

ECE 484: Principles of Safe Autonomy

Fall 2025 Lecture 2: Checking Safety

Professor: Huan Zhang

Aug 26, 2025

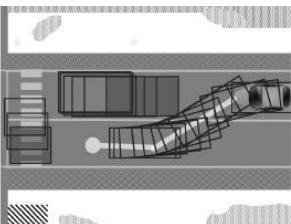
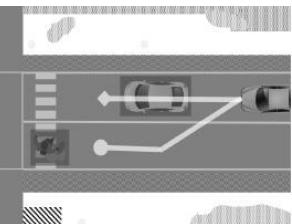
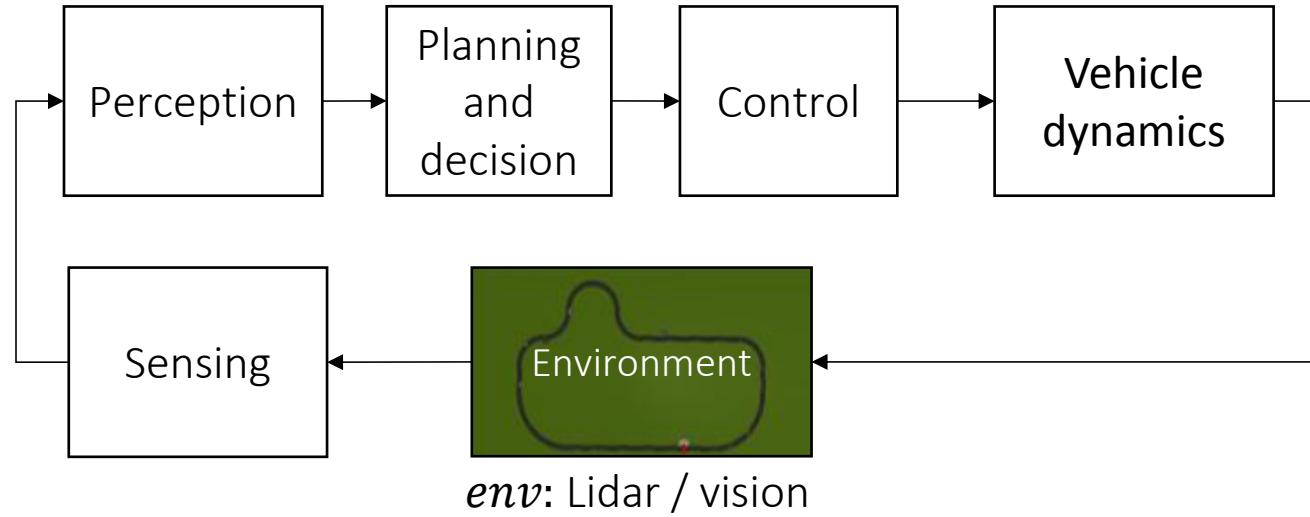
<https://publish.illinois.edu/safe-autonomy/>

<https://huan-zhang.com>

huanz@illinois.edu

More about labs and MPs

- ▶ More time for forming your team: MPO has been changed to individual
- ▶ Deadline for finalizing all teams: Friday, **Sep 5**
- ▶ All team members must be in the same lab session
- ▶ You can switch your lab section through the regular course registration portal (if the section you want to switch to is not full)
- ▶ MPO and HW0 will be released this **Friday 9 am** - check Gradescope

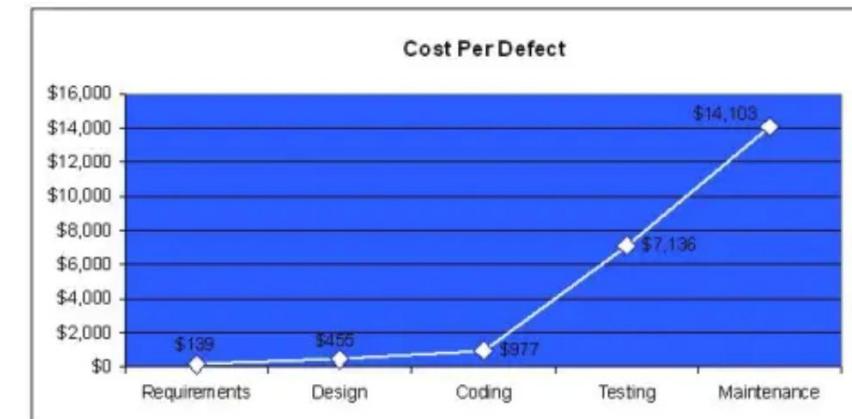
More about labs and MPs

- ▶ If you cannot make the switch yourself, because the section you want to switch to is always full, send a request to the lead TA Hanna Chen (hannac4@illinois.edu) **on Tuesday, Sep 2**
 - ▶ cc your email to the corresponding lab TAs: the one you are moving out from and the one you are moving to
 - ▶ **early/late requests will not be handled**
- ▶ You will be notified whether your lab switch is approved by the end of Wednesday, Sep 3
 - ▶ Not guaranteed - we need to balance the enrollments of each section
- ▶ All teams must be formed by **Friday, Sep 5**
 - ▶ You will need to submit the team member names - pay attention to announcements on **Campuswire**
 - ▶ **All team members must be in the same lab section**

Architecture of a typical autonomous system

Sensing
Physics-based models of cameras, LIDAR, radar, GPS, and so on.

