
Lecture 17: Planning IV
(Decision-Making II)

Professor Katie Driggs-Campbell
April 11, 2024

ECE484: Principles of Safe Autonomy



Administrivia 
• Upcoming due dates:

§ Final Presentations in class on 4/23 and 4/25
§ Final Video due 5/3

• Exam on 4/18 at 7pm
§ Email me ASAP about conflict exams
§ Make reservation in testing center for DRES accommodations 
§ No cheatsheet will be needed
§ CA review session on Friday 4/12 (HW party time)
§ In-class review session on Tuesday 4/16

• Prof. DC OH by appointment next week (4/16)
§ Otherwise in 260 CSL



Today’s Plan

• Possible solutions for decision-making
• Markov Decision Processes
• MDP Policies and Value Iteration



Markov Models
Markov Decision Processes (MDP) Partially Observable MDP Reinforcement Learning

Uncertainty in effects of actions Uncertainty in current state Uncertainty in model
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Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the 
future payoff in expectation
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Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the 
future payoff in expectation
• Policy: 𝜋 ∶ 𝑥! → 𝑢!

§ Maps states to actions
§ Can be low-level reactive algorithm or a long-term, high-level planner
§ May or may not be deterministic

• Typically, we want a policy that optimizes future payoff, considering 
optimal actions over a planning (time) horizon



MDP Policies
• Policies map states to actions

𝜋: 𝑥 → 𝑢
• We want to find a policy that maximizes future pay off
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MDP Policies
• Policies map states to actions

𝜋: 𝑥 → 𝑢
• We want to find a policy that maximizes future pay off

§ Suppose 𝑇 = 1: 𝜋" 𝑥 = argmax# 𝑟 𝑥, 𝑢
• We write the Value Function for given 𝜋:

𝑉" 𝑥 = 𝛾 max
#

𝑟(𝑥, 𝑢)

• Generally, we want to find the sequence of actions that optimize the 
expected cumulative discounted future payoff 
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Expected Cumulative Payoff
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1. Greedy case: 𝑇 = 1
à Optimize next payoff

2. Finite Horizon: 1 ≤ 𝑇 < ∞, 𝛾 ≤ 1
à Optimize 𝑅! for set time window

3. Infinite Horizon: 𝑇 = ∞, 𝛾 < 1
à Optimize 𝑅" for all time
If 𝑟 ≤ 𝑟#$%, discounting guarantees 𝑅" is finite

𝑅" ≤ 𝑟#$% + 𝛾𝑟#$% + 𝛾&𝑟#$% +⋯ =
𝑟#$%
1 − 𝛾



Value Functions
For longer time horizons (T), we define V(x) recursively:

Recall: 𝑉' 𝑥 = 𝛾max
(
𝑟 𝑥, 𝑢



Value Functions

• In the infinite time horizon, we tend to reach equilibrium:

𝑉) 𝑥 = 𝛾max
#

𝑟 𝑥, 𝑢 + ∫ 𝑉) 𝑥* 𝑝 𝑥*|𝑥, 𝑢 𝑑𝑥*

• This is the Bellman Equation
§ Satisfying this is necessary and sufficient for an optimal policy
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Computing the (Approximate) Value Function
• Initial guess for @𝑉

§ 1𝑉 𝑥 ← 𝑟#)*, ∀𝑥
• Successively update for increasing horizons

§ 1𝑉 𝑥 ← 𝛾 max
(

𝑟 𝑥, 𝑢 + ∫ 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1
• Given estimate @𝑉(𝑥), policy is found:

§ 𝜋 𝑥 = argmax( 𝑟 𝑥, 𝑢 + ∫ 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢 𝑑𝑥′

• Often, we use the discrete version:
§ 𝜋 𝑥 = argmax( 𝑟 𝑥, 𝑢 + ∑%! 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢



A Simple MDP



Example: Value Iteration Setup



Example: Value Iteration



Example: Rewards, Values, Policy



Grid world example
• States: cells in 10 × 10 grid
• Actions: up, down, left, right
• Transition model: 0.7 chance of 

moving in intended direction, 
uniform in other directions
• Reward: 

§ two states with cost
§ two terminal states with rewards
§ −1 for wall crash

• Discount is 0.9























Converged!



