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Announcements

ROS supplemental lecture in ECEB 1015, 5-5:50pm today

Midterm March 4 in class 80 mins



Outline

• Modeling the control problem 
• Differential Equations; solutions and their properties

• Bang-bang control

• Control design 
• PID

• State feedback

• MPC (brief)

• Requirements
• Stability

• Lyapunov theory and its relation to invariance



On-off control of a room heater with a thermostat

ሶ𝒙 𝑡 = 𝑓 𝒙 𝑡 , 𝑢(𝑡)

𝒖 𝑡 = 𝑔(𝑥 𝑡 )

A simple thermostat controller 

𝑔 𝑥 𝑡 :

if 𝑥 𝑡 ≥ 𝑥𝑑 then 𝑢(𝑡) = off

else if 𝑥 𝑡 ≤ 𝑥𝑑 − 𝜀 then 𝑢(𝑡) = on

This is called bang-bang control

Controller
g

Heat
𝒖 𝑡 = 𝑜𝑛 𝑜𝑟 𝑜𝑓𝑓

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



On-off control of a room heater with a thermostat

Bang-bang control is a feasible strategy 

when the controlled variable is 

observable

Disadvantages

• Usually not energy efficient

• Overshoots and undershoots because 

of inertia and delays 

• Causes excess stress on the actuators

• Can cause the system to become 

unstable (to be defined later)

Controller
g

Heat
𝒖 𝑡 = 𝑜𝑛 𝑜𝑟 𝑜𝑓𝑓

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



Review: Rear Wheel Model (Bicycle model)

X1

Y1

X0

Y0



𝛿

𝑙

(𝑥, 𝑦)

Plant state: real wheel pose) = 𝒙𝑩: ℝ3 =

𝑥𝐵

𝑦𝐵

𝜃𝐵

Control input: front wheel steering angle 𝑢: ℝ = δ𝐵

Model parameters: car length (𝑙) speed (𝑣𝐵) 

𝑓: ℝ4 → ℝ3

ሶ𝒙𝐵 = 𝑓(𝒙𝑩, 𝑢)

ሶ𝑥𝐵

ሶ𝑦𝐵

ሶ𝜃𝐵

= 

𝑣𝐵 𝑐𝑜𝑠𝜃𝐵

𝑣𝐵 𝑠𝑖𝑛𝜃𝐵
𝑣𝐵

𝑙
𝑡𝑎𝑛𝛿𝐵



Path following control

The path to be followed by a robot is 
typically represented by a parameterized 
curve (e.g., parameterized by time)

This path is computed by a higher-level 
planner (e.g., using hybrid A*, RRT)

Each point in the path defines the desired 
instantaneous pose 𝑝 𝑡  of the vehicle

PlantSensor Controller

Input/waypoint

control signal
𝑢(𝑡)

system output

Feedback

Noise
Disturbance

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]



Path following control (Step 1)

Desired instantaneous pose 𝑝 𝑡

How to define error between actual 
pose 𝑝𝐵 𝑡  and desired pose 𝑝 𝑡  in the 
form of 𝑥𝑑 𝑡 − 𝑥(𝑡) so that then we 
can develop a control law

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

𝑝𝐵 𝑡 = [𝑥𝐵 𝑡 , 𝑦𝐵 𝑡 , 𝜃𝐵 𝑡 ]



A path following control
Desired instantaneous pose 𝑝 𝑡

The error vector measured vehicle coordinates 
e 𝑡 = [𝛿𝑠 𝑡 , 𝛿𝑛 𝑡 , 𝛿𝜃 𝑡 , 𝛿𝑣 𝑡 ]

[𝛿𝑠, 𝛿𝑛] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 

𝛿𝑠 = cos 𝜃𝐵 𝑡 𝑥 𝑡 − 𝑥𝐵 𝑡 + 𝑠𝑖𝑛 𝜃𝐵 𝑡 𝑦 𝑡 − 𝑦𝐵 𝑡

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion

𝛿𝑛 = −sin 𝜃𝐵 𝑡 𝑥 𝑡 − 𝑥𝐵 𝑡 + 𝑐𝑜𝑠 𝜃𝐵 𝑡 𝑦 𝑡 − 𝑦𝐵 𝑡

• Heading error
𝛿𝜃 = 𝜃 𝑡 − 𝜃𝐵 𝑡
𝛿𝑣 = 𝑣 𝑡 − 𝑣𝐵(𝑡)