Perception
Programs for object tracking, scene understanding, and so on.


Decisions and planning
Programs and multi-agent models of pedestrians, cars, and so on.

Control
Dynamical models of vehicle engine, powertrain, steering, tires, and so on.

Cost of unreliability in autonomous systems

- ▶ Therac-25 radiation therapy machine delivered overdoses because of software bug which resulted in 6 fatalities.
- ▶ Elaine Herzberg was killed by selfdriving Uber prototype in Tempe, Arizona in March 2018.
- ▶ A simple data conversion error caused the **\$500M Ariane 5 rocket** to veer off course and explode shortly after launch.
- ▶ GM's Cruise autonomous vehicle unit shut down its San Francisco robotaxi fleet after crashes in 2023.
- ▶ Cost of defects grow exponentially with the time of discovery

Capers Jones, Software Assessments, Benchmarks, and Best Practices, Addison-Wesley, 2000

Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any pedestrian (or another car) in front and stop before it collides.

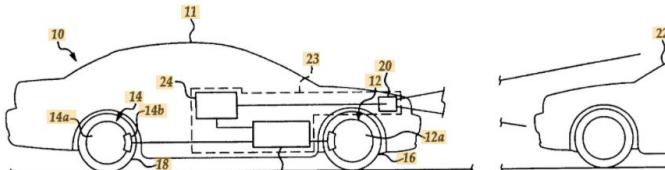
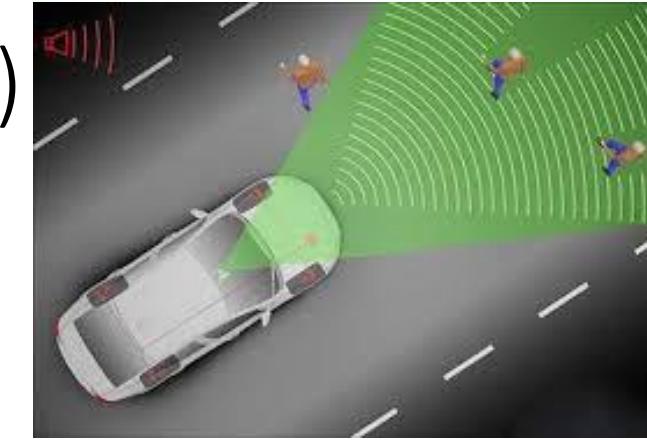



Figure 1

www.google.com > patents

US20110168504A1 - Emergency braking system - Google ...

Jump to [Patent citations](#) (18) - [US4053026A](#) * 1975-12-09 1977-10-11 Nissan Motor Co., Ltd. Logic circuit for an automatic braking system for a motor ...

www.google.com > patents

US5170858A - Automatic braking apparatus with ultrasonic ...

An automatic braking apparatus includes: an ultrasonic wave emitter provided in a ... Info: Patent citations (13); Cited by (7); Legal events; Similar documents; Priority and ... [US6523912B1](#) 2003-02-25 Autonomous emergency braking system.

www.google.com > patents

DE102004030994A1 - Brake assistant for motor vehicles ...

B60T7/22 Brake-action initiating means for automatic initiation; for initiation not ... Info: Patent citations (3); Cited by (9); Legal events; Similar documents ... data from the environment sensor and then automatically initiates emergency braking.

www.google.com.pg > patents

Braking control system for vehicle - Google Patents

An automatic emergency braking system for a vehicle includes a forward viewing camera and a control. At least in part responsive to processing of captured ...

www.automotiveworld.com > news-releases > toyota-ip... ▾

Toyota IP Solutions and IUPUI issue first commercial license ...

Jul 22, 2020 - ... and validation of automotive automatic emergency braking (AEB) ... and Director of Patent Licensing for Toyota Motor North America. "We are ...

insurancenewsnet.com > article > patent-application-tit... ▾

Patent Application Titled "Multiple-Stage Collision Avoidance ...

Apr 3, 2019 - No assignee for this patent application has been made. ... Automatic emergency braking systems will similarly, also, soon be required for tractor ...

Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any pedestrian (or another car) in front and stop before it collides.

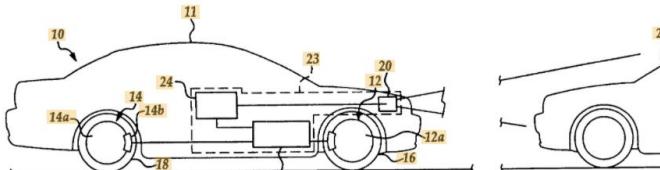
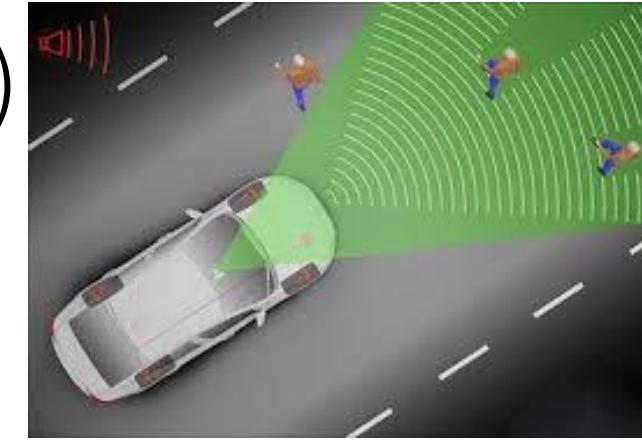



Figure 1

Non-working AEB will violate safety and reliability

www.google.com > patents

US20110168504A1 - Emergency braking system - Google ...

