Different K_P Values

KP=0.2
KP=05
— KP=1.0

KP=2.0
——- Steady-State (70°C)

0 2 4 6 8 10
Time (seconds)
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