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Goal: Provide evidence for safety of an autonomous system

▶What does safety mean?
▶What does it mean for a system to be safe? 
▶What does it mean to provide evidence for the above?

▶Tl:dr: Safety is defined by a set of bad states that should never be 
reached. Evidence of safety = tests or proofs that show that none of 
the behaviors of the system ever reach the bad states. 



Automatic Emergency Braking



Setup: Automata, executions, and safety 
An automaton is a triple 𝐴 = ⟨𝑄, 𝑄!, 𝐷⟩ where 
▶𝑄 is a set of states
▶𝑄! is a set of initial states
▶𝐷 ⊆ 𝑄	×𝑄 is a set of transitions

An execution of 𝐴	is a sequence of states 𝛼 =
𝑞!, 𝑞", 𝑞#, …	such that 
𝑞! ∈ 𝑄! and for each 𝑖, 𝑞$ , 𝑞$%" ∈ 𝐷.	

Generally, an automaton can have uncountably infinite 
executions

𝑄: Set of vertices
𝑄! = 𝑜
𝐷: Set of edges



Automata, executions, and safety 
Safety of automaton 𝐴 = ⟨𝑄, 𝑄&, 𝐷⟩ is specified by a set of 
unsafe states 𝑈 ⊆ 𝑄 that the automaton should never reach 

Automaton 𝐴 is safe with respect to 𝑈 if for every execution 𝛼 =
𝑞&𝑞'… of 𝐴 if for every 𝑞( in 𝛼, 𝑞( ∉ 𝑈.

If 𝑄 is finite (and small) then DFS on 𝐴 gives an algorithm for 
checking safety 

Enumerating individual executions is insufficient for checking 
safety for automata with uncountably many executions

All executions are safe 

Unsafe execution found 



Thermostat in Verse

State variables 

𝑥 ∶ ℝ = 70  // temperature

𝑚𝑜𝑑𝑒: 𝑜𝑛, 𝑜𝑓𝑓 = 𝑜𝑛 // heater state

Transitions

Jumps

if 𝑥 ≥ 70 then 𝑚𝑜𝑑𝑒 = 𝑜𝑓𝑓
if 𝑥 ≤ 62 then 𝑚𝑜𝑑𝑒 = 𝑜𝑛
Flows (every Δ time)
𝑑𝑥
𝑑𝑡
= 𝐻 − 𝑘𝑥 where 𝐻 = 0 for on and 10 for off

 𝑘	 = 	0.5

class ThermMode(Enum):
   On = auto()
   Off = auto()

def decisionLogic(ego: State):
‘’’Jump Transitions'’’
    output = copy.deepcopy(ego)
    if ego.x >= 75.0:
        output.mode = ThermMode.Off
    if ego.x <= 62.0:
        output.mode = ThermMode.On
    return output

class ThermAgent(BaseAgent):
def dynamic(t, state, u):
'''RHS of ODE defining Flows '’’
   x = state
   H, k = u
   x_dot = H - k*temp
   return [x_dot]

def TC_simulate(self, mode: List[str], init, timeBound, Delta,..)
… 
        r = ode(self.dynamic)
        if mode[0]=="On":
            r.set_initial_value(init).set_f_params([10, 0.5])
        else:
            r.set_initial_value(init).set_f_params([0, 0.5])
        trace = r.integrate(r.t + Delta)
return np.array(trace)

thermostat = ThermAgent('thermostat’)
trace = thermostat.simulate(["On"], [70,0], 10, 0.05)

You do not need to modify

class State:
'’’State variables'’’
   x: float
   mode: ThermMode

You will write this



Automatic Emergency Braking

State variables 
𝑥!, 𝑥": ℝ

𝑣!, 𝑣": ℝ 

State transitions	

distance (x)𝑥%! 𝑥&!0

𝑣%! 𝑣&!

Automaton model for AEB 
𝑄 = ℝ#
𝑄$ = 𝑥!$, 𝑥"$, 𝑣!$,𝑣"$
𝐷 =? 

def decisionLogic(ego:State, others:List[State], track_map):
    output = copy.deepcopy(ego)
    if ego.mode == Normal and in_front(ego, others):
         output.mode = Brake
    if ego.mode == Normal and in_front(ego, others):
         output.mode = SwitchLeft
    if ego.mode == Normal and in_front(ego, others):
         output.mode = SwitchRight
…

Nondeterministic transitions



Safety and requirements
A requirement is a statement about a system’s executions. 