Jump to [Patent citations](#) (18) - [US4053026A](#) * 1975-12-09 1977-10-11 Nissan Motor Co., Ltd. Logic circuit for an automatic braking system for a motor ...

www.google.com > patents

US5170858A - Automatic braking apparatus with ultrasonic ...

An automatic braking apparatus includes: an ultrasonic wave emitter provided in a ... Info: Patent citations (13); Cited by (7); Legal events; Similar documents; Priority and ... [US6523912B1](#) 2003-02-25 Autonomous emergency braking system.

www.google.com > patents

DE102004030994A1 - Brake assistant for motor vehicles ...

B60T7/22 Brake-action initiating means for automatic initiation; for initiation not ... Info: Patent citations (3); Cited by (9); Legal events; Similar documents ... data from the environment sensor and then automatically initiates emergency braking.

www.google.com.pg > patents

Braking control system for vehicle - Google Patents

An automatic emergency braking system for a vehicle includes a forward viewing camera and a control. At least in part responsive to processing of captured ...

www.automotiveworld.com > news-releases > toyota-ip... ▾

Toyota IP Solutions and IUPUI issue first commercial license ...

Jul 22, 2020 - ... and validation of automotive automatic emergency braking (AEB) ... and Director of Patent Licensing for Toyota Motor North America. "We are ...

insurancenewsnet.com > article > patent-application-tit... ▾

Patent Application Titled "Multiple-Stage Collision Avoidance ...

Apr 3, 2019 - No assignee for this patent application has been made. ... Automatic emergency braking systems will similarly, also, soon be required for tractor ...

Checking truthfulness of statements about reliability and safety

A popular method for checking truth: Statistical testing

“Testing can be used to show the presence of bugs, but never to show their absence!”

--- Edsger W. Dijkstra

Amount of testing required for autonomous systems can be prohibitive

- Probability of a fatality caused by an accident per one hour of human driving is known to be 10^{-6}
- Assume that for AV this has to be 10^{-9}
- Data required to guarantee a probability of 10^{-9} fatality per hour of driving is proportional to its inverse, 10^9 hours, 30 billion miles
- Multi-agent, open system, with human interactions => cannot be simulated offline to generate data
- Any change in software means tests have to be rerun

[On a Formal Model of Safe and Scalable Self-driving Cars](#) by
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017
(Responsibility Sensitive Safety)

Checking truthfulness of statements

The ultimate standard for truth: A theorem with a proof

Formal verification: The science of proving or disproving truth of statements asserting correctness of systems

Proofs are being used at scale in Amazon, Meta, Microsoft, NASA, ...

“In 2017 alone the security team used deductive theorem provers or model checking tools to reason about cryptographic protocols/systems, hypervisors, boot-loaders/BIOS/firmware, garbage collectors, and network designs.” Byron Cook, Amazon

Outline for this module

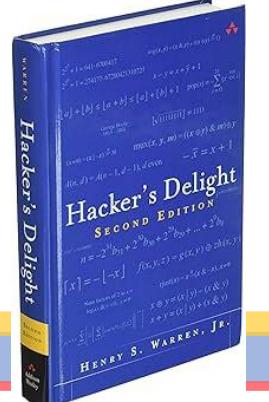
- ▶ Math models: automata, executions
- ▶ Requirements: statements about correctness
- ▶ Proofs: Reachable states, Invariants for safety guarantees

Byron Cook’s talk at FLoC 2018

<https://www.youtube.com/watch?v=JfjLKBO27nw>

Formal Verification in Software: an example

Simple programming task: given a 32-bit unsigned integer, calculate how many bits are set to 1 (“population count”)


Naive implementation

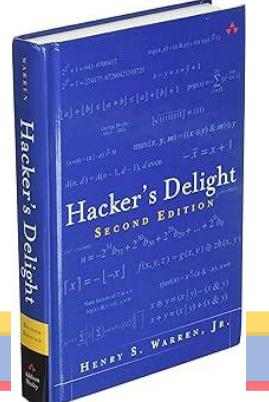
```
int popcount(uint32_t x) {
    int c = 0;
    for (int i = 0; i < 32; i++) {
        c += x & 1;
        x >>= 1;
    }
    return c;
}
```

Clever implementation

```
int popcount (uint32_t x) {
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = ((x + (x >> 4) & 0xf0f0f0f0) * 0x1010101) >> 24;
    return x;
}
```

Example source: Marijn J.H. Heule, “SAT and SMT Solvers in Practice”

Formal Verification in Software: an example


Can we trust this “clever implementation” of the same function?
What would you do to ensure this clever implementation is correct? Brute-force?

