
ECE 484: Principles of Safe Autonomy
Fall 2025 Lecture 1: Course Overview

Professor: Huan Zhang

Aug 26, 2025

https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com

Welcome from Safe Autonomy Fall 2025 team!

Prof. Huan Zhang (huanz)

Prof. Sayan Mitra (mitras)
(Chicago section)

Plan for today
► What is this course about?
► How will this course work?
► What is safety and how to check it?

Principles of Safe Autonomy

Significant accomplishments in autonomy

► NASA’s Perseverance rover performed autonomous science
operations on Mars; the Ingenuity helicopter performed the
first powered, controlled flights on another planet (2021-22).

► Waymo now has 22% market share of taxi journeys in San
Francisco, and now exceeds human-driver taxi company Lyft.

► Zipline, Wing, Amazon Prime Air have launched commercial
deliveries. Air taxis are on the horizon.



Autonomy could improve society
provided safety risks are mitigated

Driverless cars will improve productivity
• Americans drives 13,474 miles (300 hrs) per year

Cities will be greener
• 40% of city surface is parking

Will autonomous cars be safer?
 Still 32K+ fatalities and 3M+ injuries every

year in the USA

Challenges and opportunities in autonomy

► Cost
► Reliability
► Energy

New products
► Hospital and elderly care
► Home robot assistant

Autonomy is a frontier of engineering
YOU will build, found, join the coming autonomy transformation!

Aug. 19, 2023, at 12:32
p.m. General Motors'
Cruise autonomous
vehicle unit has agreed
to cut its fleet of San
Francisco robotaxis in
half as authorities
investigate two recent
crashes in the city.

Example of what you will build in 484

https://youtu.be
/J0_EZeZfXWk

https://youtu.be/J0_EZeZfXWk

Another example: Drone racing project

https://youtu.be/Ij09v
zV7xkI?t=207

https://youtu.be/Ij09vzV7xkI?t=207

Plan for today
► What is this course about?
► How will this course work?
► What is the safety verification problem?

Course Objectives
Learn

• Algorithms and math concepts for perception, planning, control, filtering, verification

• Software tools like ROS, Yolo, OpenCV, Z3, Verse

Build

• modules for lane detection, localization, planning, verification

• an autonomous system

Understand

• models for capturing uncertainty: automata, ODEs, Markov chains

• algorithms---assumptions and guarantees and limits

Get inspired to build the future of autonomy and uncover the scientific principles

Course Details
Learn

• Algorithms and math concepts for perception, planning, control, filtering, verification [HW,
midterms]

• Software tools like ROS, Yolo, OpenCV, Z3, Verse [MPs, project]

Build

• modules for lane detection, localization, planning, verification [MPs]

• an autonomous system [project]

Understand

• models for capturing uncertainty: automata, ODEs, Markov chains [HW, midterms]

• algorithms---assumptions and guarantees and limits [HW, midterms]

Get inspired to build the future of autonomy and uncover the scientific principles [project]

Autonomous GEM vehicle

Environment

Vehicle
dynamicsPerception Control

Lidar / vision

Planning
and

decision

Sensing

Course structure

Environment

Vehicle
dynamicsPerception Control

Lidar / vision

Planning
and

decision

Sensing

Control

MP2
Project

Decisions and
planning

MP2
Project

Perception

MP1
MP3

Project

Sensing

MP1
Project

Safety, end-to-end testing, simulation, system integration
MP0, Project

State machines, model checking, hypothesis testing, ROS

Convolution
Bayes filter
SLAM

RRT, Markov
decision
processes, RL

ODE, Stability, PID

Administrivia

Course Website: https://publish.illinois.edu/safe-autonomy/
► Schedule, lab, resources, papers, homework, MP, code, project, gitlab

links
Campuswire for announcements, but no SLA, best effort response delay
~2 days. https://campuswire.com/c/G687F3C20/feed
Discussions, forming teams, occasional polls, feedback

Gradescope/Canvas for submitting homework

https://publish.illinois.edu/safe-autonomy/
https://campuswire.com/c/G687F3C20/feed

Course materials
Lecture notes, slides, code, video lectures, lab manuals created and curated
from recent research publications
Course reader: Available from: https://publish.illinois.edu/safe-
autonomy/files/2023/08/Safe_Autonomy_Course_Reader.pdf
Lecture recording on MediaSpace
References:
► Probabilistic robotics, By Sebastian Thrun, Wolfram Burgard, and Dieter Fox, 2005

