Fall 2025 Principles of Safe Autonomy ECE 484 (Sp 25)

Perception: Reconstructing 3D world from images
Lectures 5-6

Sayan Mitra

Role of Perception in Autonomy

Perception module converts signals from the environment state estimates for the autonomous agent and its environment

Examples of state estimates:

- Type of lead vehicle, traffic sign
- Position of ego on the map, relative to the lane, distance to the leading vehicle
- Position of lead vehicle, speed, intention of the pedestrian

Types of estimates:

- Semantic: E.g., type of vehicle, sign
- Geometric: E.g., position, speed

Problem

Reconstructing the 3D structure of the scene from images

Input: image with points in pixels

Output: position of objects in millimeters in world camera frame

We will develop a method to find camera's internal and external parameters

Outline:

Linear Camera Model (Projection matrix)

Camera calibration

Simple stereo

Forward Imaging Model: 3D to 2D

Forward Imaging Model: 3D to 2D

$$oldsymbol{x}_i = egin{bmatrix} x_i \ y_i \end{bmatrix}$$
 3D-2D $oldsymbol{x}_c = egin{bmatrix} x_c \ y_c \ z_c \end{bmatrix}$ 3D-3D $oldsymbol{x}_w = egin{bmatrix} x_w \ y_w \ z_w \end{bmatrix}$

World to camera Transformation (Extrinsic parameters)

Camera coordinate coordinate frame \hat{y}_c \hat{y}_w frame \hat{x}_c \hat{x}_w

Position c_w and the orientation R of the camera in the world coordinate frame (W) are the camera's **Extrinsic Parameters**

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \rightarrow \text{row 1 is the direction of } \hat{x}_c \text{ in world coordinates, 2 for } \hat{y}_c, \dots$$

This is an **orthonormal matrix**, i.e., the row vectors or the colum vectors are orthonormal $R^{-1} = R^T$ i.e., $R^T R = R R^T = I$

World

World to camera Transformation

Camera Pinhole coordinate frame \hat{y}_c \hat{y}_w frame \hat{x}_c \hat{x}_w \hat{x}_w

Position c_w and the orientation R of the camera in the world coordinate frame (W) are the camera's **Extrinsic Parameters**

Given the extrinsic parameters (R,c_w) of the camera, the camera-centric location of the point P in the world coordinate (w) is simply $(x_c)_w = x_w - c_w$ In the camera coordinate (c) $x_c = R(x_w - c_w) = Rx_w - Rc_w = Rx_w + t$ $t = -Rc_w$

$$x_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \end{bmatrix} + \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix}$$

$$x_{c} = Rx_{w} + t$$

World

Extrinsic Matrix

$$x_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \end{bmatrix} + \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix}$$

We have an affine transformation: $x_c = Rx_w + t$

Can we represent it as $x_c = Mx_w$? No

We can introduce a new coordinate $\tilde{x}_c = [\tilde{x}, \tilde{y}, \tilde{z}, 1]^T$

Now can we represent this as a matrix multiplication $\tilde{x}_c = M \tilde{x}_w$

$$ilde{x}_c = egin{bmatrix} x_c \ y_c \ z_c \ 1 \end{bmatrix} = egin{bmatrix} r_{11} & r_{12} & r_{13} t_x \ r_{21} & r_{22} & r_{23} t_y \ r_{31} & r_{32} & r_{33} t_z \ 0 & 0 & 1 \end{bmatrix} egin{bmatrix} x_w \ y_w \ z_w \ 1 \end{bmatrix}$$

World to camera Transformation (Extrinsic matrix)

World coordinate

Given the extrinsic parameters (R, c_w) of the camera, the camera-centric location of the point P in the world coordinate is

$$x_c = R(x_w - c_w) = Rx_w - Rc_w = Rx_w + t \qquad t = -Rc_w$$

$$x_c = \begin{bmatrix} x_c \\ y_c \\ z_z \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{24} & r_{22} & r_{23} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t \end{bmatrix}$$
 Using homogeneous coordinates

$$\tilde{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \ t_x \\ r_{21} & r_{22} & r_{23} \ t_y \\ r_{31} & r_{32} & r_{33} \ t_z \\ 0 & 0 & 0 \ 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$
 Extrinsic matrix $M_{ext} \ \tilde{x}_c = M_{eext} \ \tilde{x}_w$

Geometry of Homogeneous coordinates (for 2D)

Affine transformation: $x_c = Rx_w + t$

How to represent this as $\tilde{\mathbf{x}}_{c} = \mathbf{M}\tilde{\mathbf{x}}_{w}$

The homogeneous representation of a 2D point p = (x, y) is a 3D point $\tilde{p} = (\tilde{x}, \tilde{y}, \tilde{z})$.