Each of these errors match the form 𝑥𝑑 𝑡 − 𝑥(𝑡) [From L8]

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝𝐵 𝑡 = [𝑥𝐵 𝑡 , 𝑦𝐵 𝑡 , 𝜃𝐵 𝑡 , 𝑣𝐵(𝑡)]

𝜃𝐵

𝛿𝑠

𝛿𝑛

𝛿𝜃



Bang bang controller for bicycle model (Step 2)

Dynamics 

ሶ𝑥𝐵

ሶ𝑦𝐵

ሶ𝜃𝐵

= 

𝑣 𝑐𝑜𝑠𝜃𝐵

𝑣 𝑠𝑖𝑛𝜃𝐵
𝑣

𝑙
𝑡𝑎𝑛𝛿𝐵

Heading error: 𝑒ℎ = 𝜃𝐵 − 𝜃

Cross track error: e𝑑 = | 𝑥𝐵 , 𝑦𝐵 − 𝑥, 𝑦 |

Combined error: 𝑒 = 𝑒ℎ + 𝛼𝑒𝑑

Bang-bang controller: 

if 𝑒 > 0 then 𝛿 = 𝛿𝑚𝑎𝑥 else 𝛿 = −𝛿𝑚𝑎𝑥



Proportional control

Dynamics 

ሶ𝑥𝐵

ሶ𝑦𝐵

ሶ𝜃𝐵

= 

𝑣 𝑐𝑜𝑠𝜃𝐵

𝑣 𝑠𝑖𝑛𝜃𝐵
𝑣

𝑙
𝑡𝑎𝑛𝛿𝐵

Heading error: 𝑒ℎ = 𝜃𝐵 − 𝜃

Cross track error: e𝑑 = | 𝑥𝐵 , 𝑦𝐵 − 𝑥, 𝑦 |

Proportional controller 𝛿 = −𝐾ℎ𝑒ℎ + −𝐾𝑑𝑒𝑑



A Proportional controller
Plant ሶ𝑥 𝑡 = 𝑢 𝑡 + 𝑑 𝑡 , where 𝑑 𝑡  is a small disturbance signal

The goal is the drive the plant state to a target steady state value, say 𝑥𝑑 = 70∘

Idea: Make the control input negatively proportional to the error: Negative feedback

Error: 𝑒 𝑡 = 𝑥 𝑡 − 𝑥𝑑

Proportional controller: 𝑢 𝑡 = −𝐾𝑝𝑒 𝑡 , the constant  𝐾𝑝 is called controller gain

Using proportional (P) negative feedback

 𝑢 𝑡 = −𝐾𝑃𝑒 𝑡 = −𝐾𝑃(𝑥 𝑡 − 𝑥𝑑)

 ሶ𝑥 𝑡 = −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑 𝑡

Consider a constant disturbance 𝑑𝑠𝑠

 ሶ𝑥 𝑡 = −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑𝑠𝑠

What is the steady state value? Trick: set RHS = 0

Set −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑𝑠𝑠 = 0

 𝑥 𝑡 = 𝑥𝑠𝑠 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑦𝑑

Controller
g=-Ke

𝒖 𝑡 = 𝑔(𝑒)

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



Proportional controller example
With constant disturbance 𝑑𝑠𝑠  we rewrite the ODE

 ሶ𝑥 𝑡 = −𝐾𝑃𝑥 𝑡 + 𝐾𝑃𝑥𝑑 + 𝑑𝑠𝑠  with 𝑥𝑠𝑠 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑥𝑑

 ሶ𝑥 𝑡 = −𝐾𝑃(𝑥𝑠𝑠 −  𝑥 𝑡 )

The solution of this ODE

 𝑥 𝑡 = 𝑥𝑠𝑠 + (𝑥 0 − 𝑥𝑠𝑠)𝑒−𝑡𝐾𝑝

Transient behavior

 𝑥 𝑡 = 𝑥 0 𝑒−𝑡𝐾𝑝 + 𝑥𝑠𝑠 1 − 𝑒−𝑡𝐾𝑝

General solution of first-order linear DE
𝑥 𝑡 = 𝑥𝑠𝑠 + 𝐶𝑒−𝐾𝑝𝑡

Setting  t=0
𝑥 0 = 𝑥𝑠𝑠 + 𝐶

Controller
g=-Ke

𝒖 𝑡 = 𝑔(𝑒)

