
ECE 484: Principles of Safe Autonomy
Fall 2025 Lecture 2: Checking Safety

Professor: Huan Zhang

Aug 26, 2025

https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com

More about labs and MPs

► More time for forming your team: MP0 has been changed to
individual

► Deadline for finalizing all teams: Friday, Sep 5
► All team members must be in the same lab session
► You can switch your lab section through the regular course

registration portal (if the section you want to switch to is not full)

► MP0 and HW0 will be released this Friday 9 am - check Gradescope

More about labs and MPs

► If you cannot make the switch yourself, because the section you want to switch
to is always full, send a requst to the lead TA Hanna Chen
(hannac4@illinois.edu) on Tuesday, Sep 2

► cc your email to the corresponding lab TAs: the one you are moving out from and the
one you are moving to

► early/late requests will not be handled
► You will be notified whether your lab switch is approved by the end of

Wednesday, Sep 3
► Not guaranteed - we need to balance the enrollments of each section

► All teams must be formed by Friday, Sep 5
► You will need to submit the team member names - pay attention to announcements

on Campuswire
► All team members must be in the same lab section

Architecture of a typical autonomous system

Environment

Vehicle
dynamicsPerception Control

푒��: Lidar / vision

Planning
and

decision

Sensing

Cost of unreliability in autonomous systems
► Therac-25 radiation therapy machine delivered overdoses

because of software bug which resulted in 6 fatalities.
► Elaine Herzberg was killed by selfdriving Uber prototype in

Tempe, Arizona in March 2018.
► A simple data conversion error caused the $500M Ariane

5 rocket to veer off course and explode shortly after
launch.

► GM’s Cruise autonomous vehicle unit shut down its San
Francisco robotaxi fleet after crashes in 2023.

► Cost of defects grow exponentially with the time of
discovery

Capers Jones, Software Assessments, Benchmarks,
and Best Practices, Addison-Wesley, 2000

Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any
pedestrian (or another car) in front and stop before it
collides.

Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any
pedestrian (or another car) in front and stop before it
collides.

Non-working AEB will violate safety and reliability

Checking truthfulness of statements about reliability and safety

A popular method for checking truth: Statistical testing

“Testing can be used to show the presence of bugs, but never to show their absence!’’

--- Edsger W. Dijkstra

Amount of testing required for autonomous systems can be prohibitive
 Probability of a fatality caused by an accident per one hour of human driving is known to be 10−6

 Assume that for AV this has to be 10−9

 Data required to guarantee a probability of 10−9 fatality per hour of driving is proportional to its inverse,
109 hours, 30 billion miles

 Multi-agent, open system, with human interactions => cannot be simulated offline to generate data
 Any change is software means tests have to be rerun

On a Formal Model of Safe and Scalable Self-driving Cars by
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017
(Responsibility Sensitive Safety)

https://arxiv.org/pdf/1708.06374.pdf

Checking truthfulness of statements
The ultimate standard for truth: A theorem with a proof

Formal verification: The science of proving or disproving truth of statements asserting correctness of
systems

Proofs are being used at scale in Amazon, Meta, Microsoft, NASA, …

“In 2017 alone the security team used deductive theorem provers or model checking tools to
reason about cryptographic protocols/systems, hypervisors, boot-loaders/BIOS/firmware, garbage
collectors, and network designs.” Byron Cook, Amazon

Outline for this module

► Math models: automata, executions

► Requirements: statements about correctness

► Proofs: Reachable states, Invariants for safety guarantees

Byron Cook’s talk at FLoC 2018
https://www.youtube.com/watch?v=JfjLKBO27nw

Formal Verification in Software: an example

Simple programming task: given a 32-bit unsigned integer, calculate how
many bits are set to 1 (“population count”)

int popcount(uint32_t x) {
 int c = 0;
 for (int i = 0; i < 32; i++) {
 c += x & 1;
 x >>= 1;
 }
 return c;
}

Naive implementation

Example source: Marijn J.H. Heule, “SAT and SMT Solvers in Practice”

Clever implementation
int popcount (uint32_t x) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
 return x;
}

Formal Verification in Software: an example
Can we trust this “clever implementation” of the same function?
What would you do to ensure this clever implementation is correct? Brute-
force?

int popcount(uint32_t x) {
 int c = 0;
 for (int i = 0; i < 32; i++) {
 c += x & 1;
 x >>= 1;
 }
 return c;
}

Naive implementation ?= Clever implementation
int popcount (uint32_t x) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
 return x;
}

Formal Verification in Software: Specification

Formal verification aims to prove that for all possible inputs, the results of
the two functions are the same (mathematically, same integer is returned)

int popcount(uint32_t x) {
 int c = 0;
 for (int i = 0; i < 32; i++) {
 c += x & 1;
 x >>= 1;
 }
 return c;
}

Naive implementation == Clever implementation
int popcount (uint32_t x) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
 return x;
}

Verification requirement/specification:

The verification problem:
model + requirement + algorithm to find proofs

Counterexamples

Proofs!