Naive implementation

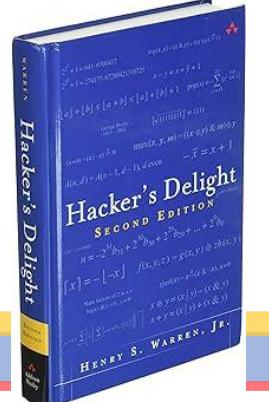
```
int popcount(uint32_t x) {
    int c = 0;
    for (int i = 0; i < 32; i++) {
        c += x & 1;
        x >>= 1;
    }
    return c;
}
```

Clever implementation

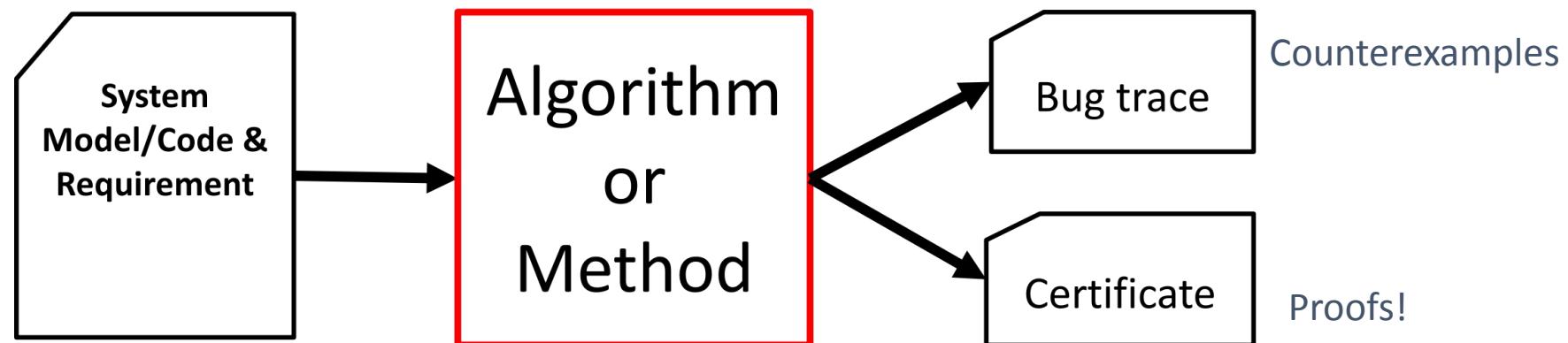
```
int popcount (uint32_t x) {
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
    return x;
}
```


Formal Verification in Software: Specification

Formal verification aims to prove that for all possible inputs, the results of the two functions are the same (mathematically, same integer is returned)


Verification requirement/specification:

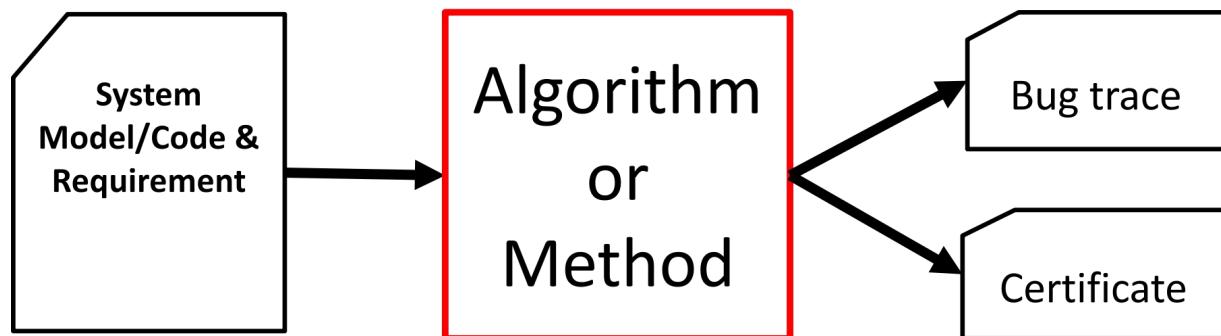
Naive implementation


```
int popcount(uint32_t x) {
    int c = 0;
    for (int i = 0; i < 32; i++) {
        c += x & 1;
        x >>= 1;
    }
    return c;
}
```

Clever implementation

```
int popcount (uint32_t x) {
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = ((x + (x >> 4) & 0xf0f0f0f0) * 0x1010101) >> 24;
    return x;
}
```


The verification problem: model + requirement + algorithm to find proofs



Outline for this module

- Math models: automata, executions
- Requirements: statements about correctness
- Proofs: Reachable states, Invariants for safety guarantees

Verification vs Testing

Testing: evaluates requirements on a **finite number** of behaviors

Verification: aims to prove requirements over **all behaviors**

Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any pedestrian (or another car) in front and stop before it collides.

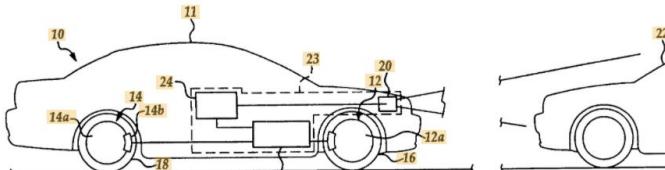
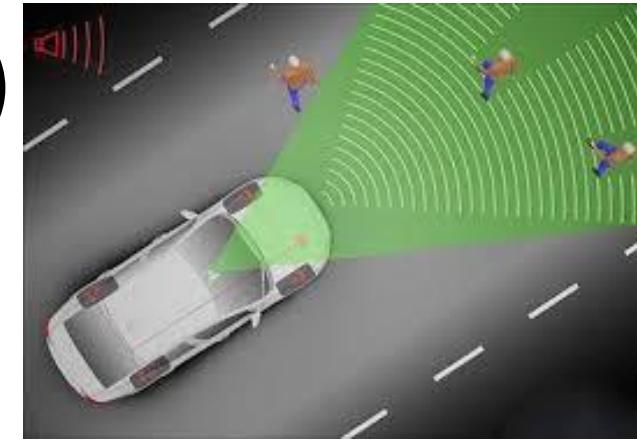



Figure 1

Today: There is no standard for checking correctness of AEB systems

Future: Every time an AEB engineer commits code in github, a theorem proves safety of the system under appropriate assumptions, or finds an unsafe scenario

www.google.com > patents

US20110168504A1 - Emergency braking system - Google ...