The third coordinate $\tilde{z} \neq 0$ is fictitious such that:

$$p = (x, y) \quad x = \frac{\tilde{x}}{\tilde{z}} y = \frac{\tilde{y}}{\tilde{z}}$$

$$p \equiv \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{z}x \\ \tilde{z}y \\ \tilde{z} \end{bmatrix} \equiv \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \tilde{p}$$

Geometric interpretation: all points on the line L (except origin) represent homogeneous coordinate p(x,y)

$$x_c = \begin{bmatrix} x_c \\ y_c \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$p \equiv \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \equiv \begin{bmatrix} wx \\ \widetilde{w}y \\ \widetilde{w}z \\ \widetilde{w} \end{bmatrix} \equiv \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \\ \widetilde{w} \end{bmatrix} = \widetilde{p}$$

Forward Imaging Model: 3D to 2D

$$m{x}_i = egin{bmatrix} x_i \ y_i \end{bmatrix}$$
 and $m{x}_c = egin{bmatrix} x_C \ y_C \ Z_C \end{bmatrix}$ and $m{x}_w = egin{bmatrix} x_w \ y_w \ Z_w \end{bmatrix}$

Perspective imaging with pinhole

f: Effective focal length

$$m{x}_c = egin{bmatrix} x_c \ y_c \ z_c \end{bmatrix} \quad m{x}_i = egin{bmatrix} x_i \ y_i \ f \end{bmatrix}$$

Perspective imaging with pinhole

f: Effective focal length

$$\mathbf{x}_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \end{bmatrix} \quad \mathbf{x}_{i} = \begin{bmatrix} x_{i} \\ y_{i} \\ f \end{bmatrix} \quad \frac{\mathbf{x}_{i}}{f} = \frac{\mathbf{x}_{c}}{z_{c}} \Rightarrow \frac{\mathbf{x}_{i}}{f} = \frac{\mathbf{x}_{c}}{z_{c}}, \frac{y_{i}}{f} = \frac{y_{c}}{z_{c}}$$

Perspective projection of a line and magnification

Image plane

A line in 3D gets mapped to a line in the image plane

$$\frac{\overline{x}_i}{f} = \frac{x_c}{z_c} \qquad \Rightarrow \frac{x_i}{f} = \frac{x_c}{z_c}, \frac{y_i}{f} = \frac{y_c}{z_c}$$

Exercise: Show that magnification
$$|\mathbf{m}| = \frac{object\ length}{image\ length} = \frac{\sqrt{\delta x_i^2 + \delta y_i^2}}{\sqrt{\delta x_o^2 + \delta y_o^2}} = |\frac{f}{z_0}|$$

Camera coordinates to image plane coordinates

Perspective projection
$$\frac{x_i}{f} = \frac{x_c}{z_c}$$
 and $\frac{y_i}{f} = \frac{y_c}{y_c}$ $x_i = f \frac{x_c}{z_c}$ and $y_i = f \frac{y_c}{y_c}$

Image plane to image sensor mapping

Image plane

$$x_i = f \frac{x_c}{z_c}$$
 and $y_i = f \frac{y_c}{y_c}$
 $u = m_x f \frac{x_c}{z_c}$ and $v = m_y f \frac{y_c}{z_c}$

Image sensor

Pixels may be rectangular Let m_x and m_y be the pixel densities (pixels/mm) in x and y directions

u (pixels)

