ECE 484: Safety Analysis and Verse Tutorial Related to Bonus Problem

Spring 24

Professors: Sayan Mitra April 2, 2024

Goal: Provide evidence for safety of an autonomous system

- What does safety mean?
- What does it mean for a system to be safe?
- ► What does it mean to provide evidence for the above?
- TI:dr: Safety is defined by a set of bad states that should never be reached. Evidence of safety = tests or proofs that show that none of the behaviors of the system ever reach the bad states.

Automatic Emergency Braking

Setup: Automata, executions, and safety

An automaton is a triple $A = \langle Q, Q_0, D \rangle$ where

- $\blacktriangleright Q$ is a set of states
- $\triangleright Q_0$ is a set of initial states
- ► $D \subseteq Q \times Q$ is a set of transitions

An execution of A is a sequence of states $\alpha = q_0, q_1, q_2, \dots$ such that $q_0 \in Q_0$ and for each $i, (q_i, q_{i+1}) \in D$.

Generally, an automaton can have uncountably infinite executions

Q: Set of vertices $Q_0 = \{o\}$ D: Set of edges

Automata, executions, and safety

Safety of automaton $A = \langle Q, Q_0, D \rangle$ is specified by a set of unsafe states $U \subseteq Q$ that the automaton should *never reach*

Automaton A is safe with respect to U if for every execution $\alpha = q_0q_1 \dots$ of A if for every q_i in α , $q_i \notin U$.

If Q is finite (and small) then DFS on A gives an algorithm for checking safety

Enumerating individual executions is insufficient for checking safety for automata with uncountably many executions

All executions are safe

Thermostat in Verse

State variables

 $x: \mathbb{R} = 70$ // temperature

// heater state

 $mode: \{on, off\} = on$

Transitions

Jumps

if $x \ge 70$ then mode = off

if $x \leq 62$ then mode = on

Flows (every Δ time)

 $\frac{dx}{dt} = H - kx$ where H = 0 for on and 10 for off

```
k = 0.5
```

```
class ThermMode(Enum):
                                      class State:
   On = auto()
                                        'State variables'''
   Off = auto()
                                         x: float
                                         mode: ThermMode
def decisionLogic(ego: State):
                                      You will write this
  'Jump Transitions''
    output = copy.deepcopy(ego)
    if eqo.x >= 75.0:
        output.mode = ThermMode.Off
    if eqo.x <= 62.0:
        output.mode = ThermMode.On
    return output
class ThermAgent(BaseAgent):
def dynamic(t, state, u):
                                      You do not need to modify
'''RHS of ODE defining Flows '''
  x = state
  H, k = u
  x dot = H - k * temp
   return [x dot]
def TC_simulate(self, mode: List[str], init, timeBound, Delta,..)
....
        r = ode(self.dynamic)
        if mode[0]=="0n":
            r.set_initial_value(init).set_f_params([10, 0.5])
        else:
            r.set_initial_value(init).set_f_params([0, 0.5])
        trace = r.integrate(r.t + Delta)
return np.array(trace)
thermostat = ThermAgent('thermostat')
trace = thermostat.simulate(["On"], [70,0], 10, 0.05)
```

Automatic Emergency Braking

State variables

 $x_1, x_2: \mathbb{R}$

```
v_1, v_2: \mathbb R
```

State transitions

```
def decisionLogic(ego:State, others:List[State], track_map):
    output = copy.deepcopy(ego)
    if ego.mode == Normal and in_front(ego, others):
        output.mode = Brake
    if ego.mode == Normal and in_front(ego, others):
        output.mode = SwitchLeft
    if ego.mode == Normal and in_front(ego, others):
        output.mode = SwitchLeft
    if ego.mode == Normal and in_front(ego, others):
        output.mode = SwitchLeft
    if ego.mode == Normal and in_front(ego, others):
        output.mode = SwitchLeft
    if ego.mode == Normal and in_front(ego, others):
        output.mode = SwitchRight
```


Automaton model for AEB $Q = \mathbb{R}^4$ $Q_0 = \{\langle x_{10}, x_{20}, v_{10}, v_{20} \rangle\}$ D = ?

> Nondeterministic transitions

•••

Safety and requirements

A *requirement* is a statement about a system's executions.

