
ECE 484: Principles of Safe Autonomy Fall 2025

Written by: ECE 484 team MP1 and HW1

Website Due Date: September 26, 2025

1 Introduction

This assignment is consisted of two major parts. In the first part, you will answer 5 written questions re-
lated to concepts in computer vision. In the second part, you will implement a camera-based lane detection
module using a neural network. The module will take a stream of raw images as input, and it will produce
a stream of annotated images with the lane area marked as the output. You will implement the functions
detailed in later in the documentation. You will also write a brief report mp1_<groupname>.pdf. In the
assignment, you will gain some experience with Robot Operating System (ROS2) [1], and you are encour-
aged to use Pytorch functions to help you get familiar with neural networks, unless specified otherwise.
This document will guide you to the first steps on implementing the lane detection module. You are free to
take advantage of tutorials and documentations available online. Make sure to cite all resources in your
report. All the regulations for academic integrity and plagiarism spelled out in the student code apply.

Learning objectives

• Binary Segmentation with a Neural Network

• Coordinate Transformation

• Working with ROS – Gazebo

• Working with OpenCV Library

System requirements

• Ubuntu 22.04

• ROS 2 Humble

2 Homework Problems

Note that for proofs, we expect you to write the proof yourself, and not simply copy the answer off of
the internet/peers. Proving these on your own is good practice for quizzes/midterm. An aside, typically
its quite easy to determine when students copy proofs verbatim. We are happy to help in office hours,
homework party, or Campuswire.

Problem 1 Convolution [Individual] (15 points) Let an input tensor X have space Cin×W ×H . Consider
a 2-D convolution with Cout filters, kernel size k, stride s, padding p, and dilation d (Dilation in CNNs refers
to inserting spaces between the elements of a convolutional kernel). Compute the expressions as a function
of k, s, p, d, Cin, Cout,W,H for the dimension of the output tensor.

1

https://publish.illinois.edu/safe-autonomy/assignments-fall-2025/
https://studentcode.illinois.edu/article1/part4/1-402/

Problem 2 Linear transformation of the convolution layer [Individual] (20 points) We have input tensor
X ∈ R4×4, kernel K ∈ R3×3, stride=1, no padding. Please write out the output of X ∗ K, where X ∗ K is
convolution on X with kernel K. Then, we flatten X into vec(X) = [1, 2, 3, 4, ..., 14, 15, 16]⊤ ∈ R16×1, and
we want a matrix A, where Avec(X) = vec(X ∗ K). What is the shape of A? What are the values in A?

X =


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

 ,K =


1 0 −1

1 0 −1

1 0 −1

 .

Problem 3 Computer Vision [Individual] (15 points) You are given the pixel coordinates (xi, yi) =
(400, 300) of a point observed by a camera, along with the camera’s intrinsic matrix

K =


800 0 320

0 800 240

0 0 1

 and [R | t] =


0.6 −0.8 0 1

0.8 0.6 0 2

0 0 1 3

 .

Recall that [R | t] is the extrinsic matrix. Assuming that the depth of the point in the camera coordinate
system, z̃, is 5m, calculate the 3D world coordinates Xw, Yw, Zw of the point.

Problem 4 Backpropagation [Individual] (20 points) Consider a single neuron with

ŷ = f(wx+ b),

where f(z) = z2, the input x = 2, and the target y = 8. The initial parameters are w = 1 and b = 1
2 .

(a) Compute the forward pass and loss using the mean squared error:

L =
1

2

(
ŷ − y

)2
.

(b) Compute the gradients:
∂L
∂w

,
∂L
∂b

.

(c) Update w and b using gradient descent with a learning rate α = 0.001.

Problem 5 Backpropagation [Individual] (30 points) Consider a neural network with two hidden layers:

h(1) = f
(
W (1)x+ b(1)

)
, h(2) = f

(
W (2)h(1) + b(2)

)
, ŷ = W (3)h(2) + b(3),

where f(z) is the custom element-wise activation function defined as:

f(z) =

z2 if z ≥ 0,

−0.5z if z < 0.

and W (1),W (2) ∈ R2×2,W (3) ∈ R1×2, b(1), b(2), x ∈ R2×1, b(3) ∈ R1×1.

