
ECE 484: Principles of Safe Autonomy Fall 2025

Written by: ECE 484 team MP0

Website Due Date: September 12, 2025

1 Introduction

In this MP, you must verify several flight collision avoidance scenarios using a tool called Verse [1].

Along with this MP, each student must individually complete Homework 0. HW 0 is due at the same time
as the MP.

2 Homework 0: Safety and Invariants

HW Problem 1 (15 points) [Individual] For an automaton A = ⟨Q,Q0, D⟩, and an unsafe set U ⊆ Q, (a) Is
Q an inductive invariant? (b) Write down the conditions for an set I ⊆ Q to be an inductive invariant that
helps prove safety with respect to U .

HW Problem 2 (35 points) [Individual]

1. Is A1 deterministic? Why or why not?

2. How many executions does A2 have?

3. Consider the following 4 requirements:

• Always red: R1 = {α |∀i, αi.col = red}.

• Never green: Unsafe = {q | q.col = green}.

• Eventually green: R2 = {α | ∃i, αi.col = green}.

• Never red: R3 = {α | ∀i, αi.col ̸= red}.

For each of the 4 automata A1, . . .A4 and each of the 4 requirements, say whether the automaton satisfies
the requirement or give a counter-example. You can present the answer in the form of a 4 × 4 table. This
question is tricky. Make sure to review the definitions in the slides carefully!

For the remaining problems, we define an automaton model A involving a vehicle and a pedestrian as
shown in Figure 1. In this model, x1, v1, x2, and v2 are state variables. x1 and v1 correspond to the position
and velocity of our vehicle. x2 and v2 correspond to the position and velocity of the pedestrian. We use
the convention x1(t) to refer to the value of x1 at time t along a fixed execution, and similarly for other
variables. So, d(0) = x2(0)−x1(0) = x20−x10, d(1) is the value of d after the program is executed once, d(2)
after the program is executed a second time, and so on. Similarly, we can refer to other state variables in

1

https://publish.illinois.edu/safe-autonomy/assignments-fall-2024/


the same manner e.g. x1(t) and x1(t+ 1) refer to the valuation of x1 in two different time instances. Dsense

is a constant sensing distance: if d(t) ≤ Dsense , the vehicle applies the brakes and decelerates.

Figure 1: Vehicle and pedestrian on a single lane. Left: Initial positions of the two are at x10 and x20,
respectively. Right: Vehicle undergoes constant deceleration ab once the vehicle detects the pedestrian.

1 SimpleCar(Dsense,v0,x10,x20,ab),x20 > x10

2 Initially: x1(0) = x10, x2(0) = x20, v1(0) = v0, v2(0) = 0
3 s(0) = 0, timer(0) = 0, timer2(0) = 0
4 d(t) = x2(t)− x1(t)
5 if d(t) ≤ Dsense

6 s(t+ 1) = 1
7 if v1(t) ≥ ab
8 v1(t+ 1) = v1(t)− ab
9 timer(t+ 1) = timer(t) + 1

10 timer2(t+ 1) = timer2(t)
11 else
12 v1(t+ 1) = 0
13 timer(t+ 1) = timer(t)
14 timer2(t+ 1) = timer2(t)
15 else
16 s(t+ 1) = 0
17 v1(t+ 1) = v1(t)
18 timer(t+ 1) = timer(t)
19 timer2(t+ 1) = timer2(t) + 1
20 x1(t+ 1) = x1(t) + v1(t+ 1)

Consider the following invariant for A:

Invariant 1. Over all executions of A, timer(t) + v1(t)/ab ≤ v0/ab.

HW Problem 3 (10 points) [Individual] Is 0 ≤ v1(t) ≤ v0 an invariant of A? No need to write a complete
proof; a two-sentence argument would suffice.

HW Problem 4 (40 points) [Individual] Is timer(t) ≤ v0/ab an invariant of A? Explain why. Can we use
the induction method to prove this invariant? If so, present your proof.