Outline for this module
● Math models: automata, executions
● Requirements: statements about correctness
● Proofs: Reachable states, Invariants for safety guarantees

Verification vs Testing

Testing: evaluates requirements on a finite number of behaviors
Verification: aims to prove requirements over all behaviors

Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any
pedestrian (or another car) in front and stop before it
collides.

Today: There is no standard for checking correctness of
AEB systems

Future: Every time an AEB engineer commits code in
github, a theorem proves safety of the system under
appropriate assumptions, or finds an unsafe scenario

The verification problem:
model + requirement + algorithm to find proofs

Counterexamples

Proofs!

To prove anything, first we have to start with assumptions for the
mathematical description of the system

Assumptions are captured in the models (of the system under study, e.g.,
an autonomous vehicle)

● Programs, state machines, or differential equations, block diagrams
● Discrete or continuous time, state or both -- hybrid
● Deterministic or nondeterministic or probabilistic
● Composition and interfaces, abstraction
● Deal with machine learning, deep neural networks

In this class, we will introduce some simple models (automata/state
machine)

https://tribalsimplicity.com/2014/07/28/george-box-models-wrong-useful/

Start with: modeling

Automata or state machine models for reliability/safety analysis

An automaton � is defined by a triple ⟨�, �0, �⟩, where
► � is a set of states
► �0 ⊆ � is a set of initial states
► � ⊆ � × � is a set of transitions

� is a finite state automaton if |�| is finite

� deterministic automaton if |�0| = 1 and for every � ∈ �, |� � | ≤ 1

Deterministic and nondeterministic automata

An automaton � is defined by a triple ⟨�, �0, �⟩,
where

• � is a set of states

• �0 ⊆ � is a set of initial states

• � ⊆ � × � is a set of transitions

Nondeterminism models uncertainty

Uncertainty makes the safety checking problem
harder

Example: Driving mode logic automaton ���

� = {�, �, �, �푢��} , �0 = {�}

This is a nondeterministic finite automaton

State � ∈ � Allowed transitions � �
R {P,D}

P {R,D}

D {R, P, Auto}

Auto {D}

P D AutoR

Executions, Requirements, and Counter-examples
An execution of an automaton � is a finite or infinite sequence of states � =
�0, �1, �2, … such that

► �0 ∈ �0

► For all � in �, ��, ��+1 ∈ �

A deterministic automaton has a single maximal execution � such that all other
executions are prefixes of �

A nondeterministic automata has many executions

E.g. P,D,P,D,… ; P, D, Auto; …
P D AutoR

Requirements and Counter-examples
A requirement defines a collection of executions

������� = {� | ∀� �� ≠ �푢��} ;
����2� = {� | ∀� �� �� = �, ��+1 ≠ �}

There are formal languages for writing requirements like
Linear Temporal Logic, Computational Tree Logic, etc.

An automaton � satisfies a requirement � if all
executions of � satisfies �
��� does not satisfy either requirement ������� ����2�
because there are counter-example executions � 1 =
�,�, �푢�� and � 2 = �,�, �
���

′ satisfies both the requirements

P D AutoR

P D AutoR

���

���
′

X

X

Verification problem

Verification problem: Given an automaton � and a requirement �, check
whether � satisfies � or find a counter-example
Testing or checking individual executions will not be enough; corner cases
In general verification is a hard problem
► Finite automata may have infinitely many executions which leads to

state-space explosion
► Automata may have uncountably infinite states which can make the

problem undecidable

Automatic emergency braking example

Automaton model of AEB

Automaton � = ⟨�, �0, �⟩
► � = ℝ4

► � ∈ �, �. �1, �. �1, �. �2, �. �2… ∈ ℝ
► �0 = {� | �. �1 = �10, �. �2 = �20, …}
► � ⊆ ℝ4 × ℝ4 written as a program:

If �2 − �1 ≤ 2.0
 �1 ∈ �1 − �1, �1 − �2
else
 �1 = �1�2 = �2 + �2�1 = �1 + �1

�1 �2

�1 �2

If �2 − �1 ≤ 2.0

�1 ∈ �1 − �1, �1 − �2

More realistic AEB model: Known unknowns

If �2 − �1 ≤ 2.0
 �1 ∈ �1 − �1, �1 − �2
else �1 = �1�2 = �2 + �2�1 = �1 + �1

► Acceleration, friction in dynamics
► Uncertainty in sensing
► Uncertainty in lead vehicle behavior
► Rear vehicle

“All models are wrong, some are useful.”

Safety requirements and verification

A safety requirement is a requitement that states that no execution should reach a
certain set of bad (or unsafe) states � ⊆ �

������� = {� | ∀�, �� ≠ �푢��} safety � = {�푢��}

������������ = {� | ∀�, ��. �2 > ��. �1} safety � = {�|�. �2 − �. �1 ≤ 0}

����2� = {� | ∀�, �� �� = � �ℎ푒� ��+1 ≠ �} not a safety requirement

�������� = {� | ∃�, 2 ≥ ��. �2 − ��. �1 ≥ 1} not a safety requirement

Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton � and an unsafe set
�, check whether there exists any execution � of � that reaches �

Counter-examples of safety are finite executions

For finite automata safety verification can be solved using depth first
search from �0

Absence of a counter-example proves that the automaton is safe

