4o

ECE484 Principles of Safe Autonomy

Lecture 9

Control 2
Sayan Mitra
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Announcements

ROS supplemental lecture in ECEB 1015, 5-5:50pm today
Midterm March 4 in class 80 mins
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Outline

* Modeling the control problem
e Differential Equations; solutions and their properties
* Bang-bang control

* Control design €
* PID
 State feedback
 MPC (brief)

* Requirements
* Stability
e Lyapunov theory and its relation to invariance



On-off control of a room heater with a thermostat

x(t) = f(x(t), u(®))
u(t) = g(x(t))

A simple thermostat controller
g(x(t)):

if x(t) = x4 then u(t) = off

else if x(t) < x4 — € then u(t) = on

This is called bang-bang control
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Bang-Bang Controller with Hysteresis Switching Logic (Bold Solid Lines)

Xg: Set point

Heat
Control u(t) = onor of f
ontroller
g
Model of
room —
x(t) temperature




On-off control of a room heater with a thermostat

Bang-Bang Controller with Hysteresis Switching Logic (Bold Solid Lines)
70 b=~ - - ——RUOTT TEMpErftare -1.0
== Upper Thre<hold (70°C)

= = Lower Threshold (65°C)

Bang-bang control is a feasible strategy
when the controlled variable is o |
observable
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Disadvantages

e Usually not energy efficient
Xg: Set point
* Overshoots and undershoots because Heat
- - (t) =onoroff
of inertia and delays Controller |-
g
* Causes excess stress on the actuators 1
Model of
e Can cause the system to become oo e——d
. t
unstable (to be defined later) x(t) fempersture

“o



Review: Rear Wheel Model (Bicycle model)

XB

VB
Op
Control input: front wheel steering angle u: R = 65

Plant state: real wheel pose) = xg: R3 =

0
AY

Model parameters: car length (l) speed (vg)

f:IR4—>IR3

> X0 x.B — f(xB,u)

xg| [V cOSOp
yg |= | VB Sinbp
. ’UB
—tand
el 17 B




Path following control

The path to be followed by a robot is

typically represented by a parameterized
curve (e.g., parameterized by time)

This path is computed by a higher-level
planner (e.g., using hybrid A*, RRT)

Each pointin the path defines the desired
instantaneous pose p(t) of the vehicle
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I
‘/,;’/p(t) = [x(0), y(1), 6(2)]
Noise Input/waypoint Disturbance
I Feedback 1 CO”tLO('t-;ign al 1
Sensor — Controller  |e—— Plant

|

system output
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Path following control (Step 1)

Desired instantaneous pose p(t)

How to define error between actual

pose pg(t) and desired pose p(t) inthe .-~

form of x4 (t) — x(t) so that then we
can develop a control law

p(t) = [x(8), y(8), 6(¢)

-
__‘—
—

——————
7,
Ve
] L
P<

S 000 = [0, y5 (D, 85(0)]



A path following control

Desired instantaneous pose p(t)

The error vector measured vehicle coordinates
e(t) = [65(¢), 8, (t), 69 (t), 5, (t)]

|65, 6,,] define the coordinate errors in the vehicle’s reference frame:
along track error and cross track error

* Along track error: distance ahead or behind the target in the f
instantaneous direction of motion. v

8s = cos(Bg(t)) (x(t) — x5(®)) + sin(85(t)) (y(©) — y5(t))

* Cross track error: portion of the position error orthogonal to the
intended direction of motion

p(t) = [x(1), y(1), 6(t), v(t)]

Os

5, = —sin(85(8)) (x(t) — x5(8)) + cos(65(0) (y(©) — y5(®) . Wz

* Heading error
8¢9 = 0(t) — 05(t) pg(t) = [x5(t), yp(t), 05(t), vp(L)]
6, = v(t) — vp(t)

Each of these errors match the form x;(t) — x(t) [From L8]
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Bang bang controller for bicycle model (Step 2)

Dynamics

Heading error: e, = 0 — 0
Cross track error: e; = ||(xg, y5) — (x, Y|

Combined error: e = e;, + aey

Vv coSOp
v sinfpg

%tanSB

Bang-bang controller:

ife > 0thend = 4,4, €lse d = —

5max

Bang-Bang Control for Bicycle Model with Combined Errors
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Proportional control

x| [V cosOp]

Dynamics | ¥z |= [V $i0s

O %tanSB

Heading error: e, = 0 — 0
Cross track error: e; = ||(xg, y5) — (x, Y|

Proportional controller § = —Kje;, + —K, e,

Proportional Control for Bicycle Model

X Position
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A Proportional controller