► Principles of Cyber-Physical Systems, Rajeev Alur, MIT Press, 2015

► Verifying Cyber-physical Systems, Sayan Mitra, MIT Press 2021

https://publish.illinois.edu/safe-autonomy/files/2023/08/Safe_Autonomy_Course_Reader.pdf
https://mediaspace.illinois.edu/channel/channelid/385330642

Course: components and (tentative) weights
► 3-4 programming assignments or MPs 45% (group)

► ROS + Python, Ubuntu, VM BYOD or use lab workstations
► labs (Friday 9am-8 pm starting this Friday)
► Office hours

► Homework assignments 10% (individual)
► math, analysis, critical reasoning; preparation for midterms

► Midterms x2 20% (individual)
► Mini project 25% (group): more on this later, 4 tracks:

► A. Dev and test concepts on GEM
► B. GRAIC autonomous racing competition / testing
► C. F1tenth small racing car
► D. Drone racing

Tentative grade
boundaries

A >90
B >80
C >65
D >55

https://popgri.github.io/Race/

Teamwork: MP, labs, and mini project
► In groups: Form your group of 3-4 now! Create groups by this Friday (more

details on Campuswire)
► Each MP will build a significant component of an autonomous system over 2

weeks
► Use your computer with Ubuntu 22.04 or ECEB5072 lab computers
► TAs and LAs will run live labs in ECEB 5072
► MP walkthough, setup, bridge the lecture and the assignments
► MP0+HW0 will be released this Friday (8/29), labs starts this Friday

► Your entire group has to attend one lab for the MP walkthrough
► And 1 lab after the MP is due (to demo your work).

Course schedule

https://publish.illinois.edu/safe-autonomy/schedule-fall-2025/

https://publish.illinois.edu/safe-autonomy/schedule-fall-2025/

Mini projects: explore, inspire, and impress
► GEM Track. Build on existing SW, e.g., parallel parking, lane following,

and pedestrian avoidance

► GRAIC Track. Participate in an open simulation-based autonomous
racing competition

► Outcomes: Write research papers, jumpstart grad research, career in
autonomy, incubate startup ideas, sharpen presentation skills

► We provide: Polaris GEM vehicle (camera, LIDAR, RADAR, IMU, GPS,
and drive-by-wire system) modules for pedestrian detection, lane
tracking, and vehicle control, a vehicle simulator, and testing facility
(highbay) with indoor positioning system. GRAIC autonomy software
stack

► Timeline:

► High-bay virtual site visit and training (check Campuswire!)

► Project pitch (around the mid of semester)

► Public presentation, demo, awards (End of Semester)

Spring 2024 projects
Spring 2022 projects
Spring 2020 projects
Fall 2020 projects

https://www.youtube.com/watch?v=J0_EZeZfXWk
https://www.youtube.com/watch?v=-f7Qd7TnaDU&list=PLcA4s4DKSOF12iLaJmmJ_2ZoCD6aFd9Ct
https://youtu.be/y7FBNyDkFGc
https://www.youtube.com/watch?v=iWQ0CSriqqM

Office hours

Spring 2024 projects
Spring 2022 projects
Spring 2020 projects
Fall 2020 projects

Instructor (Prof. Huan Zhang) office hours: 2 - 4 slots per
week, book here for in-person and here for online

Lead TA: Hanna Chen (hannac4@illinois.edu)

https://www.youtube.com/watch?v=J0_EZeZfXWk
https://www.youtube.com/watch?v=-f7Qd7TnaDU&list=PLcA4s4DKSOF12iLaJmmJ_2ZoCD6aFd9Ct
https://youtu.be/y7FBNyDkFGc
https://www.youtube.com/watch?v=iWQ0CSriqqM
https://cal.com/huanzhang/zhang-in-person-hour
https://cal.com/huanzhang/zhang-virtual-office-hour

Principles of Autonomy ECE 484
Fall 2025

Lecture 1-3: Checking Safety
Professor: Huan Zhang

Aug 26, 2025

https://publish.illinois.edu/safe-autonomy/

https://huan-zhang.com

huanz@illinois.edu

https://publish.illinois.edu/safe-autonomy/
https://huan-zhang.com

Architecture of a typical autonomous system

Environment

Vehicle
dynamicsPerception Control

 Lidar / vision

Planning
and

decision

Sensing

Cost of unreliability in autonomous systems
► Therac-25 radiation therapy machine delivered overdoses because of

software bug which resulted in 6 fatalities (1985 - 1987).