(a) Derive symbolic expressions for the following gradients:

∂ŷ

∂W (3)
,

∂ŷ

∂b(3)
,

∂ŷ

∂W (2)
,

∂ŷ

∂b(2)
,

∂ŷ

∂W (1)
,

∂ŷ

∂b(1)
.

2

(b) Using the given network parameters:

W (1) =

 2 −1

−3 1

 , W (2) =

0.5 0

1 −2

 , W (3) =
[
1 −1

]
,

b(1) =

 1

−1

 , b(2) =

0
0

 , b(3) = [0.2], x =

 1

−1

 .

Compute the output ŷ and all gradients derived above.

3 MP1 Overview

3.1 Problem Statement

The commercial success and the proliferation of shared-autonomous vehicles in the recent decade has
sparked a keen public interest in its underlying technology. Lane detection is a well-researched topic with
a rich body of literature and is still an active area of research. This MP seeks to provide students with
hands-on experience of designing a simple lane detection module using a neural network in a simulated
environment; this will serve as a practical introduction to neural perception in autonomous driving.

3.2 System Diagram

Figure 1: Lane Detection System Diagram

The system diagram of our lane detection pipeline is shown in Figure 1. First, you will train a simple
neural network of your design using the ground-truth lane map to generate labels for collected raw images.
During lane detection, the trained model outputs a binary mask image of lane lines given a raw image. This
segmentation mask then gets converted to a bird’s eye view (BEV) image. Finally, a lane fitting module fits
polynomials to the lanes, returning an image with the detected lanes overlaid to the raw image as well as the
polynomials. The system’s performance is evaluated by computing errors, such as cross-track and heading
errors, by comparing the fitted lane polynomial with the ground truth lane map. This MP requires you to
implement only some of the said components, as listed under Section 4. Of course, you are encouraged to
experiment with the entire codebase, as long as those changes are reverted upon submission.

4 Implementation Details

Below is a brief description of what you will implement in this MP.

3

Network Architecture Design an architecture of a simple neural network for lane segmentation.

End-to-End Neural Network Training Implement the training loop for a simple neural network.

Lane Segmentation Run inference on the neural network to obtain a binary lane segmentation image.

World-to-pixel Coordinate Transformation Perform a world-to-pixel coordinate transformation to obtain an
accurate bird’s eye view (BEV) image.

All the scripts you will need to modify are:

• mp1/scripts/simple_train.py

• mp1/src/models/simple_enet.py

• mp1/scripts/run_bev_config.py

• mp1/scripts/run_lane_detection.py

4.1 Network Architecture

In this section, we will implement a neural network capable of image segmentation to determine lanes
within an image. The model takes a gray-scale image as input and produces pixel-wise predictions, classi-
fying each pixel as either part of a lane or not. We will build a simplified version of ENet, a lightweight and
efficient network used for real-time segmentation tasks. We provide four modules to build Simple ENet,
and your task is to complete the missing blanks in the InitialBlock. The detailed flow of the InitialBlock is
provided below:

• InitialBlock takes the input image with the shape of (1, 384, 640)

• Input image –> Convolution Layer –> Feature f1 with the shape of (out_channels-1, 192, 320)

• Input Image –> Maxpooling Layer –> Feature f2 with the shape of (1, 192, 320)

• Concatenate f1 and f2 along the second dimension (axis=1) –> Batch Norm –> Activation –> Output
with the shape of (out_channels, 192, 320)

After building the modules for Simple ENet, we need to obtain images to train the model on. To do
this, we have provided a script, run_collect_images.py, where you are able to drive the vehicle with
WASD as well as save images. From here, preprocess_data.py will generate the labels for each image.

4.2 End-to-End Neural Network Training

In order to train the neural network, we need a training loop, which defines how the model processes data,
computes loss, and updates its parameters through optimization. Your task is to choose the optimizer and
update the model parameter with back propagation.