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



Proportional Controller
Transient behavior of the control system

 𝑥 𝑡 = 𝑥 0 𝑒−𝑡𝐾𝑝 + 𝑥𝑠𝑠 1 − 𝑒−𝑡𝐾𝑝 ; 𝑥𝑠𝑠 =
𝑑𝑠𝑠

𝐾𝑃
+ 𝑥𝑑

The proportional controller uses negative feedback to 
track the desired setpoint smoothly

Steady state error may not be 0

Larger proportional gain 𝐾𝑃  more reactive the controller 
and faster the system converges to the target state 𝐾𝑃

Larger 𝐾𝑃  implies smaller steady state tracking error

For systems with delays and inertia high proportional gain 
can cause oscillations or overshoots

There may be actuator limits that prevent  𝑢 𝑡 =
− 𝐾𝑃𝑒 𝑡 = −𝐾𝑃(𝑥 𝑡 − 𝑥𝑑) to be a feasible control 
input

Controller
g=-Ke

𝒖 𝑡 = 𝑔(𝑒)

Model of 
room 

temperature𝒙(𝑡)

𝒙𝑑: Set point 



The PID controller
Error: difference of desired and measured 𝑒 𝑡 = 𝑥𝑑 − 𝑥(𝑡)

𝑢 𝑡 = 𝐾𝑃𝑒 𝑡 + 𝐾𝐼 න
0

𝑡

𝑒 𝜏 𝑑𝜏 + 𝐾𝐷

𝑑𝑒 𝑡

𝑑𝑡

Tune 𝐾𝑃, 𝐾𝐼, 𝐾𝑑 for the required performance 

P (Proportional): Corrects based on the current error 

Reacts to errors quickly (may lead to oscillations)

I (Integral): Corrects based on the accumulated past error.

Removes steady state error

D (Derivative): Predicts future error based on the rate of change.

Dampens oscillations

PD control: 𝐾𝐼 = 0

PI control: 𝐾𝐷 = 0



Linear systems



Linear dynamical system and solutions

Linear system is a dynamical system where the dynamical function f is a 
linear function of the state and the inputs

ሶ𝑥 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)

where A and B are time varying matrices

For a given initial state 𝑥0 ∈ ℝ𝑛, 𝑡0 ∈ ℝ 𝑎𝑛𝑑 𝑢(. ) ∈ 𝑃𝐶(ℝ, ℝ𝑛) the 
solution is a function 𝜉 . , 𝑡0, 𝑥0, 𝑢 : ℝ → ℝ𝑛

Lecture Slides by Sayan Mitra mitras@illinois.edu



Example: Simple linear model of an economy

𝑥: national income 

𝑦: rate of consumer spending 

𝑔: rate government expenditure

 ሶ𝑥 = 𝑥 − 𝛼𝑦

 ሶ𝑦 = 𝛽 𝑥 − 𝑦 − 𝑔

ሶ𝑥
ሶ𝑦

=
1 −𝛼
𝛽 −𝛽

𝑥
𝑦 −

0
𝛽

𝑔

0 2 4 6 8 10 12 14

time(t)

− 5

0

5

10

15

20

x
,y

,V

income (x)

spending (y)

Lyapunov function (V )



Solutions of Linear systems define a linear space

ሶ𝑥 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢 𝑡  --- (2)

𝑦 𝑡 = 𝐶 𝑡 𝑥 𝑡 + 𝐷 𝑡 𝑢 𝑡  

 𝑢 𝑡  continuous everywhere except 𝐷𝑥

Theorem*. Let 𝜉 𝑡, 𝑡0, 𝑥0, 𝑢  be the solution for (2) with points of discontinuity , 𝐷𝑥

1. ∀𝑡0 ∈ ℝ, 𝑥0 ∈ ℝ𝑛, 𝑢 ∈ 𝑃𝐶 ℝ, ℝ𝑚 , 𝜉 ⋅, 𝑡0, 𝑥0, 𝑢 : ℝ → ℝ𝑛 is continuous and 

differentiable ∀ 𝑡 ∈ ℝ ∖ 𝐷𝑥

2. ∀𝑡, 𝑡0 ∈ ℝ, 𝑢 ∈ 𝑃𝐶 ℝ, ℝ𝑚 , 𝜉 𝑡, 𝑡0,⋅, 𝑢 : ℝ𝑛 → ℝ𝑛 is continuous

3. ∀𝑡, 𝑡0 ∈ ℝ, 𝑥01, 𝑥02 ∈ ℝ𝑛, 𝑢1,𝑢2 ∈ 𝑃𝐶 ℝ, ℝ𝑚 , 𝑎1, 𝑎2 ∈ ℝ, 𝜉(

)