Plant x(t) = u(t) + d(t), where d(t) is a small disturbance signal

The goal is the drive the plant state to a target steady state value, say x4 = 70°

Idea: Make the control input negatively proportional to the error: Negative feedback
Error: e(t) = x(t) — x4

Proportional controller: u(t) = —K,e(t), the constant K, is called controller gain
Using proportional (P) negative feedback

u(t) = —Kpe(t) = —Kp(x(t) — xq)

x(t) = —Kpx(t) + Kpxq + d(t) X4: Set point
Consider a constant disturbance d
o " — u(t) = g(e)
x(t) = —pr(t) + Kpxy + dgs Controller
: : f g=-Ke
What is the steady state value? Trick: set RHS =0 |
Set —Kpx(t) + Kpxy + dgs =0
d Model of
x(t) = x5 ==+ yy4 room <
Kp x(t) temperature




Proportional controller example

With constant disturbance d¢; we rewrite the ODE
x(t) = —Kpx(t) + Kpxy + dgg with xoq = % + x4
P

x(t) = —Kp(xss — x(¢))

The solution of this ODE

x(t) = x5 + (x(0) — x55)e ™
Transient behavior

x(t) = x(0)e " + x (1 — e p) Setting t=0
x(0) =x+C
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X4: Set point

ﬁ

>

u(t) = g(e)

Controller

g=-Ke

Model of

x(t)

room
temperature

General solution of first-order linear DE
x(t) = x5 + Ce Kot



X4: Set point

Proportional Controller — ] ww=g@©
Transient behavior of the control system | o
x(t) = x(O)e‘th + xss(1 - e‘th); X = f{—s: + x4 Model of
The proportional controller uses negative feedback to x(t) temrs:rr:ture

track the desired setpoint smoothly

Steady state error may not be O

Exponential Convergence for Different K_P Values

Larger proportional gain Kp more reactive the controller
and faster the system converges to the target state Kp

Larger Kp implies smaller steady state tracking error

For systems with delays and inertia high proportional gain
can cause oscillations or overshoots

Temperature (°C)

KP=0.2

62| KP=05

There may be actuator limits that prevent u(t) = —he
— Kpe(t) = —Kp(x(t) — x4) to be a feasible control “L ; ; ; —
. Time (seconds)

input
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PID Controller Response for Different Configurations

The PID controller T

Error: difference of desired and measured e(t) = x; — x(t)

t
u(t) = Kpe(t) + K,f e(t)dt + Kp dil(tt) o
0

451

601 P Only

— Pl
= PD
PID
——- Desired State (70°C)

551

Temperature (°C)

Tune Kp, K;, K, for the required performance

0 2 B 6 8 10

P (Proportional): Corrects based on the current error Time (seconds)

Reacts to errors quickly (may lead to oscillations)

PID Control for Bicycle Model

| (Integral): Corrects based on the accumulated past error. —

-== Waypoint Path
41 ¢ x  Waypoints

Removes steady state error

D (Derivative): Predicts future error based on the rate of change.
Dampens oscillations

PD control: K; = 0 N
Pl control: Kp = 0 N

Y Position

. 0.0 2:5 5.0 7.5 10.0 12,5 15.0 17.5
O' X Position



Linear systems

<
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Linear dynamical system and solutions

Linear system is a dynamical system where the dynamical function fis a
linear function of the state and the inputs
x(t) = A(t)x(t) + B(t)u(t)

where A and B are time varying matrices

For a given initial state x5 € R",t, € Rand u(.) € PC(R,R") the
solution is a function é(., ty, xo, u): R > R"



Example: Simple linear model of an economy

x: national income
y: rate of consumer spending

g: rate government expenditure

20 | mcome (X)
‘\ spending ((y)

. \ _
X =X — ay 15 \ = =+ | Lyapuno\ function (V)

y—ﬁ@—y—g) ?f% |

5=l Z5lB) - 1g)s . T




Solutions of Linear systems define a linear space
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x(t) = A®)x(t) + B()u(t) - (2)
y(t) = C(®)x(t) + D(t)u(t)

u(t) continuous everywhere except D,

Theorem*. Let &(t, ty, xo, U) be the solution for (2) with points of discontinuity , D,

1.