Optimizer is a key component of training, which adjusts the model’s weights based on the computed
gradients. You should select an appropriate optimizer (e.g., SGD, Adam, or AdamW) and initialize it with
the model’s parameters, along with essential hyperparameters such as the learning rate. During training,
we iterate over the dataset using a DataLoader, moving input images and labels to the chosen computation
device. After feeding the images into the model and performing a forward pass, we obtain the outputs
and compute the loss. Then, we clear any previously accumulated gradients, perform a backward pass to
compute gradients with respect to the loss, and use the optimizer to update the model parameters.

This completes one iteration of training. Over time, as the training progresses, the loss should gradually
decrease and eventually converge, reflecting the model’s improved ability to perform lane segmentation.

4

4.3 Lane Segmentation

In this section, we will implement a binary lane segmentation pipeline using a neural network. The goal is
to process a raw image and extract a binary mask highlighting lane pixels during the inference time. The
main steps are as follows:

1. Resize the input image to (640× 384), matching the model’s expected input resolution.

2. Grayscale and normalize the image to single-channel float values in the [0, 1] range.

3. Convert the preprocessed image into a PyTorch tensor and add the channel and batch dimensions to
meet the model input requirements.

4. Run inference on the input using the pretrained model to get a pixel-wise classification output in real
time.

5. Post-process the output by taking the argmax over the class dimension to get a predicted class map,
convert it into a binary format, and finally resize it back to the original image dimensions.

The model is expected to output a two-channel tensor (background vs. lane), where the second channel
corresponds to the lane class. By applying argmax over the channel axis, we extract the most probable
class for each pixel. Multiplying this prediction by 255 gives us a binary mask with pixel values of either 0
(non-lane) or 255 (lane), suitable for visualization and downstream processing.

(a) (b)

Figure 2: (a) Input raw image (b) Binary lane segmentation mask

This function will serve as the backbone for visual lane perception in your module. Make sure your
preprocessing steps exactly match the training pipeline. Otherwise, model performance will degrade
significantly.

4.4 World-to-pixel Coordinate Transformation

In this section, you will implement world-to-pixel transformation to obtain an accurate bird’s eye view
(BEV) image. What is an "accurate" BEV image? A proper BEV should preserve collinearity (i.e., all points
lying on a line initially still lie on a line after the transformation) as well as the resulting image displaying
parallel lane lines. We achieve these by using a 3-by-3 perspective transformation matrix.

5


tu

tv

t

 =


a b c

d e f

g h 1



x

y

1

 (1)

Here (x, y) and (u, v) are the coordinates of the same point in the coordinate systems of the original
perspective and the new perspective. To find the matrix, we need to find the location of 4 points on the
original image, namely the source points, and map the corresponding 4 points, on the BEV. Any 3 of those 4
points should not be on the same line.

(a) (b)

Figure 3: (a) Raw image (b) Bird’s Eye View image

Figure 4: BEV rectangle with the hyperparameter names

Instead of choosing the source points manually, we will perform a world-to-pixel coordinate transfor-
mation of the corners of the rectangle in the world frame, determined by its height, width and the distance
between its lower edge and the base link of the vehicle, shown in Figure 4. This offers several key advan-
tages:

1. The resulting BEV image displays perfectly parallel lane lines

6

2. It enables a quick iteration of many different BEV configurations without much trial-and-error.

You are free to experiment with the hyperparameters, but for the submission, please return them to the
original values for a more reliable evaluation. To save the BEV configuration as a JSON format, which
other modules then can access, run:

python3 s c r i p t s /run_bev_config . py

5 Training the Model

Important: All the python execution commands below should be run in the mp1/ directory. Relative paths
in the code (e.g. output save paths) will fail if run in other locations.

