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More about labs and MPs

► More time for forming your team: MP0 has been changed to 
individual

► Deadline for finalizing all teams: Friday, Sep 5
► All team members must be in the same lab session
► You can switch your lab section through the regular course 

registration portal (if the section you want to switch to is not full)

► MP0 and HW0 will be released this Friday 9 am - check Gradescope



More about labs and MPs

► If you cannot make the switch yourself, because the section you want to switch 
to is always full, send a requst to the lead TA Hanna Chen 
(hannac4@illinois.edu) on Tuesday, Sep 2

► cc your email to the corresponding lab TAs: the one you are moving out from and the 
one you are moving to

► early/late requests will not be handled
► You will be notified whether your lab switch is approved by the end of 

Wednesday, Sep 3
► Not guaranteed - we need to balance the enrollments of each section

► All teams must be formed by Friday, Sep 5
► You will need to submit the team member names - pay attention to announcements 

on Campuswire
► All team members must be in the same lab section



Architecture of a typical autonomous system
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Cost of unreliability in autonomous systems
► Therac-25 radiation therapy machine delivered overdoses 

because of software bug which resulted in 6 fatalities.
► Elaine Herzberg was killed by selfdriving Uber prototype in 

Tempe, Arizona in March 2018.
► A simple data conversion error caused the $500M Ariane 

5 rocket to veer off course and explode shortly after 
launch.

► GM’s Cruise autonomous vehicle unit shut down its San 
Francisco robotaxi fleet after crashes in 2023.

► Cost of defects grow exponentially with the time of 
discovery

Capers Jones, Software Assessments, Benchmarks, 
and Best Practices, Addison-Wesley, 2000



Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any 
pedestrian (or another car) in front and stop before it 
collides.



Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any 
pedestrian (or another car) in front and stop before it 
collides.

Non-working AEB will violate safety and reliability



Checking truthfulness of statements about reliability and safety

A popular method for checking truth: Statistical testing 

“Testing can be used to show the presence of bugs, but never to show their absence!’’ 

--- Edsger W. Dijkstra

Amount of testing required for autonomous systems can be prohibitive
 Probability of a fatality caused by an accident per one hour of human driving is known to be 10−6

 Assume that for AV this has to be 10−9

 Data required to guarantee a probability of 10−9 fatality per hour of driving is proportional to its inverse, 
109 hours, 30 billion miles

 Multi-agent, open system, with human interactions => cannot be simulated offline to generate data  
 Any change is software means tests have to be rerun

On a Formal Model of Safe and Scalable Self-driving Cars by 
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017 
(Responsibility Sensitive Safety)

https://arxiv.org/pdf/1708.06374.pdf


Checking truthfulness of statements
The ultimate standard for truth: A theorem with a proof

Formal verification: The science of proving or disproving truth of statements asserting correctness of 
systems

Proofs are being used at scale in Amazon, Meta, Microsoft, NASA, …

“In  2017  alone  the  security  team  used  deductive  theorem provers or model checking tools to 
reason about cryptographic protocols/systems, hypervisors, boot-loaders/BIOS/firmware, garbage 
collectors, and network designs.” Byron Cook, Amazon

Outline for this module

► Math models:  automata, executions 

► Requirements: statements about correctness

► Proofs: Reachable states, Invariants for safety guarantees

Byron Cook’s talk at FLoC 2018
https://www.youtube.com/watch?v=JfjLKBO27nw 



Formal Verification in Software: an example

Simple programming task: given a 32-bit unsigned integer, calculate how 
many bits are set to 1 (“population count”)

int popcount(uint32_t x) {
  int c = 0;
  for (int i = 0; i < 32; i++) {
    c += x & 1;
    x >>= 1;
  }
  return c;
}

Naive implementation 

Example source: Marijn J.H. Heule, “SAT and SMT Solvers in Practice”

Clever implementation
int popcount (uint32_t x) {
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
    return x; 
}



Formal Verification in Software: an example
Can we trust this “clever implementation” of the same function?
What would you do to ensure this clever implementation is correct? Brute-
force?

int popcount(uint32_t x) {
  int c = 0;
  for (int i = 0; i < 32; i++) {
    c += x & 1;
    x >>= 1;
  }
  return c;
}

Naive implementation      ?= Clever implementation
int popcount (uint32_t x) {
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
    return x; 
}



Formal Verification in Software: Specification

Formal verification aims to prove that for all possible inputs, the results of 
the two functions are the same (mathematically, same integer is returned)

int popcount(uint32_t x) {
  int c = 0;
  for (int i = 0; i < 32; i++) {
    c += x & 1;
    x >>= 1;
  }
  return c;
}

Naive implementation      == Clever implementation
int popcount (uint32_t x) {
    x = x - ((x >> 1) & 0x55555555);
    x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
    x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
    return x; 
}

Verification requirement/specification:



The verification problem: 
model + requirement + algorithm to find proofs

Counterexamples

Proofs!

Outline for this module
● Math models:  automata, executions 
● Requirements: statements about correctness
● Proofs: Reachable states, Invariants for safety guarantees



Verification vs Testing

Testing: evaluates requirements on a finite number of behaviors
Verification: aims to prove requirements over all behaviors



Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any 
pedestrian (or another car) in front and stop before it 
collides.