𝛾 = 0.9 𝛾 = 0.5



Decision-Making Summary
• Given an MDP, we defined Expected Cumulative Payoff, which plays a 

key role in optimizing actions over planning horizons
• Used value iteration to determine the “value” of a particular state, which 

helps us determine the best action to take considering future payoff
• We generally assumed the transition and reward function are known 

exactly – but what if we don’t have access to this information?



Return to Safety
How would you incorporate desirable behaviors and safety requirements
into your AV using the various decision-making frameworks?



Responsibility Sensitive Safety
developed by Intel / MobilEye

Instead of looking at absolute safety, introduce a safety notion that 
depends on responsibility 
à AV should never be responsible for an accident
RSS Rules:
1. Keep a safe longitudinal distance from the car ahead.
2. Keep a safe lateral distance from the cars on your sides.
3. Respect right-of-way rules (multiple geometries, traffic lights, 

pedestrians, unstructured roads).
4. Be cautious of occluded areas.



RSS Example: Safe Following Distance
The longitudinal distance between a car (𝑐+) that drives behind another 
car (𝑐,) is safe w.r.t. a response time 𝜌 if: 
• 𝑐, applies at most 𝑎-./01234

• 𝑐+ will apply at most 𝑎-./.5567 during response time
• After 𝜌, 𝑐+ will brake by at least 𝑎-8901234 until full stop
à 𝑐+ will not collide with 𝑐,



RSS Example: Safe Following Distance
The longitudinal distance between a car (𝑐+) that drives behind another 
car (𝑐,) is safe w.r.t. a response time 𝜌 if: 
• 𝑐, applies at most 𝑎-./01234

• 𝑐+ will apply at most 𝑎-./.5567 during response time
• After 𝜌, 𝑐+ will brake by at least 𝑎-8901234 until full stop
à 𝑐+ will not collide with 𝑐,
Remarks:
1. This is basic reachability!
2. The safe distance depends on a set of 

parameters that can be determined by 
regulation.

3. The parameters can be different for a 
robotic car and a human driver.

4. The parameters can be different for 
different road conditions.



RSS Example: Safe Following Distance

• Let 𝑣+ , 𝑣, be the longitudinal velocities of the cars
• The minimal safe distance is:

𝑑-89 = 𝑣+ ⋅ 𝜌 +
1
2
𝑎-./2::4; ⋅ 𝜌< +

𝑣+ + 𝜌 ⋅ 𝑎-./2::4; <

2𝑎-8901234 −
𝑣,<

2𝑎-./01234
(



Bonus MP4: Designing Decision-Logic

Task 1: Emergency Braking Task 2: Stopping at a Red Light



Bonus MP4: Designing Decision-Logic

Validation Verification
• Define uncertainty
• Compute reachable sets to assess 

safety and provide guarantees

• Define test cases
• Gather samples through simulation
• Collect statistical evidence of safety



Course Recap

Safety Analysis

Sensing Environment Vehicle 
Dynamics

Perception Planning + 
Decision-Making Control



Why are we here?

Know

Do

Understand

Get Inspired

Components of an autonomous system and safety standards.
à How to use software modules for perception, planning, control, ROS, OpenCV, …

Code and analyze algorithms for perception, localization, planning, control, & verification
à Plan, propose, organize and execute a team project

Models, algorithms, data, biases, assumptions for building trustworthy autonomous systems
à Theoretical properties of algorithms and their limitations

Become the Isaac Newton of Autonomy
à “To do things right, first you need love, then technique.” – Antoni Gaudí