5.1 Collecting Training Images

To train our model, we need a training dataset. You will collect the dataset yourself! We provide the
script scripts/run_collect_images.py that controls the GEM car around the map and captures front
camera images at your desired location. Use ’W’,’A’,’S’,’D’ to control the movement and press ’C’ to save
the front camera view as PNG at data/raw_images/.

python3 s c r i p t s /run_col lec t_ images . py

5.2 Labeling the Images

Upon collecting the raw images, we need to label them to train the model. One significant advantage of
using simulation is that we have direct access to the ground-truth information, which may be difficult to
obtain in the real world. Taking advantage of this fact, we have written a script that computes the ground-
truth lane segmentation mask for each image you have taken in the previous step. We first need to generate
lane maps that we will use to label your images. You can do so by executing the script:

python3 s c r i p t s /generate_map . py

If successful, the new directory data/lane_map/ will contain raster images of road components that
make up the entire map. Now, to generate the labeled dataset, simply run:

python3 s c r i p t s /preprocess_data . py

Useful tip: Before you proceed, make sure that the label is correctly generated by looking at the dataset,
located in data/dataset/. It should contain each directory for the training set and the testing set, respec-
tively. Moreover, both should contain an ordered series of raw image and its corresponding segmentation
mask label as a pair.

7

5.3 Running the Training Loop

In order to run the training loops, you may need to initialize the optimizer with an appropriate learning
rate, and complete the training loop for a single batch. After this, we are finally ready to train the model by
running:

python3 s c r i p t s /s i mp l e _ t r a i n . py

Fill in the training configuration (e.g. batch size, learning rate, epochs etc.). Tuning the hyper-parameters
is essential in getting the most out of the model architecture you have designed. Make sure to experiment
with different combinations; we have made sure this is feasible by shortening the training time. You will
be asked to provide details about the set of hyperparameters you have tried and why you chose the one
over the others in the report. You may find training visualization via wandb or screenshots of RViz useful
for this question.

Useful tip: Before you run the training loop, check if your torch version supports GPU acceleration:

python3
>>> import torch
>>> torch . cuda . i s _ a v a i l a b l e ()

6 Running Lane Detection

6.1 Python Packages

We need to install some Python packages to run the training pipeline:

cd s r c /mp1
pip i n s t a l l −r requirement . t x t

6.2 ROS2 Environment Setup

To run the lane detection pipeline, you first need to build your ROS2 project. Start by setting up your
terminal for ROS2 and Gazebo. We have already put these two commands in the lab computer .bashrc, so
you do not need to execute these two on your own.

source /opt/ros/humble/setup . bash
source /usr/share/gazebo/setup . bash

Now, build the project by running the following command in the base directory of the repository. If you
encounter an error during the build process, you could execute the two commands above.

8

colcon build −−symlink − i n s t a l l

You should see three new directories generated in your base directory: build/, install/, and log/.
Set up your terminal again with the build-specific setup.bash file, generated in the install/ directory.
Remember to source these files for every new terminal session you open.

source i n s t a l l /setup . bash
source

Now, you are ready to launch your ROS2 environment. Simply run the command:

ros2 launch mp1 mp1_launch . launch

If successful, you will see the RViz and Gazebo windows open. The image display panel on RViz con-
firms that ROS has access to the camera stream from GEM.

(a) (b)

Figure 5: (a) RViz start screen (b) Gazebo start screen

9

Figure 6: RViz screen of a functional lane detection algorithm

6.3 Evaluation

Now that we have a working lane detection module, let’s see how we can quantitatively measure its perfor-
mance. We will first need to load the checkpoint that performs the best in the validation set. Then, among
the diverse metrics for evaluation, we will specifically focus on the cross-track error and the heading error. As
the names suggest, cross-track error indicates the distance of the vehicle from the center of the lane, while
the heading error indicates the angular displacement of the direction the vehicle is facing from that of the
lane (look at Figure-7(a)).

10

(a) (b)

Figure 7: (a) Cross-track error (XTE) and heading error (θ) (b) Scaled BEV polynomial (solid) and its
extrapolation (dashed)

Simply put, these metrics measure lateral displacement and direction alignment of our vehicle from the
perceived lane (any guess why this might be important in autonomous driving?). The closer the cross-track
error and the heading error computed from our prediction are to their ground-truth, the better the lane
detection algorithm is!