Jump to Patent citations (18) - US4053026A * 1975-12-09 1977-10-11 Nissan Motor Co., Ltd. Logic circuit for an automatic braking system for a motor ...

www.google.com > patents

US5170858A - Automatic braking apparatus with ultrasonic ...

An automatic braking apparatus includes: an ultrasonic wave emitter provided in a ... Info: Patent citations (13); Cited by (7); Legal events; Similar documents; Priority and ... US6523912B1 2003-02-25 Autonomous emergency braking system.

www.google.com > patents

DE102004030994A1 - Brake assistant for motor vehicles ...

B60T7/22 Brake-action initiating means for automatic initiation; for initiation not ... Info: Patent citations (3); Cited by (9); Legal events; Similar documents ... data from the environment sensor and then automatically initiates emergency braking.

www.google.com.pg > patents

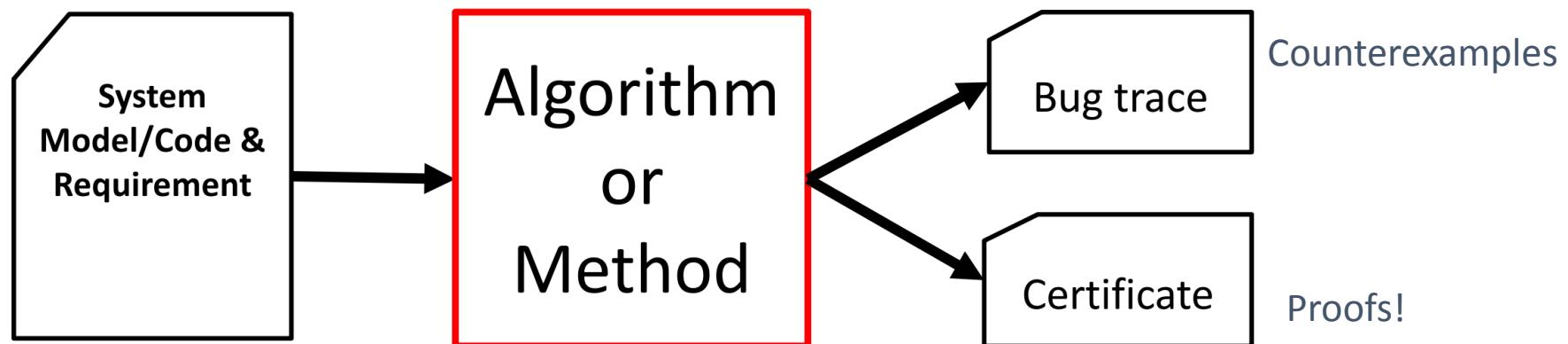
Braking control system for vehicle - Google Patents

An automatic emergency braking system for a vehicle includes a forward viewing camera and a control. At least in part responsive to processing of captured ...

www.automotiveworld.com > news-releases > toyota-ip... ▾

Toyota IP Solutions and IUPUI issue first commercial license ...

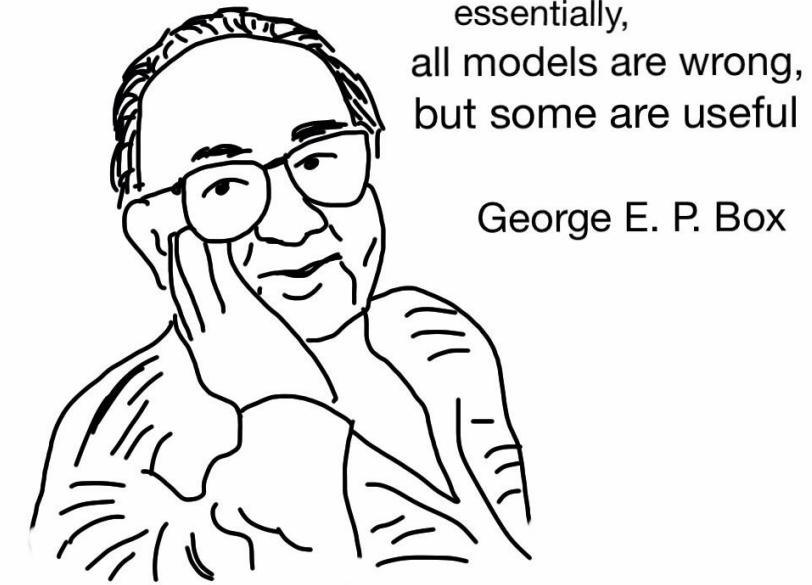
Jul 22, 2020 - ... and validation of automotive automatic emergency braking (AEB) ... and Director of Patent Licensing for Toyota Motor North America. "We are ...


insurancenewsnet.com > article > patent-application-tit... ▾

Patent Application Titled "Multiple-Stage Collision Avoidance ...