Today: There is no standard for checking correctness of 
AEB systems

Future: Every time an AEB engineer commits code in 
github, a theorem proves safety of the system under 
appropriate assumptions, or finds an unsafe scenario 



The verification problem: 
model + requirement + algorithm to find proofs

Counterexamples

Proofs!



To prove anything, first we have to start with assumptions for the 
mathematical description of the system

Assumptions are captured in the models (of the system under study, e.g., 
an autonomous vehicle)

● Programs, state machines, or differential equations, block diagrams 
● Discrete or continuous time, state or both -- hybrid
● Deterministic or nondeterministic or probabilistic
● Composition and interfaces, abstraction
● Deal with machine learning, deep neural networks

In this class, we will introduce some simple models (automata/state 
machine)

https://tribalsimplicity.com/2014/07/28/george-box-models-wrong-useful/

Start with: modeling



Automata or state machine models for reliability/safety analysis

An automaton � is defined by a triple ⟨�, �0, �⟩, where 
► � is a set of states
► �0 ⊆ � is a set of initial states 
► � ⊆ � × � is a set of transitions 

� is a finite state automaton if |�| is finite

� deterministic automaton if |�0| = 1 and for every � ∈ �, |� � | ≤ 1



Deterministic and nondeterministic automata

An automaton � is defined by a triple ⟨�, �0, �⟩, 
where 

• � is a set of states

• �0 ⊆ � is a set of initial states 

• � ⊆ � × � is a set of transitions 

Nondeterminism models uncertainty

Uncertainty makes the safety checking problem 
harder

Example: Driving mode logic automaton ���

� = {�, �, �, �푢��} , �0 = {�}

This is a nondeterministic finite automaton

State � ∈ � Allowed transitions � � 
R {P,D}

P {R,D}

D {R, P, Auto}

Auto {D}

P D AutoR



Executions, Requirements, and Counter-examples
An execution of an automaton � is a finite or infinite sequence of states � =
�0,  �1, �2, … such that

► �0 ∈ �0

► For all � in �,  ��, ��+1 ∈ �

A deterministic automaton has a single maximal execution � such that all other 
executions are prefixes of � 

A nondeterministic automata has many executions

E.g.  P,D,P,D,… ; P, D, Auto; …
P D AutoR



Requirements and Counter-examples
A requirement defines a collection of executions 

������� = {� | ∀� �� ≠ �푢��} ;
����2� = {� | ∀� �� �� = �,  ��+1 ≠ �}

There are formal languages for writing requirements like 
Linear Temporal Logic, Computational Tree Logic, etc.

An automaton � satisfies a requirement � if all 
executions of � satisfies �
��� does not satisfy either requirement ������� ����2� 
because there are counter-example executions � 1 =
�,�,  �푢�� and � 2 = �,�, �
���

′  satisfies both the requirements

P D AutoR

P D AutoR

���

���
′

X

X



Verification problem

Verification problem: Given an automaton � and a requirement �, check 
whether � satisfies � or find a counter-example 
Testing or checking individual executions will not be enough; corner cases
In general verification is a hard problem
► Finite automata may have infinitely many executions which leads to 

state-space explosion
► Automata may have uncountably infinite states which can make the 

problem undecidable



Automatic emergency braking example



Automaton model of AEB

Automaton � = ⟨�, �0, �⟩
► � = ℝ4 

► � ∈ �, �. �1, �. �1, �. �2, �. �2…  ∈ ℝ
► �0 = {� | �. �1 = �10, �. �2 = �20, …}
► � ⊆ ℝ4 × ℝ4 written as a program:

If �2 − �1 ≤ 2.0
     �1 ∈  �1 − �1, �1 − �2 
else
     �1 = �1�2 = �2 + �2�1 = �1 + �1

�1 �2

�1 �2

If �2 − �1 ≤ 2.0

�1 ∈  �1 − �1, �1 − �2 



More realistic AEB model: Known unknowns

If �2 − �1 ≤ 2.0
   �1 ∈  �1 − �1, �1 − �2 
else �1 = �1�2 = �2 + �2�1 = �1 + �1

► Acceleration, friction in dynamics
► Uncertainty in sensing
► Uncertainty in lead vehicle behavior
► Rear vehicle

“All models are wrong, some are useful.”



Safety requirements and verification

A safety requirement is a requitement that states that no execution should reach a 
certain set of bad (or unsafe) states � ⊆ �

������� = {� | ∀�,  �� ≠ �푢��}  safety � = {�푢��}

������������ = {� | ∀�,  ��. �2 > ��. �1}  safety � = {�|�. �2 − �. �1 ≤ 0}

����2� = {� | ∀�,   �� �� = � �ℎ푒� ��+1 ≠ �} not a safety requirement

�������� = {� | ∃�,   2 ≥ ��. �2 − ��. �1 ≥ 1} not a safety requirement



Safety verification: Reachable states, invariants

Safety verification problem: Given an automaton � and an unsafe set 
�, check whether there exists any execution � of � that reaches �

Counter-examples of safety are finite executions

For finite automata safety verification can be solved using depth first 
search from �0

Absence of a counter-example proves that the automaton is safe