Hint: You may find the usage of other invariants handy in your proof. Make sure to cover ALL branches of
logic in your proof!

HW Problem 5 (10 BONUS points) [Individual] Is d(t) > 0 an invariant of A assuming x20 − x10 ≥ Dsense

2



and Dsense > v20/ab + 2v0.

Write solutions to each problem in a file named <netid>_ECE484_HW0.pdf and upload the document in
Canvas. Include your name and NetID in the PDF file. This should be individual work and you should
follow the student code of conduct. You may discuss solutions with others, but do not use written notes
from those discussions to write your answers. If you use/read any material outside of those provided for
this class to help grapple with the problem, you should cite them explicitly.

3 MP 0 Setup

Verse is installed on all of the ECEB 5072 Ubuntu computers. Because of the large number of students,
we recommend doing the MP on your own machine. Visit this gitlab and follow the readme instructions
for verse installation. It is also recommended to create a virtual environment to make package installation
easier.

To get the code for MP0, run the following command:

1 git clone https://gitlab.engr.illinois.edu/GolfCar/mp-release-fa25.git

Listing 1: Retrieving MP0 Code

3

https://studentcode.illinois.edu/article1/part4/1-402/
https://gitlab.engr.illinois.edu/GolfCar/verse_mp/


ECE 484: Principles of Safe Autonomy Fall 2025

Written by: ECE484 team MP0

Website Due Date: September 12, 2025

4 Verification of air-traffic control via reachability analysis

4.1 Overview

Airtaxis can transform how people travel in crowded metropolitan areas. One of the key challenges in
building airtaxi systems is the problem of traffic management and collision avoidance. There are numerous
reports from NASA and AIAA on this topic (See, for example, this report [3]). In this MP, you will learn
how to use reachability analysis through Verse to analyze and verify a simplified air collision avoidance
protocol.

4.2 Problem Description

You are given three different scenarios inspired by ACAS-Xu (Airborne Collision Avoidance System for
Unmanned Aircraft)—a collision avoidance protocol for unmanned aircraft [2]. In each scenario, 2 airplanes
are flying on the (x, y) plane—an ownship O (modelled with Dubin’s plane model Link) and an intruder
aircraft I that simply flies straight. O will follow advisories from ACAS-Xu to detect and avoid collisions
with I. There are five possible advisories that the protocol can generate:

• COC: Fly straight, no turn

• SL : Turn a strong left

• SR : Turn a strong right

• WL : Turn a weak left

• WR : Turn a weak right

Each aircraft model has 4 different variables: x,y: are the (x,y) coordinates in meters (m), θ is the heading
(measured in radians w.r.t. the x-axis), and v is the speed in m/s.

This controller will give an advisory to the ownship aircraft based on the following variables:

• ρ (m): The distance between the ownship and intruder aircraft

• Θ (radian): The angle made by the heading angle of the ownership and the line made connecting the
position of ownship and intruder aircraft.

4

https://publish.illinois.edu/safe-autonomy/assignments-fall-2024/
https://en.wikipedia.org/wiki/Dubins_path


𝑂𝑤𝑛𝑠ℎ𝑖𝑝 𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟

𝑆𝑅 𝑊𝑅

𝑆𝐿 𝑊𝐿

𝐶𝑂𝐶

(a)

𝜌

𝑂𝑤𝑛𝑠ℎ𝑖𝑝

𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟

Θ
𝑣_𝑜𝑤𝑛

𝑣_𝑖𝑛𝑡

(b)

25𝑚

𝑂𝑤𝑛𝑠ℎ𝑖𝑝

𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟

(c)

Figure 2: 2a) Illustration of possible advisories (Strong Left (SL), Weak Left (WL) , Clear of Conflict (COC),
Strong Right (SR), Weak Right (WR)), 2b) Partitioning based on intruder position, relative distance ρ, and
relative angle Θ between 2 planes, 2c) Safe region ensured by 25m separation between ownship and in-
truder.