Apr 3, 2019 - No assignee for this patent application has been made. ... Automatic emergency braking systems will similarly, also, soon be required for tractor ...

The verification problem: model + requirement + algorithm to find proofs


Start with: modeling

To prove anything, first we have to start with **assumptions** for the mathematical description of the system

Assumptions are captured in the *models* (of the system under study, e.g. an autonomous vehicle)

- Programs, state machines, or differential equations, block diagrams
- Discrete or continuous time, state or both -- hybrid
- Deterministic or nondeterministic or probabilistic
- Composition and interfaces, abstraction
- Deal with machine learning, deep neural networks

In this class, we will introduce some simple models (automata/state machine)

George E. P. Box

<https://tribalsimplicity.com/2014/07/28/george-box-models-wrong-useful/>

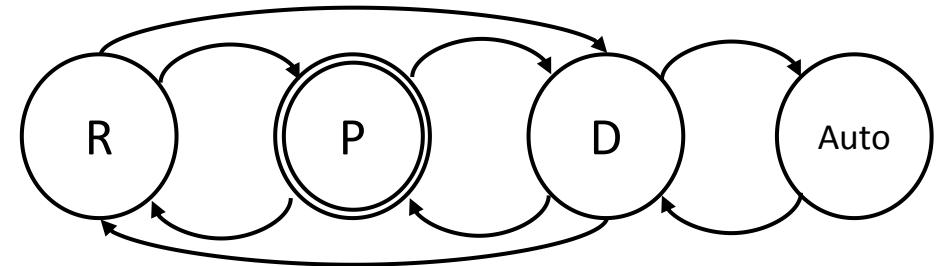
Automata or state machine models for reliability/safety analysis

An **automaton** A is defined by a triple $\langle Q, Q_0, D \rangle$, where

- ▶ Q is a set of **states**
- ▶ $Q_0 \subseteq Q$ is a set of **initial states**
- ▶ $D \subseteq Q \times Q$ is a set of **transitions**

A is a **finite state automaton** if $|Q|$ is finite

A **deterministic automaton** if $|Q_0| = 1$ and for every $q \in Q$, $|D(q)| \leq 1$


Deterministic and nondeterministic automata

An **automaton** A is defined by a triple $\langle Q, Q_0, D \rangle$, where

- Q is a set of **states**
- $Q_0 \subseteq Q$ is a set of **initial states**
- $D \subseteq Q \times Q$ is a set of **transitions**

Nondeterminism models uncertainty

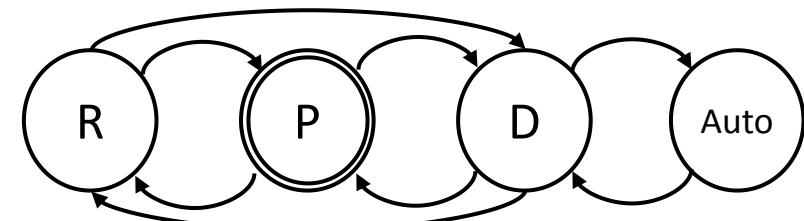
Uncertainty makes the safety checking problem harder

Example: Driving mode logic automaton A_{DL}
 $Q = \{R, P, D, Auto\}$, $Q_0 = \{P\}$

State $q \in Q$	Allowed transitions $D(q)$
R	{P,D}
P	{R,D}
D	{R, P, Auto}
Auto	{D}

This is a **nondeterministic finite automaton**

Executions, Requirements, and Counter-examples


An **execution** of an automaton A is a finite or infinite sequence of states $\alpha = q_0, q_1, q_2, \dots$ such that

- ▶ $q_0 \in Q_0$
- ▶ For all i in α , $(q_i, q_{i+1}) \in D$

A deterministic automaton has a single maximal execution $\bar{\alpha}$ such that all other executions are prefixes of $\bar{\alpha}$

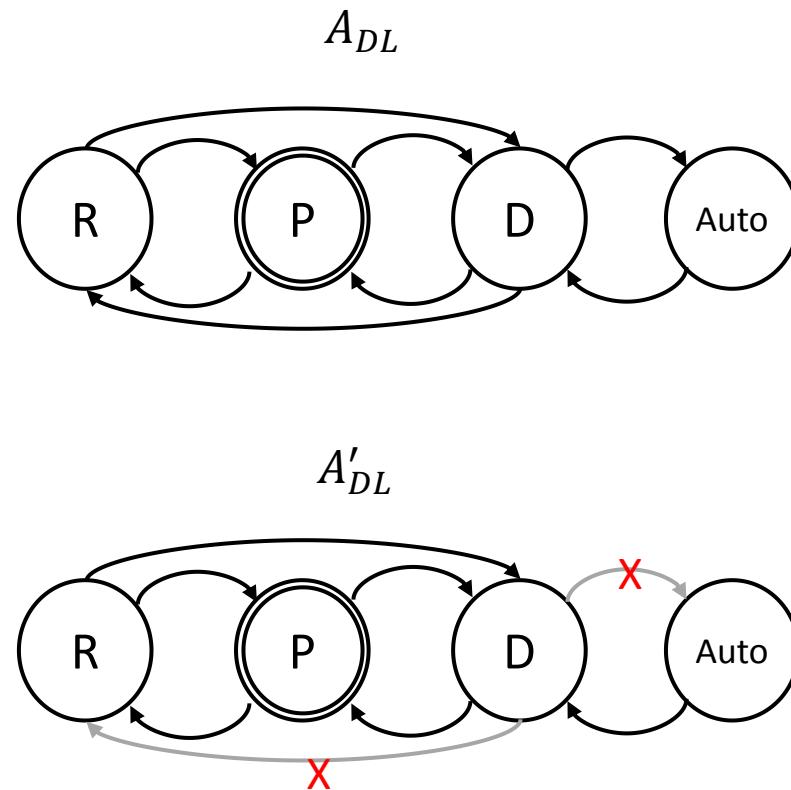
A nondeterministic automata has many executions

E.g. P,D,P,D,... ; P, D, Auto; ...