Our goal is to provide evidence that all executions satisfy the given 
requirements 

▶ Examples. “Ball never reaches a height above  h” ∀	𝑡, 𝑥 𝑡 ≤ ℎ

▶ “Ball eventually sits on the ground at x = 0” ∃𝑡, 𝑥 𝑡 = 0

▶ “Car always maintains safe distance to pedestrian” ∀𝑡, 𝑥2 𝑡 −
𝑥1 𝑡 > 2	𝑚

Safety requirements are statements that must always hold (or never 
be violated) along all executions

assert not (other.signal == RED and (other.x - 20 < ego.x < other.x -15))
assert not (other.signal == RED and (other.x - 15 < ego.x < other.x) and ego.v<vo)



Safety requirements as Asserts in Verse

Safety requirements can be seen as a set of 
unsafe states that must be avoided

“Cars always remain >= 1 m apart”

“Ball never goes above  h” ∀	𝑡, 𝑥 𝑡 ≤ ℎ 

corresponding unsafe set 

𝑈 = 𝑥, 𝑣 𝑥 > ℎ} ⊆ ℝA

𝑸𝟎
Unsafe states

In verse: 
def vehicle_close(ego, others):
   return any(abs(ego.x - other.x)<1.0 and abs(ego.y-other.y)<1.0 for other in others)

assert not vehicle_close(ego, others), "Seperation"



Evidence for safety: Coverage
▶ An automaton can have many executions

▶ Sources of nondeterminism
▶ Set of initial states 𝑄!
▶ Many transitions from one state

Different levels of evidence

scenario.simple_simulate(T, Delta)

computes a single execution from a single initial state up 
to time T (runs Python code)

scenario.simulate(T, Delta)

computes all simulations from a single initial state up to 
time T (does DFS, Verse function)

scenario.verify(T, Delta)

computes all simulations from all initial states up to time T 
(does DFS + reachability analysis, Verse function)

scenario.set_init(
[[[5, -0.5, 0, 1.0], [5.5, 0.5, 0, 1.0]],
[[20, -0.2, 0, 0.5], [20, 0.2, 0, 0.5]],
[[4-2.5, 2.8, 0, 1.0], [4.5-2.5, 3.2, 0, 1.0]],],
[(AgentMode.Normal, TrackMode.T1),
(AgentMode.Normal, TrackMode.T1),
(AgentMode.Normal, TrackMode.T0),]
)

def decisionLogic(ego:State, others:List[State], track_map):
    output = copy.deepcopy(ego)
    if ego.mode == Normal and in_front(ego, others):
         output.mode = Brake
    if ego.mode == Normal and in_front(ego, others):
         output.mode = SwitchLeft
    if ego.mode == Normal and in_front(ego, others):
         output.mode = SwitchRight
…

3 vehicles starting in different sets 
of initial states (4d-rectangles)



Real sources of nondeterminism / uncertainty

▶Range of initial conditions 𝑥": ℝ ∈ [𝑥"! − 0.5, 𝑥"! + 0.5]
▶Range of braking force 

▶ 𝑎CDEFG = 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎', 𝑎A
▶ 𝑣'H = max 0, 𝑣' − 𝑎CDEFG

▶Noise in sensing distances … 
▶Unpredictable motion of pedestrians
▶Error / drift in timers
▶Uncertainty in model parameters, e.g., friction



Verify() and Reachable states

Given an automaton 𝐴 = ⟨𝑄, 𝑄!, 𝐷⟩ the set of 
reachable states of 𝐴	is defined as 

Reach0 = 𝑞$ ∈ 𝑄	 ∃	𝛼 = 𝑞!, … , 𝑞$}. 

A state is reachable if there is some execution that 
reaches it.

The safety verification problem can be restated as 
checking  Reach0 ∩ 𝑈 = ∅?

U
nsafe 

states All states 𝑄 

𝑅𝑒𝑎𝑐ℎI(𝑄&)

𝑸𝟎



Computing 𝑅𝑒𝑎𝑐ℎ! in Verse
𝑃𝑜𝑠𝑡' 𝑆 = 𝑞′ ∈ 𝑄	 ∃	𝑞 ∈ 𝑆, 𝑞(, 𝑞 ∈ 𝐷} 

States that can be reached from S in a single transition

Fact. if S! ⊆ 𝑆", 𝑃𝑜𝑠𝑡' 𝑆! ⊆ 𝑃𝑜𝑠𝑡'(𝑆") [Monotonicity]

Define. 𝑃𝑜𝑠𝑡'$ 𝑆 = 𝑆; 𝑃𝑜𝑠𝑡') 𝑆 = 𝑃𝑜𝑠𝑡'(𝑃𝑜𝑠𝑡')*! 𝑆 ) 