 (o_x, o_y) Principle point

$$u = m_{\chi} f \frac{x_c}{z_c}$$
 and $v = m_{\chi} f \frac{y_c}{z_c}$ $u = m_{\chi} f \frac{x_c}{z_c} + o_{\chi}$ and $v = m_{\chi} f \frac{y_c}{z_c} + o_{\chi}$

$$u = f_x \frac{x_c}{z_c} + o_x$$
 and $v = f_y \frac{y_c}{z_c} + o_y$

Intrinsic parameters: f_x , f_y , o_x , o_y

Nonlinear to linear model using homogeneous coordinates

$$u = f_x \frac{x_c}{z_c} + o_x$$
 and $v = f_y \frac{y_c}{z_c} + o_y$

Use homogeneous representation of (u, v) as a 3D point $\tilde{u} = (\tilde{u}, \tilde{v}, \tilde{w})$ $uz_c = f_x x_c + o_x z_c$ and $vz_c = f_y y_c + o_y z_c$ $(uz_c, vz_c, z_c) \equiv (u, v, 1)$

$$u = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} z_c u \\ z_c v \\ z_c \end{bmatrix} = \begin{bmatrix} f_x x_c + z_c o_x \\ f_y y_c + z_c o_y \\ z_c \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

Linear model of perspective projection $\tilde{u} = [K|0]\tilde{x}_c = M_{int}\tilde{x}_c$

Intrinsic matrix (M_{int})

Calibration matrix *K* (upper right triangular)

Forward Camera Model

Camera to pixel

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} f_{x} & 0 & o_{x} & 0 \\ 0 & f_{y} & o_{y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \\ 1 \end{bmatrix}$$

World to camera

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} t_x \\ r_{21} & r_{22} & r_{23} t_y \\ r_{31} & r_{32} & r_{33} t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

$$\tilde{u} = M_{int} \ \tilde{x}_w$$

$$\tilde{u} = M_{int} M_{ext} \, \tilde{x}_w = P \, \tilde{x}_w$$

$$\begin{split} \widetilde{u} &= M_{int} \, M_{ext} \, \widetilde{x}_w = P \, \widetilde{x}_w \\ \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} &= \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix} \end{split}$$

$$\tilde{x}_c = M_{ext} \ \tilde{x}_w$$

P: Projection matrix

Camera Calibration Procedure

Step 1. Capture image of object with known geometry

captured image

$$\mathbf{x}_{W} = \begin{bmatrix} \mathbf{x}_{W} \\ \mathbf{y}_{W} \\ \mathbf{z}_{W} \end{bmatrix}$$

Camera Calibration

Step 3. For each point i in the scene and the image we get a linear equation

$$\begin{bmatrix} u^{(i)} \\ v^{(i)} \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w^{(i)} \\ y_w^{(i)} \\ z_w^{(i)} \\ 1 \end{bmatrix}$$

Step 4. Collecting many
$$u^{(i)} = \frac{p_{11}x_w^{(i)} + p_{12}y_w^{(i)} + p_{13}z_w^{(i)} + p_{14}}{p_{31}x_w^{(i)} + p_{32}y_w^{(i)} + p_{33}z_w^{(i)} + p_{34}}$$
 points and rearranging p as a vector we get $Ap = 0$

Step 5. Solve for **p**

Projection matrix scale

Since projection matrix works on homogeneous coordinates

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} \equiv k \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix}$$

Therefore

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix} = k \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Therefore, Projection Matrices P and kP produce the same homogenous pixel coordinates

Projection matrix is defined only upto a scale factor

Scaling the world and the camera will produce indistinguishable images

That is , we can only find the projection matrix up to scale; we choose ||p||=1

Least Squares Solution for Projection Matrix

We want $A\mathbf{p}$ as close to 0 as possible and $||\mathbf{p}||^2 = 1$ $\min_{\mathbf{p}} ||A\mathbf{p}||^2 \text{ such that } ||\mathbf{p}||^2 = 1$

$$\min_{\boldsymbol{p}} \left| \left| \boldsymbol{p}^T A^T A \boldsymbol{p} \right| \right|^2 \text{ such that } \boldsymbol{p}^T \boldsymbol{p} = 1$$

$$L(\boldsymbol{p}, \lambda) = \boldsymbol{p}^T A^T A \boldsymbol{p} - \lambda (\boldsymbol{p}^T \boldsymbol{p} - 1)$$

Taking derivative
$$\frac{\partial L}{\partial \boldsymbol{p}} = 0$$
 gives $2A^T A \boldsymbol{p} - 2\lambda \boldsymbol{p} = \boldsymbol{0}$
 $A^T A \boldsymbol{p} = \lambda \boldsymbol{p}$

 ${m p}$ is the Eigenvector corresponding to the smallest eigenvalue of A^TA Rearrange ${m p}$ to get the projection matrix ${m P}$