Requirements and Counter-examples

A requirement defines a collection of executions

$$R_{noAuto} = \{\alpha \mid \forall i \alpha_i \neq Auto\};$$


$$R_{noD2R} = \{\alpha \mid \forall i \text{ if } \alpha_i = D, \alpha_{i+1} \neq R\}$$

There are formal languages for writing requirements like Linear Temporal Logic, Computational Tree Logic, etc.

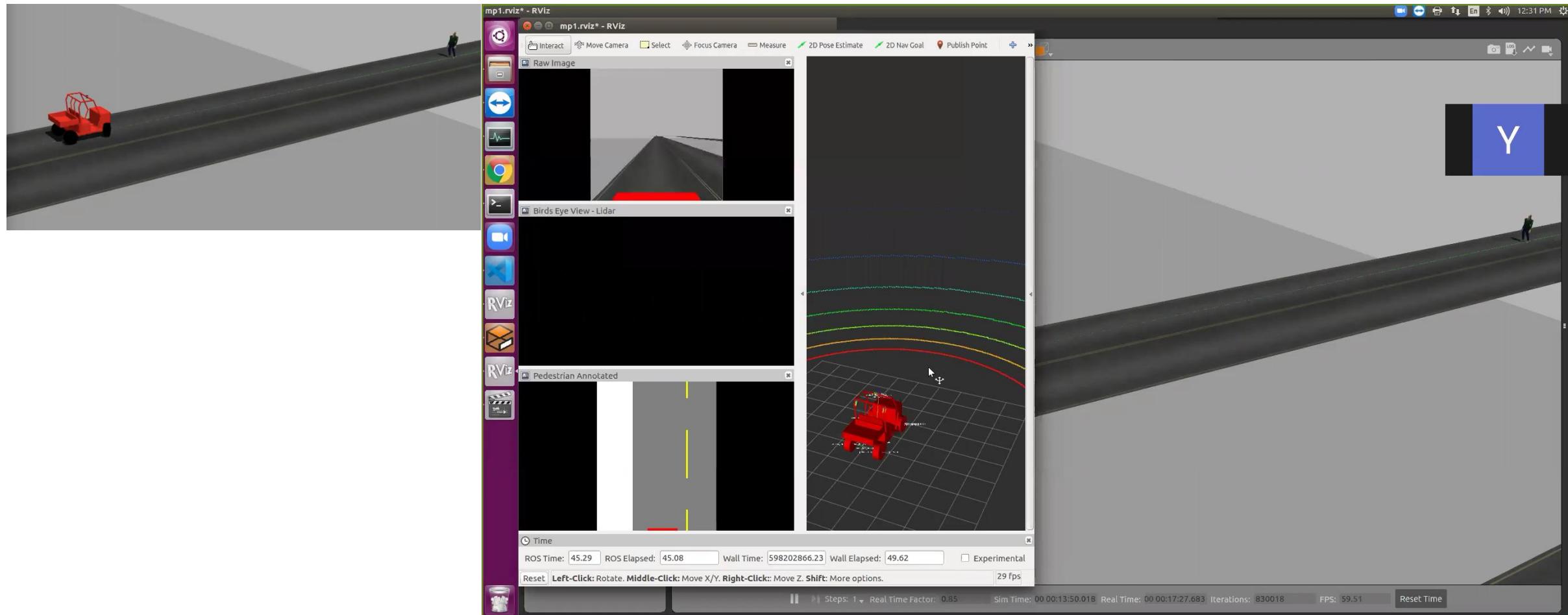
An automaton A satisfies a requirement R if all executions of A satisfies R

A_{DL} does not satisfy either requirement R_{noAuto} R_{noD2R} because there are counter-example executions $\alpha^{(1)} = P, D, Auto$ and $\alpha^{(2)} = P, D, R$

A'_{DL} satisfies both the requirements

Verification problem

Verification problem: Given an automaton A and a requirement R , check whether A satisfies R or find a counter-example


