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Perception: Reconstructing 3D world from images
Lectures 5-6
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Role of Perception in Autonomy
Perception module converts signals from the 

environment state estimates for the 
autonomous agent and its environment 

Examples of state estimates: 
• Type of lead vehicle, traffic sign
• Position of ego on the map, relative to the 

lane, distance to the leading vehicle
• Position of lead vehicle, speed, intention of 

the pedestrian
Types of estimates: 
• Semantic: E.g., type of vehicle, sign
• Geometric: E.g., position, speed



Problem
Reconstructing the 3D structure of the scene from images

Input: image with points in pixels
Output: position of objects in millimeters in world camera frame

We will develop a method to find camera’s internal and external 
parameters

Outline:
Linear Camera Model (Projection matrix)
Camera calibration 
Simple stereo



Forward Imaging Model: 3D to 2D
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Forward Imaging Model: 3D to 2D
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World to camera Transformation (Extrinsic parameters)

ො𝑥𝑤

ො𝑦𝑤
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𝑃
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Position 𝑐𝑤 and the orientation 𝑅 of the camera in the world coordinate frame (W) are the 
camera’s Extrinsic Parameters

𝑅 =
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

→ row 1 is the direction of ො𝑥𝑐 in world coordinates, 2 for ො𝑦𝑐, …  

This is an orthonormal matrix, i.e., the row vectors or the colum vectors are orthonormal
𝑅−1 = 𝑅𝑇 i.e., 𝑅𝑇𝑅 = 𝑅𝑅𝑇 = 𝐼
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World to camera Transformation

ො𝑥𝑤

ො𝑦𝑤

Ƹ𝑧𝑤

𝑃
𝑥𝑤

ො𝑥𝑐

ො𝑦𝑐
Ƹ𝑧𝑐

Camera 
coordinate 
frame

World 
coordinate 
framePinhole

𝑐𝑤

𝑥𝑐

Position 𝑐𝑤 and the orientation 𝑅 of the camera in the world coordinate frame (W) are the 
camera’s Extrinsic Parameters
Given the extrinsic parameters (𝑅, 𝑐𝑤) of the camera, the camera-centric location of the 
point P in the world coordinate (w) is simply 𝑥𝑐 𝑤 = 𝑥𝑤 − 𝑐𝑤
In the camera coordinate (c) 𝑥𝑐 = 𝑅 𝑥𝑤 − 𝑐𝑤 = 𝑅𝑥𝑤 − 𝑅𝑐𝑤 = 𝑅𝑥𝑤 + 𝑡 𝑡 = −𝑅𝑐𝑤

𝑥𝑐 =
𝑥𝑐
𝑦𝑐
𝑧𝑐

=
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

𝑥𝑤
𝑦𝑤
𝑧𝑤

+
𝑡𝑥
𝑡𝑦
𝑡𝑧

   𝑥𝑐 = 𝑅𝑥𝑤 + 𝑡
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Extrinsic Matrix

We have an affine transformation: 𝑥𝑐 = 𝑅𝑥𝑤 + 𝑡
Can we represent it as 𝑥𝑐 = 𝑀𝑥𝑤? No
We can introduce a new coordinate ෤𝑥𝑐 = ෤𝑥, ෤𝑦, ǁ𝑧, 1 𝑇

Now can we represent this as a matrix multiplication ෤𝑥𝑐 = 𝑀 ෤𝑥𝑤

 

෤𝑥𝑐 =

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

=

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33
0 0 0

𝑡𝑥
𝑡𝑦
𝑡𝑧
1

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

𝑥𝑐 =
𝑥𝑐
𝑦𝑐
𝑧𝑐

=
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

𝑥𝑤
𝑦𝑤
𝑧𝑤

+
𝑡𝑥
𝑡𝑦
𝑡𝑧
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World to camera Transformation (Extrinsic matrix)

ො𝑥𝑤

ො𝑦𝑤

Ƹ𝑧𝑤

𝑃
𝑥𝑤

ො𝑥𝑐
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Ƹ𝑧𝑐

Camera 
coordinate 
frame

World 
coordinate 
framePinhole

𝑐𝑤

𝑥𝑐

Given the extrinsic parameters (𝑅, 𝑐𝑤) of the camera, the camera-centric location of the 
point P in the world coordinate is
𝑥𝑐 = 𝑅 𝑥𝑤 − 𝑐𝑤 = 𝑅𝑥𝑤 − 𝑅𝑐𝑤 = 𝑅𝑥𝑤 + 𝑡  𝑡 = −𝑅𝑐𝑤  

𝑥𝑐 =
𝑥𝑐
𝑦𝑐
𝑧𝑐

=
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

𝑥𝑤
𝑦𝑤
𝑧𝑤

+
𝑡𝑥
𝑡𝑦
𝑡𝑧

 Using homogeneous coordinates 

෤𝑥𝑐 =

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

=

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33
0 0 0

𝑡𝑥
𝑡𝑦
𝑡𝑧
1

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

 Extrinsic matrix 𝑀𝑒𝑥𝑡 ෤𝑥𝑐 = 𝑀𝑒𝑒𝑥𝑡 ෤𝑥𝑤 
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Geometry of Homogeneous coordinates (for 2D)
Affine transformation: xc = Rxw + t
How to represent this as ෤xc = M෤xw

The homogeneous representation of a 2D point 
𝑝 = 𝑥, 𝑦  is a 3D point ෤𝑝 = ෤𝑥, ෤𝑦, ǁ𝑧 . 