Vt, € R, x, € R", u € PC(R,R™), é(+, to, xo,u): R > R™ is continuous and
differentiableVt € R\ D,

Vt, t, € R,u € PC(R,R™), &(t, ty,,, u): R™ - R™ is continuous

Vt, ty € R, x01, %02 € R", u; u; € PC(R,R™),aq,a, € R,E(L, tg, ayxe1 +
AyXg2, AUy + AUy) = a1E(E, tg, X1, Up) + a2 €(8, tg, Xg2, Us)

Vi, tg ER,xy € RY, u € PC(R,R™), é(t, ty, xo, ) = E(L, tg,x9,0) + (2, to,0, 1)



Linear time invariant system

x(t) = Ax(t) + Bu(t)

Matrix exponential:

1
edl =1+ At +5(At)2 + ..

— 1
T k
o (At)
0

Theorem. (Solution of linear syitems)

'S(t; Lo, Xo,u) — erA(t_to) 1+

to

eAt=DBu(t)dt

SIAM REVIEW (© 2003 Sciety for Industrial and Applied Mathematics
Vol. 45, No. 1, pp. 3-000

Nineteen Dubious Ways to
Compute the Exponential of a
Matrix, Twenty-Five Years
Later*

Cleve Moler!
Charles Van Loan*

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involv-
ing approximation theory, differential equations, the matrix eigenvalues, and the matrix
characteristic polynomial have been proposed. In practice, consideration of computational
stability and efficiency indicates that some of the methods are preferable to others, but
that none are completely satisfactory.

Most of this paper was originally published in 1978. An update, with a separate bibliog-
raphy, describes a few recent developments.

Key words. matrix, exponential, roundoff error, truncation error, condition
AMS subject classifications. 15A15, 65F15, 65F30, 65199

PIl. S0036144502418010
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Requirements of dynamical systems: Stability

Consider a linear time invariant autonomous system (closed systems,
systems without inputs)

e x(t) = f(x(t)), suppose x, € R™, t, =0

« £(t) is the solution

* [£(t)] norm

« x* € R" is an equilibrium point if f(x*) = 0.

* For analysis we will assume 0 to be an equilibrium point without loss
of generality
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Example (continued): Simple model of an economy

* x: national income y: rate of consumer spending; g: rate government
expenditure
*X=Xx —aQy
ry=Bfkx—-y—9)
* Suppose g = go + kx a, 5, k are positive constants
* What is the equilibrium?

* Jdo«

e ¥ = y*:

a—1-ka

Jdo
a—1—-ka

* Dynamics (now closed system):

5l =lsa=1 S5l
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Example: Pendulum

Pendulum equation

x1=9 x2=9
X2=3.C1

. g . k
Xy = —TSln(xl) — X2

[x:zlz [—%sin(xl) — %xz

X1 X3

k: friction coefficient

Two equilibrium points: (0,0), (m, 0)







Aleksandr M. Lyapunov

Defined stability of ordinary differential
equations and gave conditions for proving
stability

Lecture Slides by Sayan Mitra mitras@illinois.edu

A. M. Lyapunov
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Linear system and solutions

x(t) = A(t)x(t) + B(t)u(t)
x(t) = Ax(t) + Bu(t): Linear time invariant system
A, B:matrices, x: state vector, u: input vector

For a given initial state x, € R", t, € Rand u(.) € PC(R, R") the
solution is a function &(., ty, xp, u): R > R"

We studied several properties of ¢ in the last lecture: continuity with
respect to first and third argument, linearity, decomposition
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Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable (at the
origin) if
Ve > 036, >0suchthat |xy]| <6, =>Vt=0,|E(xy t)| < e.

How is this related to
invariants and X

reachable states ?



Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin) if it is
Lyapunov stable and

365> 0 such that V|xy| < 8, ast - oo, |E(xy, t)| = O.
If the property holds for any 0, then Globally Asymptotically Stable

<)

“o



Phase portrait of pendulum with friction




Butterfly*
b et

All solutions converge to O but the
equilibrium point (0,0) is not
Lyapunov stable
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Summary

* For ODE solutions to be well-defined we need the model to be Lipschitz
continuous and the control input to be piece-wise continuous

e Steady state values of variables can be obtained by setting the RHS of the ODE to
be zero

* Bang-bang controller does not require knowledge of the plant, does not give
precise tracking, and may be energy inefficient

* Proportional controller uses negative feedback, gives smooth tracking
performance, but can lead to overshoots



A general view of the controller

Noise p(t) = [x(t), y(t),6(t)] Disturbance
Control input is given by u = |[a, 6] I ok I contl sl 1
u(t) =la,
where a is the acceleration and
5 |S the Steeﬂng angle Sensor pr——— Controller ——— Plant
_55_
o)
u=K|"
69 system output
10,

v [Ks 0 0 Kv]
0

0 K, Kg
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Control Law

K, 0 0 K,

=10 k, kK, 0

A pure-pursuit controller

produced by this gain matrix performs a PD-
control. It uses a PD-controller to correct along-

track error.