Our goal is to *provide evidence* that *all executions* satisfy the given requirements

- ▶ Examples. "Ball <u>never</u> reaches a height above $h'' \forall t, x(t) \leq h$
- ▶ "Ball eventually sits on the ground at x = 0" $\exists t, x(t) = 0$
- ▶ "Car <u>always</u> maintains safe distance to pedestrian" $\forall t, x_2(t) x_1(t) > 2 m$

```
assert not (other.signal == RED and (other.x - 20 < ego.x < other.x -15))
assert not (other.signal == RED and (other.x - 15 < ego.x < other.x) and ego.v<vo)</pre>
```

Safety requirements are statements that must always hold (or never be violated) along all executions

Safety requirements as Asserts in Verse

Safety requirements can be seen as a set of **unsafe states** that must be avoided

"Cars always remain >= 1 m apart"

"Ball <u>never</u> goes above h" $\forall t, x(t) \leq h$ corresponding unsafe set

 $U = \{ \langle x, v \rangle | x > h \} \subseteq \mathbb{R}^2$

In verse:

def vehicle_close(ego, others):

return any(abs(ego.x - other.x)<1.0 and abs(ego.y-other.y)<1.0 for other in others)

assert not vehicle_close(ego, others), "Seperation"

Evidence for safety: Coverage

- > An automaton can have many executions
- Sources of nondeterminism
 - Set of initial states Q_0
 - Many transitions from one state

Different levels of evidence

scenario.simple_simulate(T, Delta)

computes a single execution from a single initial state up to time T (runs Python code)

scenario.simulate(T, Delta)

computes *all* simulations from a single initial state up to time T (does DFS, Verse function)

scenario.verify(T, Delta)

computes *all* simulations from *all* initial states up to time T (does DFS + reachability analysis, Verse function)

3 vehicles starting in different *sets***of initial states (4d-rectangles)** scenario.set_init([[[5, -0.5, 0, 1.0], [5.5, 0.5, 0, 1.0]], [[20, -0.2, 0, 0.5], [20, 0.2, 0, 0.5]], [[4-2.5, 2.8, 0, 1.0], [4.5-2.5, 3.2, 0, 1.0]],], [(AgentMode.Normal, TrackMode.T1), (AgentMode.Normal, TrackMode.T1), (AgentMode.Normal, TrackMode.T0),]

- def decisionLogic(ego:State, others:List[State], track_map):
 output = copy.deepcopy(ego)
 - if ego.mode == Normal and in_front(ego, others):
 - output.mode = Brake

...

- if ego.mode == Normal and in_front(ego, others):
 output.mode = SwitchLeft
- if ego.mode == Normal and in_front(ego, others):
 output.mode = SwitchRight

Real sources of nondeterminism / uncertainty

- ▶ Range of initial conditions x_1 : $\mathbb{R} \in [x_{10} 0.5, x_{10} + 0.5]$
- Range of braking force
 - ► $a_{brake} = choose [a_1, a_2]$
 - $\blacktriangleright v_1' = \max(0, v_1 a_{brake})$
- ► Noise in sensing distances ...
- Unpredictable motion of pedestrians
- Error / drift in timers
- Uncertainty in model parameters, e.g., friction

Verify() and Reachable states

Given an automaton $A = \langle Q, Q_0, D \rangle$ the set of **reachable states** of A is defined as

$$\operatorname{Reach}_{A} = \{q_i \in Q \mid \exists \alpha = q_0, \dots, q_i\}.$$

A state is **reachable** if there is some execution that reaches it.

The safety verification problem can be restated as checking $\operatorname{Reach}_A \cap U = \emptyset$?

Computing Reach_A in Verse

 $Post_A(S) = \{q' \in Q \mid \exists q \in S, (q',q) \in D\}$

States that can be reached from S in a single transition

Fact. if $S_1 \subseteq S_2$, $Post_A(S_1) \subseteq Post_A(S_2)$ [Monotonicity] Define. $Post_A^0(S) = S$; $Post_A^k(S) = Post_A(Post_A^{k-1}(S))$

Exercise*. $Post_A^k(Q_0)$ = States reachable after k steps

If $Post_A^k$ converges, then we could compute $Reach_A$

We can compute states that are reachable up to a time bound T and prove bounded safety

This is the strategy implemented in the Verse tool traces = scenario.verify(40, 0.1, params={"bloating_method": 'GLOBAL'}) fig = reachtube_tree(traces, tmp_map, fig, 1, 2, [1, 2], 'lines', 'trace')

For general automata, computing *Reach_A* is hard (undecidable)

Summary

- Automata models in general have many, many behaviors / executions
- Safety requires us to show that all the possible behaviors stay away from bad states (given as safety requirements)
- ▶ For systems with complete models we seek to provide evidence for safety by checking $\operatorname{Reach}_A \cap Bad \ set = \emptyset$
- Verse implements this for models/scenarios described using Python and ODEs

Verse Tutorial and Extra Slides

Approximating reachable states is enough for safety

For general automata, computing *Reach_A* is hard (undecidable)

Notice, even if we can over-approximate Reach_A that can be adequate.

Definition. An **invariant** for A is any set of states that over-approximates Reach_A . That is, $\operatorname{Reach}_A \subseteq I$.

Q is an invariant, but it is not particularly useful.