Exercise*. 𝑃𝑜𝑠𝑡') 𝑄$ = States reachable after k steps

If 𝑃𝑜𝑠𝑡') converges, then we could compute 𝑅𝑒𝑎𝑐ℎ'

We can compute states that are reachable up to a time bound T and 
prove bounded safety

This is the strategy implemented in the Verse tool 

𝑅𝑒𝑎𝑐ℎI(𝑄&)

𝑸𝟎𝑷𝒐𝒔𝒕(𝑸𝟎)𝑷𝒐𝒔𝒕𝟐(𝑸𝟎)
𝑷𝒐𝒔𝒕𝟑 𝑸𝟎

traces = scenario.verify(40, 0.1, params={"bloating_method": 'GLOBAL’})
fig = reachtube_tree(traces, tmp_map, fig, 1, 2, [1, 2], 'lines', 'trace')



For general automata, computing 𝑅𝑒𝑎𝑐ℎ! is hard (undecidable)



Summary

▶Automata models in general have many, many behaviors / executions
▶Safety requires us to show that all the possible behaviors stay away 

from bad states (given as safety requirements)
▶For systems with complete models we seek to provide evidence for 

safety by checking Reach0 ∩ 𝐵𝑎𝑑	𝑠𝑒𝑡 = ∅
▶Verse implements this for models/scenarios described using Python 

and ODEs



Verse Tutorial and Extra Slides



Approximating reachable states is enough for 
safety

For general automata, computing 𝑅𝑒𝑎𝑐ℎ0 is hard 
(undecidable)

Notice, even if we can over-approximate Reach0 that 
can be adequate.

Definition. An invariant for 𝐴 is any set of states that 
over-approximates Reach0.	That is, Reach0 ⊆ 𝐼.

𝑄 is an invariant, but it is not particularly useful.

U
nsafe 

states All states 𝑄 

Invariant 𝐼"

𝑅𝑒𝑎𝑐ℎI(𝑄&)

𝑸𝟎



Our strategy for safety verification

▶Find an invariant set of states 𝐼 ⊆ 𝑄 of 𝐴 such that 𝐼 ∩ 𝑈 = ∅
▶How to check that a 𝐼 ⊆ 𝑄 is an invariant of 𝐴?

Theorem 1. Given automaton 𝐴 = 〈𝑄, 𝑄!, 𝒟〉 and a set of states 𝐼 ⊆ 𝑄	if: 
▶ (Start condition) Q! ⊆ 𝐼, and

▶ (Transition closure) Post I ⊆ 𝐼

then 𝐼 is an invariant of 𝐴. That is 𝑅𝑒𝑎𝑐ℎ𝒜 Θ ⊆ 𝐼.



Proof. Consider any reachable state 𝑞 ∈ 𝑅𝑒𝑎𝑐ℎ!.  We will have to show that 𝑞 
is also in 𝐼. By the definition of a reachable state, there exists an execution 
𝛼	of 𝒜	such that 𝛼(𝑘) 	= 𝑞. 

We proceed by induction on the length 𝛼
For the base case, 𝛼	consists of a single starting state 𝛼 = 𝑞 ∈ Q", because 
executions always start at Q".	And by the Start condition, 𝑞 ∈ 𝐼. 
For the inductive step, 𝛼 = 𝛼#𝑞 where 𝛼′ is the prefix or a shorter execution. 
By the induction hypothesis, we know that the last state of  𝛼#𝑠𝑎𝑦	 𝑞′ ∈ 𝐼. 
Invoking Transition condition on 𝑞# → 𝑞	we obtain 𝑞 ∈ 𝐼. QED

Theorem 1. Given automaton 𝐴 = 〈𝑄, 𝑄!, 𝒟〉 and a set of states 𝐼 ⊆ 𝑄	if: 
▶ (Start condition) Q! ⊆ 𝐼, and

▶ (Transition closure) Post I ⊆ 𝐼

then 𝐼 is an invariant of 𝐴. That is 𝑅𝑒𝑎𝑐ℎ𝒜 Θ ⊆ 𝐼.