Given a particular initial condition in R, the complete system has a unique execution. An execution is safe if
O is always greater than 25m distance from I within Ts. To put everything in perspective, you can take a
look at Figure 2.

Your task is to prove the scenario is safe or unsafe from any initial condition in a given range R, in a given
time Ts = 80, and with a given controller. In Python, the initial set is defined as [lowerBound, upperBound]
where each bound is a state in the format of [x, y, θ, v].

Here are the following initial conditions that are included in the MP:

• R1: xown ∈ [−4100,−3100], yown ∈ [−5000,−4950], θown ∈ [0, 0], vown ∈ [120, 120], xint ∈ [−1450,−1250], yint ∈
[1500, 2000], θint ∈ [−π/2,−π/2], vint ∈ [100, 100].

• R2: xown ∈ [−2200,−1200], yown ∈ [−2000,−950], θown ∈ [−π/2,−π/2], vown ∈ [120, 120], xint ∈
[−100, 100], yint ∈ [1500, 2000], θint ∈ [−3π/4 + 1.4,−π/12 + 1.4], vint ∈ [100, 100].

• R3: xown ∈ [−7500,−7000], yown ∈ [−6000,−5950], θown ∈ [0, 0], vown ∈ [120, 120], xint ∈ [−100, 100], yint ∈
[1500, 2000], θint ∈ [−π/2,−π/2], vint ∈ [100, 100].

The rest of the section describes the files you have to work with.

4.3 Documentation of Provided Files

The important files are:

dubins_controller.py This file contains the decision logic to control the ownship aircraft to avoid collision
with the intruder.

dubins_agent.py This file contains the implementation of Dubin’s plane model, including dynamics and
modes, and the always-go-straight plane model.

dubins_sensor.py This file contains the implementation of processing the information of the initial states
to return information that will be used to give advisory for the aircraft.

5



dubins_scenario.py This file contains the mechanism to create different vehicle-pedestrian scenarios. The
three different initial ranges R1, R2 and R3 are provided in this file. You will run and modify this file for
the task.

5 Verse Functions

5.1 Simulation

Verse provides simulation and reachability functions. The simulation function generates a random initial
state within the specified ranges and computes an execution of the system (with 2 planes) from this initial
state. If unsafety is detected, from any point in the initial set, the scenario is sure to be unsafe. Therefore, it
may be wise to run simulations in regions of the initial set likely to be unsafe.

This function runs in a few seconds by itself, but running it thousands of times will take much longer.

trace = scenario.simulate(ownship_aircraft_init, intruder_aircraft_init, time_horizon,
time_step, ax): Runs a single simulation from a randomly sampled initial point chosen from R and
returns the trajectory. When the simulation is unsafe, you will get a red message assert hit in the ter-
minal.

• ownship_aircraft_init: List, the initial state of the ownship (R1-R3).

• intruder_aircraft_init: List, the initial state of the intruder plane (R1-R3).

• time_horizon: Float, the total time for the scenario to evolve.

• time_step: Float, the time sampling period.

• ax: Plotter, the pyvista plotter for visulization

• trace: AnalysisTree object containing the simulated trajectory. The AnalysisTree object contains a
list of AnalysisTreeNode that contains the execution of the scenario for each mode of C.

traces = scenario.simulate_multi(ownship_aircraft_init, intruder_aircraft_init,
time_horizon, time_step, init_dict_list), ax : simulate from all initial points in the init_dict_list
instead of randomly choosing a point from the initial set. Unlike simulate(), The output will be a list of
traces instead of just one trace.

• ownship_aircraft_init: List, the initial state of the ownship (R1-R3).

• intruder_aircraft_init: List, the initial state of the intruder plane (R1-R3).

• time_horizon: Float, the total time for the scenario to evolve.

• time_step: Float, the time sampling period.