The third coordinate ෤z ≠ 0 is fictitious such that:

𝑝 = 𝑥, 𝑦  𝑥 = ෤𝑥
෤𝑧
 𝑦 = ෤𝑦

෤𝑧

𝑝 ≡
𝑥
𝑦
1

≡
ǁ𝑧𝑥
ǁ𝑧𝑦
ǁ𝑧

≡
෤𝑥
෤𝑦
ǁ𝑧

= ෤𝑝

Geometric interpretation: all points on the line L 
(except origin) represent homogeneous 
coordinate  𝑝(𝑥, 𝑦)

𝑥𝑐 =
𝑥𝑐
𝑦𝑐

=
𝑟11 𝑟12
𝑟21 𝑟22

𝑥𝑤
𝑦𝑤

+
𝑡𝑥
𝑡𝑦

𝑦

𝑥
𝑝(𝑥, 𝑦)

ǁ𝑧 = 1

ǁ𝑧

෤𝑦

෤𝑥

𝐿
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Forward Imaging Model: 3D to 2D
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Perspective imaging with pinhole
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𝑓: Effective focal length
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Perspective imaging with pinhole
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Perspective projection of a line and magnification

𝑃

ො𝑥𝑐

ො𝑦𝑐
Ƹ𝑧𝑐

Image plane

Pinhole

𝑓 𝑥𝑐

A line in 3D gets mapped to a line in the image plane

𝑃′ 𝑥𝑖

𝑥𝑖
𝑓 =

𝑥𝑐
𝑧𝑐

⇒ 𝑥𝑖
𝑓

= 𝑥𝑐
𝑧𝑐

, 𝑦𝑖
𝑓

= 𝑦𝑐
𝑧𝑐

Exercise: Show that magnification  m = 𝑜𝑏𝑗𝑒𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
𝑖𝑚𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

=
𝛿𝑥𝑖

2+𝛿𝑦𝑖
2

𝛿𝑥𝑜
2+𝛿𝑦𝑜

2
= | 𝑓

𝑧0
|

𝑥0, 𝑦0, 𝑧0

𝑥0 + 𝛿𝑥0, 𝑦0 + 𝛿𝑦0, 𝑧0
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Camera coordinates to image plane coordinates 
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Perspective 
projection 

𝑥𝑖 = 𝑓 𝑥𝑐
𝑧𝑐

 and 𝑦𝑖 = 𝑓 𝑦𝑐
𝑦𝑐

𝑥𝑖
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Image plane to image sensor mapping

ො𝑦𝑖 (mm)

Image plane
Pixels may be rectangular
Let 𝑚𝑥 and 𝑚𝑦 be the pixel 
densities (pixels/mm) in x and 
y directions 

𝑥𝑖 = 𝑓 𝑥𝑐
𝑧𝑐

 and 𝑦𝑖 = 𝑓 𝑦𝑐
𝑦𝑐

𝑢 = 𝑚𝑥𝑓 𝑥𝑐
𝑧𝑐

+ 𝑜𝑥 and 𝑣 = 𝑚𝑦𝑓 𝑦𝑐
𝑧𝑐

+ 𝑜𝑦

𝑢 = 𝑓𝑥
𝑥𝑐
𝑧𝑐

+ 𝑜𝑥 and 𝑣 = 𝑓𝑦
𝑦𝑐
𝑧𝑐

+ 𝑜𝑦

ො𝑥𝑖 (mm)

𝑣 (pixels)

𝑢 (pixels)

Image sensor

𝑢 = 𝑚𝑥𝑓 𝑥𝑐
𝑧𝑐

 and 𝑣 = 𝑚𝑦𝑓 𝑦𝑐
𝑧𝑐

(𝑜𝑥, 𝑜𝑦) Principle point

Intrinsic parameters: 𝑓𝑥, 𝑓𝑦, 𝑜𝑥, 𝑜𝑦
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Nonlinear to linear model using homogeneous coordinates

Use homogeneous representation of 𝑢, 𝑣  as a 3D point ෤𝑢 = ( ෤𝑢, ෤𝑣, ෥𝑤)
𝑢𝑧𝑐 = 𝑓𝑥𝑥𝑐 + 𝑜𝑥𝑧𝑐 and 𝑣𝑧𝑐 = 𝑓𝑦 𝑦𝑐 + 𝑜𝑦𝑧𝑐