Implementing these metrics for our prediction involves some post-processing. As Figure-7(b) suggests,
we will treat the predicted polynomial as the center of the lane. However, we cannot use it directly be-
cause the polynomial is represented in terms of the BEV image pixel coordinates. Luckily, if we know the
dimension (px) of the BEV image along with the dimension (m) of its corresponding BEV area, we can
easily compute the scaling factor between them! As you might recall, we indeed have already saved these
information in our BEV configuration file in Section-4.4. Once we have scaled the polynomial, we compute:

1. Predicted cross-track error: The perpendicular distance between the vehicle and the polynomial.

2. Predicted heading error: The derivative of the polynomial evaluated at the same point.

Note that we are not trying to minimize the cross-track and heading errors themselves, but the difference
between the respective errors, each computed from our prediction and the ground-truth. Run the script to
print the errors in your console:

python3 s c r i p t s / r u n _ e r r o r _ c a l c u l a t i o n . py

We will provide the validation set that you could adjust the hyperparameters for your Simple ENet
training and have a private test set for grading. We will grade your model on our private test set, but for
the demo, you will need to show the cross-track and heading errors. To run the evaluation of the lane
prediction in the console:

11

python3 s c r i p t s /eval . py

7 Report

Each group should upload a short report with following questions answered.

Problem 6 [Group] (15 points) How do you determine whether a model is overfitting to the training set,
and what methods can be used to mitigate it? How do you diagnose underfitting, and what methods can
be used to reduce it? Please list two methods, respectively.

Problem 7 [Group] (20 points) What problem might occur if a model is trained mainly on sunny-day
images but tested on snowy-day images? List two methods that could improve the model’s performance
on snowy days. Briefly describe how each method works.

Problem 8 [Group] (30 points) Record a short videos of Rviz window and Gazebo to show that your code
works. You can either use screen recording software or smart phone to record. Please ensure that your links
to videos are functional before submission.

Problem 9 [Group] (25 points) We will grade your model on our private test set based on the accuracy
of lane detection using the checkpoints you provide. You may tune your model with the validation set we
provide and demonstrate the effort how you improve model’s performance. For example, you can use the
training loss curve and loss on the validation set to show your effort. Also, explain how you selected the
BATCH_SIZE, Learning Rate (LR), and Number of Epochs when you tune the hyperparameters. Please
ensure that you submit the final checkpoints and training loss curve for grading.

Demo (10 points) You will need to demo your solution on both scenarios to the TAs during the lab demo.
There may be an autograding component, using an error metric calculation between your solution and a
golden solution.

8 Submission instructions

Problems 1-5 must be done individually (Homework 1). Write solutions to each problem in a file named
hw1_<netid>.pdf and upload the document in Canvas. Include your name and netid in the pdf. You may
discuss solutions with others, but do not use written notes from those discussions to write your answers. If
you use/read any material outside of those provided for this class to help grapple with the problem, you
should cite them explicitly.

Problems 6-9 can be done in groups of 3-4. Figures of training loss curve should be submitted in the
report. Students need to take a short videos clearly showing that their code works and answer other ques-
tions. Your video must show that your implementation can detect lanes when the car is moving. The
videos can be uploaded to a website (YouTube, Vimeo, or Google Drive with public access) and you need to
include the link in the report. One member of each team will upload the report mp1_<groupname>.pdf
to Canvas. Please include the names and netids of all the group members and cite any external resources
you may have used in your solutions. Also, please upload your code (any files that you changed) and final
checkpoint in a .zip file.

12

References

[1] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

13

	1 Introduction
	2 Homework Problems
	3 MP1 Overview
	3.1 Problem Statement
	3.2 System Diagram

	4 Implementation Details
	4.1 Network Architecture
	4.2 End-to-End Neural Network Training
	4.3 Lane Segmentation
	4.4 World-to-pixel Coordinate Transformation

	5 Training the Model
	5.1 Collecting Training Images
	5.2 Labeling the Images
	5.3 Running the Training Loop

	6 Running Lane Detection
	6.1 Python Packages
	6.2 ROS2 Environment Setup
	6.3 Evaluation

	7 Report
	8 Submission instructions