Back to the bouncing ball
𝐼' = 𝑥, 𝑣 𝑥 ≤ ℎ} 
Can we show that 𝐼'	is an invariant using the Theorem 1? 
We have to check 
(Start condition) Q& ⊆ 𝐼'.	Initially 𝑥 = ℎ ≤ ℎ and 𝑣 = 0 but does not 
matter \checks out
(Transition closure) Post I' ⊆ 𝐼'
▶ For any state with 𝑥 ≤ ℎ, can we show that 𝑥H ≤ ℎ ?  
▶ NO! If the velocity is positive then 𝑥H > 𝑥, and we cannot show the 

invariant 
Theorem 1 is a sufficient condition for proving invariance (not 
necessary)

State variables
𝑥:ℝ
𝑣:ℝ
State transitions
𝑣’	 = 	𝑣	– 	𝑔
𝑥’	 = 	𝑥	 + 𝑣 −

1
2
𝑔

if 𝑥 = 0	&&	𝑣 ≤ 0
       𝑣" = −𝑣
else 
       



Back to the bouncing
𝐼" = 𝑥, 𝑣 	𝑣" − 2𝑔 ℎ − 𝑥 = 0} 
Can we show that 𝐼"	is an invariant using the Theorem 1? 

We have to check 

▶ (Start condition) Q$ ⊆ 𝐼".	Initially 𝑣" − 2𝑔 ℎ − 𝑥 = 0 − 2𝑔 ℎ − ℎ = 0
▶ (Transition closure) Post I ⊆ 𝐼!

▶ Consider any state (𝑥!, 𝑣′) after a transition:Two cases: 
▶ No bounce: 𝑣′" − 2𝑔 ℎ − 𝑥!

= 𝑣 − 𝑔 " − 2𝑔 ℎ − 𝑥 − 𝑣 +
1
2𝑔

= 𝑣" + 𝑔" − 2𝑣𝑔	 − 2𝑔 ℎ − 𝑥 + 2𝑣𝑔	 − 𝑔" = 𝑣" − 2𝑔 ℎ − 𝑥
▶ Bounce: If condition implies 𝑥 = 0	that is 𝑣" = 2𝑔ℎ;
therefore 𝑣!" = 2𝑔ℎ

▶ Theorem 1 is a sufficient condition for proving invariance (not a necessary 
condition)

State variables
𝑥:ℝ
𝑣:ℝ
State transitions
𝑣’	 = 	𝑣	– 	𝑔
𝑥’	 = 	𝑥	 + 𝑣 −

1
2
𝑔

if 𝑥 = 0	&&	𝑣 ≤ 0
       𝑣" = −𝑣
else 
       



Discussion and takeaways

▶ 𝐼# has more information than 𝐼$ 
▶ Which is a bigger set? 

▶ Both are adequate for proving safety (𝑥 < ℎ + 0.5)
▶ Only 𝐼# could be proved with Theorem 1 (Induction), but not 𝐼$
▶ Finding invariants (that can be proved by induction) still 

remains for us a challenging problem
▶ Hot research topic: learning invariants, barrier certificates

▶ Still, having created a model and found an invariant now we can 
give an absolute safety guarantee (about all possible behaviors 
of the model), just by computing 𝑃𝑜𝑠𝑡(. )

U
nsafe 

states

All states 𝑄 

Invariant 𝐼"

𝑅𝑒𝑎𝑐ℎI(𝑄&)

𝑸𝟎

Invariant 𝐼#



Example model of a bouncing ball

▶Write the model of a ball 
dropped from height h

time

h



Example model of a bouncing ball

1. Define states---the attributes of 
the ball that completely define its 
motion: height x and velocity v

2. Define state transitions---how the 
state changes

time

h



Example model of a bouncing ball

State variables
𝑥:ℝ
𝑣:ℝ
State transitions
if 𝑥 ≤ 0	&&	𝑣 ≤ 0
  𝑣H = −𝑐	 ∗ 𝑣
else 𝑣′ = 𝑣
𝑣’	 = 	𝑣	– 	𝑔	 ∗ 	𝑑𝑒𝑙𝑡𝑎

𝑥’	 = 	𝑥	 + 	𝑑𝑒𝑙𝑡𝑎	 ∗ 	𝑣 −
1
2
𝑔. 𝑑𝑒𝑙𝑡𝑎A

time

h

Jupyter notebook https://github.com/PoPGRI/CodeACar22/blob/main/jupyter/control_notebook/main.ipynb

Parameters
h, g, c, delta



Summary

▶Absolute safety checking boils down to showing that none of the executions of 
the automaton reaches an unsafe set U

▶ To reason about all executions of we have to work with infinite sets of states
▶One way to compute infinite sets is using the Post operator
▶But, computing all executions for unbounded time can be hard
▶ If we can guess an invariant satisfying conditions of Proposition 1.1, that can 

give a shortcut for proving safety
▶ The inavariant may contain important information about conserved quantities, 

and thus, may tell us why the system is safe, and not just that it is so
▶Mind the gap between model and reality
▶Next. Application of invariants in braking example