• init_dict_list: List[Dictionary], list of initial points to simulate from. For example, an init_dict_list
of [{’plane1’: [-5,25,6,8], ’plane2’:[170,-53,0,3]}] will simulate starting from plane1’s state [-5,25,6,8] and
plane2’s state [170,-53,0,3].

• ax: Plotter, the pyvista plotter for visulization

• traces: List, list of traces. A trace is explained above in scenario.simulate

6



Figure 3: Simulation plot for a single simulation
Figure 4: Simulation plot with multiple

simulations run

5.2 Reachability

You can also use reachability analysis. Recall that reachability over-approximates all possible executions in
the initial set. If the analysis determines that the system is safe, then safety is guaranteed. If unsafety
is detected, that does not necessarily mean that the scenario is unsafe. The analysis usually generates an
approximation of the reachable set larger than the actual reachable set. The reachability analysis could have
over-approximated the reachable set such that it intersects with the unsafe set when the actual (smaller)
reachable set would not.

traces = scenario.verify(ownship_aircraft_init, intruder_aircraft_init, time_horizon,
time_step, ax): Compute reachable set and check the safety of the scenario.

• ownship_aircraft_init: List, the initial state of the ownship (R1-R3).

• intruder_aircraft_init: List, the initial state of the intruder plane (R1-R3).

• time_horizon: Float, the total time to perform reachability analysis.

• time_step: Float, the time period that the reachable set is sampled.

• ax: Plotter, the pyvista plotter for visulization

• traces: AnalysisTree, the computed reachtube for the scenario. Has similar structure as that pro-
duced by scenario.simulate(). This reachtube will contain the reachable set for both planes
across the entire time horizon

Figure 5 shows an example of performing reachability analysis and generating plots using above functions.
If a safety assertion is violated, then a label will appear on the plot and a message will appear in the
console.

6 Verification Problem Task

Reachability analysis from a smaller initial set usually results in a tighter (less conservative) approxima-
tion. The more conservative the approximation, the less precise it is. Therefore, for a larger initial set, you

7



(a) Reachtube analysis that guarantees safety. (b) Reachtube analysis that can’t guarantee safety.

Figure 5: Reachability results with verify()

must determine a strategy to partition the initial set into smaller regions for a more precise reachability
analysis.

Using the verify() function, you will write the function:

traces = verify_refine(scenario, ownship_aircraft_init, intruder_aircraft_init,
time_horizon, time_step, ax): Compute reachable set and check the safety of the scenario. verify_refine()
must partition the initial ranges into smaller regions to get a more precise reachability analysis result.

• scenario: the scenario to verify.

• ownship_aircraft_init: List, the initial state of the ownship (R1-R3).

• intruder_aircraft_init: List, the initial state of the intruder plane (R1-R3).

• time_horizon: Float, the total time to perform reachability analysis. (Just pass this into verify())

• time_step: Float, the time period that the reachable set is sampled. (Just pass this into verify())

• ax: Plotter, the pyvista plotter for visulization (Just pass this into verify())

• traces: List[AnalysisTree], the computed reachtube for the scenario. List of all traces returned
by calls to verify()

One way to write this function is to use a DFS (depth first search) or BFS (breadth first search) style recursive
traversal: continually partition the initial set into smaller and smaller regions until the result is safe. Each
level of partition depth increases the number of calls to verify() exponentially.

Figure 6 shows partitioning on the dimension x. The final output is considered safe, since all leaf partitions
are safe and together form the original initial set. In your scenarios, there are more dimensions than just x.
The full state is defined in Section 4.2. You will need to decide which dimensions to partition and which
order to partition. One method is to alternate splitting between dimensions. For example, you may split
ownship’s x dimension in half, then in the next layer of partitioning, split the intruder plane’s y dimension
in into thirds.

8



(a) Unsafety in some partitions (b) Partitioning on unsafe regions (c) All leaf partitions safe

Figure 6: Partitioning with tree method from initial set x: [-5,5]

You may also initially divide the initial set into some number of partitions in each dimension. (np.linspace
function may be helpful here.) This may be faster than recursion if you try not run the verify() function
more times than necessary. You may also combine the two approaches and partition the set in the begin-
ning and then do recursive partitioning. We encourage you to try creative partitioning methods for this
assignment.