𝑡, 𝑡0, 𝑎1𝑥01 +

𝑎2𝑥02, 𝑎1𝑢1 + 𝑎2𝑢2 = 𝑎1𝜉 𝑡, 𝑡0, 𝑥01, 𝑢1 + 𝑎2𝜉 𝑡, 𝑡0, 𝑥02, 𝑢2

4. ∀𝑡, 𝑡0 ∈ ℝ, 𝑥0 ∈ ℝ𝑛, 𝑢 ∈ 𝑃𝐶 ℝ, ℝ𝑚 , 𝜉 𝑡, 𝑡0, 𝑥0, 𝑢 = 𝜉 𝑡, 𝑡0, 𝑥0, 𝟎 + 𝜉 𝑡, 𝑡0, 0, 𝑢
Lecture Slides by Sayan Mitra mitras@illinois.edu



Linear time invariant system

ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

Matrix exponential:

𝑒𝐴𝑡 = 1 + 𝐴𝑡 +
1

2!
𝐴𝑡 2 + … = ෍

0

∞
1

𝑘!
𝐴𝑡 𝑘

Theorem. (Solution of linear systems) 

𝜉 𝑡, 𝑡0, 𝑥0, 𝑢 = 𝑥0e𝐴(𝑡−𝑡0) + න
𝑡0

𝑡

e𝐴(𝑡−𝜏)𝐵𝑢 𝜏 𝑑𝜏
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Requirements of dynamical systems: Stability

Consider a linear time invariant autonomous system (closed systems, 
systems without inputs) 

• ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , suppose 𝑥0 ∈ ℝ𝑛, 𝑡0 = 0 

• 𝜉 𝑡  is the solution

• |𝜉 𝑡 | norm

• 𝑥∗ ∈ ℝ𝑛 is an equilibrium point if 𝑓 𝑥∗ = 0.

• For analysis we will assume 0 to be an equilibrium point without loss 
of generality

Lecture Slides by Sayan Mitra mitras@illinois.edu



Example (continued): Simple model of an economy

• 𝑥: national income 𝑦: rate of consumer spending; 𝑔: rate government 
expenditure
• ሶ𝑥 = 𝑥 − 𝛼𝑦

• ሶ𝑦 = 𝛽 𝑥 − 𝑦 − 𝑔

• Suppose 𝑔 = 𝑔0 + 𝑘𝑥  𝛼, 𝛽, 𝑘 are positive constants

• What is the equilibrium? 

• 𝑥∗ =
𝑔0𝛼

𝛼−1−𝑘𝛼
 𝑦∗ =

𝑔0

𝛼−1−𝑘𝛼

• Dynamics (now closed system):
ሶ𝑥
ሶ𝑦

=
1 −𝛼

𝛽(1 − 𝑘) −𝛽

𝑥
𝑦



Example: Pendulum

Pendulum equation

𝑥1 = 𝜃 𝑥2 = ሶ𝜃

𝑥2 = ሶ𝑥1

ሶ𝑥2 = −
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

ሶ𝑥2

ሶ𝑥1
= 

−
𝑔

𝑙
sin 𝑥1 −

𝑘

𝑚
𝑥2

𝑥2

𝑘: friction coefficient 

Two equilibrium points: 0,0 , (𝜋, 0)
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Aleksandr M. Lyapunov 

Defined stability of ordinary differential 

equations and gave conditions for proving 

stability
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Linear system and solutions

ሶ𝑥 𝑡 = 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)

ሶ𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡): Linear time invariant system

𝐴, 𝐵:matrices, 𝑥: state vector, 𝑢: input vector

For a given initial state 𝑥0 ∈ ℝ𝑛, 𝑡0 ∈ ℝ𝑎𝑛𝑑 𝑢(. ) ∈ 𝑃𝐶(ℝ, ℝ𝑛) the 
solution is a function 𝜉 . , 𝑡0, 𝑥0, 𝑢 : ℝ → ℝ𝑛

We studied several properties of 𝜉 in the last lecture: continuity with 
respect to first and third argument, linearity, decomposition
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Lyapunov stability

Lyapunov stability: The system (1) is said to be Lyapunov stable (at the 
origin) if 

 ∀𝜀 > 0 ∃ 𝛿𝜀 > 0 such that 𝑥0 ≤ 𝛿𝜀 ⇒ ∀ t ≥ 0, 𝜉 𝑥0, 𝑡 ≤ 𝜀.