𝑢𝑧𝑐, 𝑣𝑧𝑐, 𝑧𝑐 ≡ (𝑢, 𝑣, 1)

𝑢 ≡
𝑢
𝑣
1

≡
𝑧𝑐𝑢
𝑧𝑐𝑣
𝑧𝑐

=
𝑓𝑥𝑥𝑐 + 𝑧𝑐𝑜𝑥
𝑓𝑦𝑦𝑐 + 𝑧𝑐𝑜𝑦

𝑧𝑐

=
𝑓𝑥 0 𝑜𝑥 0
0 𝑓𝑦 𝑜𝑦 0
0 0 1 0

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

Linear model of perspective projection ෤𝑢 = 𝐾 0 ෤𝑥𝑐 = 𝑀𝑖𝑛𝑡 ෤𝑥𝑐 
Intrinsic matrix (𝑀𝑖𝑛𝑡)
Calibration matrix 𝐾 (upper right triangular)

𝑢 = 𝑓𝑥
𝑥𝑐
𝑧𝑐

+ 𝑜𝑥 and 𝑣 = 𝑓𝑦
𝑦𝑐
𝑧𝑐

+ 𝑜𝑦
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Forward Camera Model
Camera to pixel

෤𝑢
෤𝑣
෥𝑤

=
𝑓𝑥 0 𝑜𝑥 0
0 𝑓𝑦 𝑜𝑦 0
0 0 1 0

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

෤𝑢 = 𝑀𝑖𝑛𝑡 ෤𝑥𝑤 
෤𝑢 = 𝑀𝑖𝑛𝑡 𝑀𝑒𝑥𝑡 ෤𝑥𝑤 = 𝑃 ෤𝑥𝑤 

෤𝑢
෤𝑣
෥𝑤

=
𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

P: Projection matrix

World to camera
𝑥𝑐
𝑦𝑐
𝑧𝑐
1

=

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33
0 0 0

𝑡𝑥
𝑡𝑦
𝑡𝑧
1

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

෤𝑥𝑐 = 𝑀𝑒𝑥𝑡 ෤𝑥𝑤 



Camera Calibration Procedure
Step 1. Capture image of object with known geometry

known geometry objectො𝑥𝑤

ො𝑦𝑤

𝑢

𝑣

captured image

𝒙𝑊 =
𝑥𝑤
𝑦𝑤
𝑧𝑤

 𝒖 = 𝑢
𝑣



Camera Calibration
Step 3. For each point i in the scene and the image we get a linear 

equation

𝑢(𝑖)

𝑣(𝑖)

1
=

𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤
(𝑖)

𝑦𝑤
(𝑖)

𝑧𝑤
(𝑖)

1

Step 4. Collecting many 𝑢(𝑖) = 𝑝11𝑥𝑤
(𝑖) + 𝑝12𝑦𝑤

(𝑖)+ 𝑝13𝑧𝑤
(𝑖)+𝑝14

𝑝31𝑥𝑤
(𝑖) + 𝑝32𝑦𝑤

(𝑖)+ 𝑝33𝑧𝑤
(𝑖)+𝑝34

 points and rearranging p 

as a vector we get 𝐴𝒑 = 0

Step 5. Solve for p



Projection matrix scale
Since projection matrix works on homogeneous coordinates

෤𝑢
෤𝑣
෥𝑤

≡ 𝑘
෤𝑢
෤𝑣
෥𝑤

Therefore
𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤
𝑦𝑤
𝑧𝑤
1

= 𝑘
𝑝11 𝑝12 𝑝13 𝑝14
𝑝21 𝑝22 𝑝23 𝑝24
𝑝31 𝑝32 𝑝33 𝑝34

𝑥𝑤

𝑦𝑤
𝑧𝑤

1
Therefore, Projection Matrices P and kP produce the same homogenous pixel 

coordinates
Projection matrix is defined only upto a scale factor
Scaling the world and the camera will produce indistinguishable images

That is , we can only find the projection matrix up to scale; we choose  𝒑 = 𝟏



Least Squares Solution for Projection Matrix

We want 𝐴𝒑 as close to 0 as possible and 𝒑 2 = 1

min
𝒑

𝐴𝒑 𝟐
 such that 𝒑 2 = 1 

min
𝒑

𝒑𝑻𝐴𝑇𝐴𝒑
𝟐

 such that 𝒑𝑻𝒑 = 1

𝐿 𝒑, 𝜆 = 𝒑𝑻𝐴𝑇𝐴𝒑 − 𝜆(𝒑𝑻𝒑 − 1)

Taking derivative 𝜕𝐿
𝜕𝒑

= 0 gives 2𝐴𝑇𝐴𝒑 − 2𝜆𝒑 = 𝟎
𝐴𝑇𝐴𝒑 = 𝜆𝒑

𝒑 is the Eigenvector corresponding to the smallest eigenvalue of 𝐴𝑇𝐴
Rearrange 𝒑 to get the projection matrix P
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