The control on curvature is also a PD-controller
for cross-track error because 9y is related to the
derivative of ¢,,.

cross track error vs time
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Verifying Stability for Linear Systems

Consider a linear system x = Ax

Theorem 1. (Stability of linear systems)

1. It is asymptotically stable iff all the eigenvalues of A have strictly negative
real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigenvalues of A have real parts that are
either zero or negative and the Jordan blocks corresponding to the
eigenvalues with zero real parts are of size 1.



Jordan decomposition®

For every n x n matrix A, there exists a nonsingular n x n matrix P such that

_Jl 0 0 0 q _./t,' l 0‘ U’ "
PAP"'=J=| 0 0 J5 ... 0| Ji=| 0 0 A4 ... 0
O 0 O Je 0 0 0 A,

where each J; is an upper triangular matrix called a Jordan block

o



Examples

[962]_[—1/4 —2/5
X L 3 -1/4
A,=-0.25-i1.103
A,=-0.25+i1.10

[352]_[1/4 —2/5
7l 3 -1/4
A,=+i0.1066
A,=-i0.1066

—— income (x) vs spending (y)

—— income (x) vs spending (y)

-4

[x’z]_[l/z ~2/5
X 13 -1/4
A,=0.125+i1.029
A,=-0.125-i1.029

600 -

400 A

200 A

—200 4

—400 A

—— income (x) vs spending (y)

~300

—200 _100 0 100 200

M

—2/5
~1/2

A,=-0.375-1.088
A,=-0.375+i1.088

-2 1

—4 -

—— income (x) vs spending (y)

— income (x)
——— spending (y)

—— income (x)
——— spending (y)

600

400 A

2004

—200 -

~400

—— income (x)
——— spending (y)

—— income (x)
——— spending (y)




Hybrid Instability: Switching between two stable linear models

o £ o —— o 4 W T
: _~ '_’ = = o -:—'_—::‘ ::*_k . =g;_=lr5 i =
i 14 ] : v J 14 o WS ® ‘ B ~
AR 1 ' ' LN , : S AU
p 3\ L WVIAARL | ﬂ o e T e T W
\\ W NG SN N Sy, By X NS ‘\\b b
. A ST T 5“*&»&««3‘%‘ i 5 11y ;:4 A
e — S s "é‘il > A A/
—— ﬁ!‘ \W'q»w! P A .
u‘\u _4_'/ —r %’/ el
W ===
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Yes! By switching between
them the system becomes
unstable




	Slide 1: ECE484 Principles of Safe Autonomy Lecture 9 Control 2 Sayan Mitra
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: On-off control of a room heater with a thermostat
	Slide 5: On-off control of a room heater with a thermostat
	Slide 6: Review: Rear Wheel Model (Bicycle model)
	Slide 7: Path following control
	Slide 8: Path following control (Step 1)
	Slide 9: A path following control
	Slide 10: Bang bang controller for bicycle model (Step 2)
	Slide 11: Proportional control
	Slide 12: A Proportional controller
	Slide 13: Proportional controller example
	Slide 14: Proportional Controller
	Slide 15: The PID controller
	Slide 16: Linear systems
	Slide 17: Linear dynamical system and solutions
	Slide 18: Example: Simple linear model of an economy
	Slide 19: Solutions of Linear systems define a linear space
	Slide 20: Linear time invariant system
	Slide 21: Requirements of dynamical systems: Stability
	Slide 22: Example (continued): Simple model of an economy
	Slide 23: Example: Pendulum
	Slide 24
	Slide 25: Aleksandr M. Lyapunov 
	Slide 26: Linear system and solutions
	Slide 27: Lyapunov stability
	Slide 28: Asymptotically stability
	Slide 29: Phase portrait of pendulum with friction
	Slide 30: Butterfly*
	Slide 31: Summary
	Slide 32: A general view of the controller
	Slide 33: Control Law
	Slide 34: Verifying Stability for Linear Systems
	Slide 35: Jordan decomposition*
	Slide 36
	Slide 37
	Slide 38