► Elaine Herzberg was killed by selfdriving Uber prototype in Tempe,
Arizona in March 2018.

► A simple data conversion error (overflow) caused the $500M Ariane
5 rocket to veer off course and explode shortly after launch (June 4,
1996).

► GM’s Cruise autonomous vehicle unit shut down parts of its San
Francisco robotaxi fleet after crashes in 2023.

► Cost of defects grow exponentially with the time of discovery

Capers Jones, Software Assessments, Benchmarks,
and Best Practices, Addison-Wesley, 2000

Checking truthfulness of statements about reliability and safety

► A popular method for checking truth: Statistical testing

► “Testing can be used to show the presence of bugs, but never to show their absence!’’

► --- Edsger W. Dijkstra

► Amount of testing required for autonomous systems can be prohibitive
► Probability of a fatality caused by an accident per one hour of human driving is known to be 10−6

► Assume that for AV this has to be 10−9

► Data required to guarantee a probability of 10−9 fatality per hour of driving is proportional to its inverse,
109 hours, 30 billion miles

► Multi-agent, open system, with human interactions => cannot be simulated offline to generate data
► Any change is software means tests have to be rerun

On a Formal Model of Safe and Scalable Self-driving Cars by
Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, 2017
(Responsibility Sensitive Safety)

https://arxiv.org/pdf/1708.06374.pdf

Checking truthfulness of statements
The ultimate standard for truth: A theorem with a proof

Formal verification: The science of proving or disproving truth of statements asserting correctness of
systems

Proofs are being used at scale in Amazon, Meta, Microsoft, NASA, …

“In 2017 alone the security team used deductive theorem provers or model checking tools to
reason about cryptographic protocols/systems, hypervisors, boot-loaders/BIOS/firmware, garbage
collectors, and network designs.” Byron Cook, Amazon

Byron Cook’s talk at FLoC 2018
https://www.youtube.com/watch?v=JfjLKBO27nw

Formal Verification in Software: an example

Simple programming task: given a 32-bit unsigned integer, calculate how
many bits are set to 1 (“population count”)

int popcount(uint32_t x) {
 int c = 0;
 for (int i = 0; i < 32; i++) {
 c += x & 1;
 x >>= 1;
 }
 return c;
}

Naive implementation

Example source: Marijn J.H. Heule, “SAT and SMT Solvers in Practice”

Clever implementation
int popcount (uint32_t x) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
 return x;
}

Formal Verification in Software: an example
Can we trust this “clever implementation” of the same function?
What would you do to ensure this clever implementation is correct? Brute-
force?

int popcount(uint32_t x) {
 int c = 0;
 for (int i = 0; i < 32; i++) {
 c += x & 1;
 x >>= 1;
 }
 return c;
}

Naive implementation ?= Clever implementation
int popcount (uint32_t x) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
 return x;
}

Formal Verification in Software: Specification

Formal verification aims to prove that for all possible inputs, the results of
the two functions are the same (mathematically, same integer is returned)

int popcount(uint32_t x) {
 int c = 0;
 for (int i = 0; i < 32; i++) {
 c += x & 1;
 x >>= 1;
 }
 return c;
}

Naive implementation == Clever implementation
int popcount (uint32_t x) {
 x = x - ((x >> 1) & 0x55555555);
 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
 x = ((x + (x >> 4) & 0xf0f0f0f) * 0x1010101) >> 24;
 return x;
}

Verification specification:

Example: Automatic Emergency Braking (AEB)

A car moving down a straight road has to detect any
pedestrian (or another car) in front and stop before it
collides.

Today: There is no standard for checking correctness of
AEB systems

Future: Every time an AEB engineer commits code in
github, a theorem proves safety of the system under
appropriate assumptions, or finds an unsafe scenario

Form your team now! Lab starts this Friday
► In groups: Form your group of 3-4 now! Create groups by this Friday (more

details on Campuswire)
► Each MP will build a significant component of an autonomous system over 2

weeks
► Use your computer with Ubuntu 22.04 or ECEB5072 lab computers
► TAs and LAs will run live labs in ECEB 5072
► MP walkthough, setup, bridge the lecture and the assignments
► MP0+HW0 will be released this Friday (8/29), labs starts this Friday

► Your entire group has to attend one lab for the MP walkthrough
► And 1 lab after the MP is due (to demo your work).