Each call to verify() will generate a trace. All traces of partitions that run successfully without unsafety
MUST be added to the traces list and returned to be visualized with the given plotting function. This
plotting function simply visualizes all traces on one plot. Using this knowledge, you can answer Q4 in the
report.

To conclusively prove safety, all of the partitions together MUST form the original initial set. That is, any
point in the state space of the original initial set must be present in at least one of the partitions. You must
run the is_refine_complete() function to validate this. To run this function, you must add your final
partitions of the initial set to the partitions list.

We expect an optimal implementation of the function verify_refine() to run in 15 min or less for the
scenarios provided. However, your verify_refine() does not need to be optimal, nor is it needed for
all of the scenarios!
Implementation tips:

• Use the function tree_safe() to determine if a trace returned by verify() is safe.

• Reminder: In Python, lists are mutable objects, meaning that assigning one list to another variable
will create a reference to the same object, not a copy. If you need to make a copy of an initial set (e.g.,
to preserve the original array), please use the .copy() method.

• It is also recommended to use a progress bar package such as alive-progress to keep track of what
percent of the initial set is verified.

• If you see an "infinite loop detected" message, this essentially means that Verse’s over-approximation
was too big, and the the reachability analysis cannot continue.

7 Report & Grading

Questions 1–3

For each R1–R3, answer the following:

1) [20 pts ] Is the scenario safe or unsafe? Provide proof (images of the plot from multiple angles and con-
sole output) with either the simulate/simulate_multi or verify/verify_refine function
that the scenario is either safe or unsafe.

9

https://pypi.org/project/alive-progress/


2) [4 pts ] Which function did you use to prove this and why?

3) [4 pts ] If reachability was used, what was your strategy for partitioning (if partitioning is needed)? If
simulation was used, what was your strategy for running simulations (number of simulations, regions
to simulate in, etc.)?

Question 4 [6 pts]

Recall that running verify() will generate a plot and a reachability analysis result (safe or unsafe). If the
different colored regions intersect on the plot, the analysis will always determine unsafety is present in the
scenario. Is this necessarily true for a correct implementation of verify_refine()? That is, is there some
way to partition the initial set such that there is visible intersection on the verify_refine() plot, but the
analysis determines the scenario is safe? Explain why or why not.

Demo Attendance [10 pts]

Attend your lab session on September 12 to demo your design logic. We will ask questions regarding
invariance concepts related to the MP. Additionally, be prepared to show your plots and the result for
is_refine_complete().

Submission: Please upload your code to Gradescope in a file named netid_mp0.py and your report to a
file named netid_mp0.pdf

References

[1] Yangge Li, Haoqing Zhu, Katherine Braught, Keyi Shen, and Sayan Mitra. Verse: A python library
for reasoning about multi-agent hybrid system scenarios. In International Conference on Computer Aided
Verification, pages 351–364. Springer, 2023.

[2] Michael P. Owen, Adam Panken, Robert Moss, Luis Alvarez, and Charles Leeper. Acas xu: Integrated
collision avoidance and detect and avoid capability for uas. In 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC), pages 1–10, 2019.

[3] Casey L. Smith and R Conrad Rorie. Helicopter pilot evaluations of the airborne collision avoidance
system xr in a high-fidelity motion simulation - nasa technical reports server (ntrs). July 2024. [Online;
accessed 2025-08-19].

10


	1 Introduction
	2 Homework 0: Safety and Invariants 
	3 MP 0 Setup
	4 Verification of air-traffic control via reachability analysis
	4.1 Overview
	4.2 Problem Description
	4.3 Documentation of Provided Files

	5 Verse Functions
	5.1 Simulation
	5.2 Reachability

	6 Verification Problem Task
	7 Report & Grading