Our strategy for safety verification

- ▶ Find an invariant set of states $I \subseteq Q$ of A such that $I \cap U = \emptyset$ ▶ How to check that a $I \subseteq Q$ is an invariant of A?
- **Theorem 1.** Given automaton $A = \langle Q, Q_0, \mathcal{D} \rangle$ and a set of states $I \subseteq Q$ if:
- ▶ (Start condition) $Q_0 \subseteq I$, and
- ▶ (Transition closure) $Post(I) \subseteq I$

then I is an invariant of A. That is $Reach_{\mathcal{A}}(\Theta) \subseteq I$.

Theorem 1. Given automaton $A = \langle Q, Q_0, \mathcal{D} \rangle$ and a set of states $I \subseteq Q$ if:

- ▶ (Start condition) $Q_0 \subseteq I$, and
- ▶ (Transition closure) $Post(I) \subseteq I$

then I is an invariant of A. That is $Reach_{\mathcal{A}}(\Theta) \subseteq I$.

Proof. Consider any reachable state $q \in Reach_A$. We will have to show that q is also in I. By the definition of a reachable state, there exists an execution α of \mathcal{A} such that $\alpha(k) = q$.

We proceed by induction on the length α

For the base case, α consists of a single starting state $\alpha = q \in Q_0$, because executions always start at Q_0 . And by the Start condition, $q \in I$.

For the inductive step, $\alpha = \alpha' q$ where α' is the prefix or a shorter execution. By the induction hypothesis, we know that the last state of $\alpha' say q' \in I$.

Invoking Transition condition on $q' \rightarrow q$ we obtain $q \in I$. QED

Back to the bouncing ball $I_1 \rightarrow \{\langle x, v \rangle | x \le h\}$

Can we show that I_1 is an invariant using the Theorem 1?

We have to check

(Start condition) $Q_0 \subseteq I_1$. Initially $x = h \leq h$ and v = 0 but does not matter \checks out

(Transition closure) $Post(I_1) \subseteq I_1$

- For any state with $x \leq h$, can we show that $x' \leq h$?
- NO! If the velocity is positive then x' > x, and we cannot show the invariant

Theorem 1 is a sufficient condition for proving invariance (not necessary)

Back to the bouncing

 $I_2 = \{ \langle x, v \rangle | v^2 - 2g(h - x) = 0 \}$

Can we show that I_2 is an invariant using the Theorem 1?

We have to check

- ▶ (Start condition) $Q_0 \subseteq I_2$. Initially $v^2 2g(h x) = 0 2g(h h) = 0$
- ▶ (Transition closure) $Post(I) \subseteq I_1$
 - Consider any state (x', v') after a transition: Two cases:
 - ► No bounce: $v'^2 2g(h x')$

$$= (v - g)^{2} - 2g\left(h - x - v + \frac{1}{2}g\right)$$

= $v^{2} + g^{2} - 2yg - 2g(h - x) + 2yg - g^{2} = v^{2} - 2g(h - x) = 0$
> Bounce: If condition implies $x = 0$ that is $v^{2} = 2gh$;

therefore $v'^2 = 2gh$

 Theorem 1 is a sufficient condition for proving invariance (not a necessary condition)

State variables
$x:\mathbb{R}$
$v:\mathbb{R}$
State transitions
v' = v - g
$x' = x + v - \frac{1}{2}g$
if $x = 0 \&\& v \le 0$
v' = -v
else

Discussion and takeaways

- ▶ I_2 has more information than I_1
 - Which is a bigger set?
- ▶ Both are adequate for proving safety (x < h + 0.5)
- > Only I_2 could be proved with Theorem 1 (Induction), but not I_1
- Finding invariants (that can be proved by induction) still remains for us a challenging problem
 - ► Hot research topic: learning invariants, barrier certificates
- Still, having created a model and found an invariant now we can give an absolute safety guarantee (about all possible behaviors of the model), just by computing Post(.)

Example model of a bouncing ball

Write the model of a ball dropped from height h

Example model of a bouncing ball

- Define states---the attributes of the ball that completely define its motion: height x and velocity v
- 2. Define **state transitions**---how the state changes

Example model of a bouncing ball

State variables $x:\mathbb{R}$ $v:\mathbb{R}$ State transitions if $x \le 0 \&\& v \le 0$ v' = -c * velse v' = vv' = v - g * delta $x' = x + delta * v - \frac{1}{2}g.delta^{2}$

Parameters h, g, c, delta

Jupyter notebook https://github.com/PoPGRI/CodeACar22/blob/main/jupyter/control_notebook/main.ipynb

Summary

- Absolute safety checking boils down to showing that none of the executions of the automaton reaches an unsafe set U
- ▶ To reason about all executions of we have to work with infinite sets of states
- One way to compute infinite sets is using the Post operator
- But, computing all executions for unbounded time can be hard
- If we can guess an invariant satisfying conditions of Proposition 1.1, that can give a shortcut for proving safety
- The inavariant may contain important information about conserved quantities, and thus, may tell us why the system is safe, and not just that it is so
- Mind the gap between model and reality
- Next. Application of invariants in braking example