Testing or checking individual executions will not be enough; corner cases

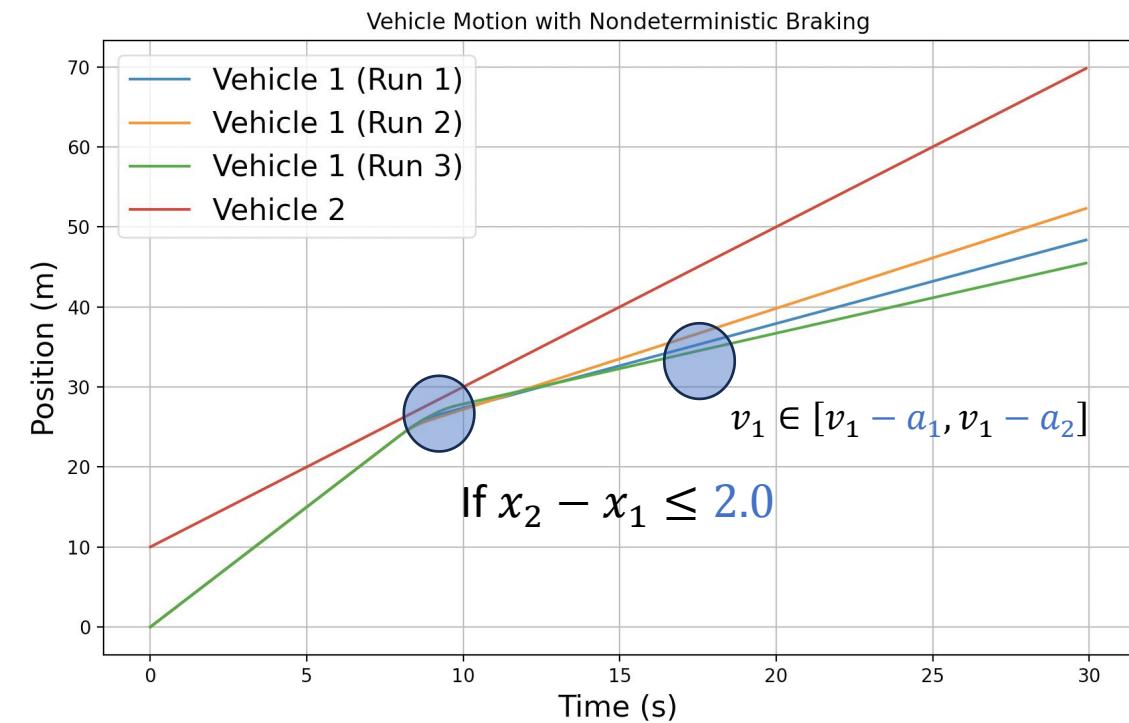
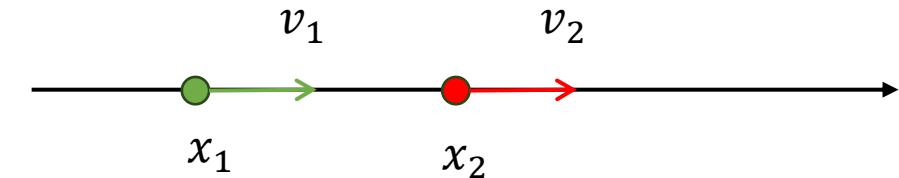
In general verification is a hard problem

- ▶ Finite automata may have infinitely many executions which leads to **state-space explosion**
- ▶ Automata may have uncountably infinite states which can make the problem **undecidable**

Automatic emergency braking example

Automaton model of AEB

Automaton $A = \langle Q, Q_0, D \rangle$



- ▶ $Q = \mathbb{R}^4$
 - ▶ $q \in Q, q \cdot x_1, q \cdot v_1, q \cdot x_2, q \cdot v_2 \dots \in \mathbb{R}$
- ▶ $Q_0 = \{q \mid q \cdot x_1 = x_{10}, q \cdot x_2 = x_{20}, \dots\}$
- ▶ $D \subseteq \mathbb{R}^4 \times \mathbb{R}^4$ written as a program:

If $x_2 - x_1 \leq 2.0$

$$v_1 \in [v_1 - a_1, v_1 - a_2]$$

else

$$\begin{aligned} v_1 &= v_1 \\ x_2 &= x_2 + v_2 \\ x_1 &= x_1 + v_1 \end{aligned}$$

More realistic AEB model: Known unknowns

If $x_2 - x_1 \leq 2.0$

$v_1 \in [v_1 - a_1, v_1 - a_2]$

else $v_1 = v_1$

$x_2 = x_2 + v_2$

$x_1 = x_1 + v_1$

- ▶ Acceleration, friction in dynamics
- ▶ Uncertainty in sensing
- ▶ Uncertainty in lead vehicle behavior
- ▶ Rear vehicle

“All models are wrong, some are useful.”

Safety requirements and verification

A **safety requirement** is a requirement that states that no execution should reach a certain **set of bad (or unsafe) states** $U \subseteq Q$

$$R_{noAuto} = \{\alpha \mid \forall i, \alpha_i \neq Auto\}$$

$$\text{safety } U = \{Auto\}$$

$$R_{nocollision} = \{\alpha \mid \forall i, \alpha_i \cdot x_2 > \alpha_i \cdot x_1\}$$

$$\text{safety } U = \{q \mid q \cdot x_2 - q \cdot x_1 \leq 0\}$$

$$R_{noD2R} = \{\alpha \mid \forall i, \text{ if } \alpha_i = D \text{ then } \alpha_{i+1} \neq R\}$$
 not a safety requirement

$$R_{follows} = \{\alpha \mid \exists i, 2 \geq \alpha_i \cdot x_2 - \alpha_i \cdot x_1 \geq 1\}$$
 not a safety requirement

Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton A and an unsafe set U , check whether there exists any execution α of A that reaches U

Counter-examples of safety are finite executions

For finite automata safety verification can be solved using depth first search from Q_0

Absence of a counter-example proves that the automaton is safe