How is this related to 

invariants and 

reachable states ?

𝛿𝜀

Lecture Slides by Sayan Mitra mitras@illinois.edu
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Asymptotically stability

The system (1) is said to be Asymptotically stable (at the origin) if it is 

Lyapunov stable and 

 ∃𝛿2> 0 such that ∀ 𝑥0 ≤ 𝛿2 as t → ∞, 𝜉 𝑥0, 𝑡 → 𝟎.

If the property holds for any 𝛿2 then Globally Asymptotically Stable

Lecture Slides by Sayan Mitra mitras@illinois.edu
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Phase portrait of pendulum with friction



Butterfly*

ሶ𝑥2

ሶ𝑥1
= 

2𝑥1𝑥2

𝑥1
2 − 𝑥2

2

All solutions converge to 0 but the 
equilibrium point (0,0) is not 
Lyapunov stable

*Not discussed in class



Summary

• For ODE solutions to be well-defined we need the model to be Lipschitz 
continuous and the control input to be piece-wise continuous

• Steady state values of variables can be obtained by setting the RHS of the ODE to 
be zero

• Bang-bang controller does not require knowledge of the plant, does not give 
precise tracking, and may be energy inefficient

• Proportional controller uses negative feedback, gives smooth tracking 
performance, but can lead to overshoots



A general view of the controller

Control input is given by 𝑢 = 𝑎, 𝛿
where a is the acceleration and 
𝛿 is the steering angle. 

 𝑢 = 𝐾

𝛿𝑠

𝛿𝑛

𝛿𝜃

𝛿𝑣

 𝐾 =
𝐾𝑠 0 0 𝐾𝑣

0 𝐾𝑛 𝐾𝜃 0

PlantSensor Controller

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

control signal
𝑢 𝑡 = [𝑎, 𝛿]

system output

Feedback

Noise
Disturbance



Control Law

𝐾 =
𝐾𝑠 0 0 𝐾𝑣

0 𝐾𝑛 𝐾𝜃 0

A pure-pursuit controller 

produced by this gain matrix performs a PD-
control. It uses a PD-controller to correct along-
track error. 

The control on curvature is also a PD-controller 
for cross-track error because 𝛿𝜃  is related to the 
derivative of 𝛿𝑛.



Verifying Stability for Linear Systems

Consider a linear system ሶ𝑥 = 𝐴𝑥

Theorem 1. (Stability of linear systems)

1. It is asymptotically stable iff all the eigenvalues of A have strictly negative 

real parts (Hurwitz).

2. It is Lyapunov stable iff all the eigenvalues of A have real parts that are 

either zero or negative and the Jordan blocks corresponding to the 

eigenvalues with zero real parts are of size 1.



Jordan decomposition*

For every n x n matrix A, there exists a nonsingular n x n matrix P such that 

where each 𝐽𝑖 is an upper triangular matrix called a Jordan block



ሶ𝑥2

ሶ𝑥1
= 

−1/4 −2/5
3 −1/4

λ1=−0.25−i1.10å
λ2=−0.25+i1.10

ሶ𝑥2

ሶ𝑥1
= 

1/4 −2/5
3 −1/4

λ1=+i0.1066
λ2=-i0.1066

ሶ𝑥2

ሶ𝑥1
= 

1/2 −2/5
3 −1/4

λ1=0.125+i1.029
λ2=-0.125-i1.029

Examples ሶ𝑥2

ሶ𝑥1
= 

−1/4 −2/5
3 −1/2

λ1=−0.375−i1.088
λ2=−0.375+i1.088



Run

Walk

Each of the modes of a walking robot are asymptotically stable
 
Is it possible to switch between them to make the system unstable?

Hybrid Instability: Switching between two stable linear models



Run

Walk

Yes! By switching between 
them the system becomes 
unstable
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