
Lecture 17: Planning IV
(Decision-Making II)

Professor Katie Driggs-Campbell
April 11, 2024

ECE484: Principles of Safe Autonomy

Administrivia
• Upcoming due dates:

§ Final Presentations in class on 4/23 and 4/25
§ Final Video due 5/3

• Exam on 4/18 at 7pm
§ Email me ASAP about conflict exams
§ Make reservation in testing center for DRES accommodations
§ No cheatsheet will be needed
§ CA review session on Friday 4/12 (HW party time)
§ In-class review session on Tuesday 4/16

• Prof. DC OH by appointment next week (4/16)
§ Otherwise in 260 CSL

Today’s Plan

• Possible solutions for decision-making
• Markov Decision Processes
• MDP Policies and Value Iteration

Markov Models
Markov Decision Processes (MDP) Partially Observable MDP Reinforcement Learning

Uncertainty in effects of actions Uncertainty in current state Uncertainty in model

2 3

1

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

2 3

1

A B

A

B B

A
?

?

?

?

?
?

?

?

?

? ?

?

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the
future payoff in expectation

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the
future payoff in expectation
• Policy: 𝜋 ∶ 𝑥! → 𝑢!

§ Maps states to actions
§ Can be low-level reactive algorithm or a long-term, high-level planner
§ May or may not be deterministic

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the
future payoff in expectation
• Policy: 𝜋 ∶ 𝑥! → 𝑢!

§ Maps states to actions
§ Can be low-level reactive algorithm or a long-term, high-level planner
§ May or may not be deterministic

• Typically, we want a policy that optimizes future payoff, considering
optimal actions over a planning (time) horizon

MDP Policies
• Policies map states to actions

𝜋: 𝑥 → 𝑢
• We want to find a policy that maximizes future pay off

§ Suppose 𝑇 = 1: 𝜋" 𝑥 = argmax# 𝑟 𝑥, 𝑢

MDP Policies
• Policies map states to actions

𝜋: 𝑥 → 𝑢
• We want to find a policy that maximizes future pay off

§ Suppose 𝑇 = 1: 𝜋" 𝑥 = argmax# 𝑟 𝑥, 𝑢
• We write the Value Function for given 𝜋:

𝑉" 𝑥 = 𝛾 max
#

𝑟(𝑥, 𝑢)

• Generally, we want to find the sequence of actions that optimize the
expected cumulative discounted future payoff

Expected Cumulative Payoff
𝑅$ = 𝔼 7

%&'

$

𝛾% 𝑟!(%

Expected Cumulative Payoff
𝑅$ = 𝔼 7

%&'

$

𝛾% 𝑟!(%

1. Greedy case: 𝑇 = 1
à Optimize next payoff

Expected Cumulative Payoff
𝑅$ = 𝔼 7

%&'

$

𝛾% 𝑟!(%

1. Greedy case: 𝑇 = 1
à Optimize next payoff

2. Finite Horizon: 1 ≤ 𝑇 < ∞, 𝛾 ≤ 1
à Optimize 𝑅! for set time window

Expected Cumulative Payoff
𝑅$ = 𝔼 7

%&'

$

𝛾% 𝑟!(%

1. Greedy case: 𝑇 = 1
à Optimize next payoff

2. Finite Horizon: 1 ≤ 𝑇 < ∞, 𝛾 ≤ 1
à Optimize 𝑅! for set time window

3. Infinite Horizon: 𝑇 = ∞, 𝛾 < 1
à Optimize 𝑅" for all time
If 𝑟 ≤ 𝑟#$%, discounting guarantees 𝑅" is finite

𝑅" ≤ 𝑟#$% + 𝛾𝑟#$% + 𝛾&𝑟#$% +⋯ =
𝑟#$%
1 − 𝛾

Value Functions
For longer time horizons (T), we define V(x) recursively:

Recall: 𝑉' 𝑥 = 𝛾max
(
𝑟 𝑥, 𝑢

Value Functions

• In the infinite time horizon, we tend to reach equilibrium:

𝑉) 𝑥 = 𝛾max
#

𝑟 𝑥, 𝑢 + ∫ 𝑉) 𝑥* 𝑝 𝑥*|𝑥, 𝑢 𝑑𝑥*

• This is the Bellman Equation
§ Satisfying this is necessary and sufficient for an optimal policy

Computing the (Approximate) Value Function
• Initial guess for @𝑉

§ 1𝑉 𝑥 ← 𝑟#)*, ∀𝑥

Computing the (Approximate) Value Function
• Initial guess for @𝑉

§ 1𝑉 𝑥 ← 𝑟#)*, ∀𝑥
• Successively update for increasing horizons

§ 1𝑉 𝑥 ← 𝛾 max
(

𝑟 𝑥, 𝑢 + ∫ 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1

Computing the (Approximate) Value Function
• Initial guess for @𝑉

§ 1𝑉 𝑥 ← 𝑟#)*, ∀𝑥
• Successively update for increasing horizons

§ 1𝑉 𝑥 ← 𝛾 max
(

𝑟 𝑥, 𝑢 + ∫ 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1
• Given estimate @𝑉(𝑥), policy is found:

§ 𝜋 𝑥 = argmax(𝑟 𝑥, 𝑢 + ∫ 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢 𝑑𝑥′

Computing the (Approximate) Value Function
• Initial guess for @𝑉

§ 1𝑉 𝑥 ← 𝑟#)*, ∀𝑥
• Successively update for increasing horizons

§ 1𝑉 𝑥 ← 𝛾 max
(

𝑟 𝑥, 𝑢 + ∫ 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1
• Given estimate @𝑉(𝑥), policy is found:

§ 𝜋 𝑥 = argmax(𝑟 𝑥, 𝑢 + ∫ 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢 𝑑𝑥′

• Often, we use the discrete version:
§ 𝜋 𝑥 = argmax(𝑟 𝑥, 𝑢 + ∑%! 1𝑉 𝑥+ 𝑝 𝑥+|𝑥, 𝑢

A Simple MDP

Example: Value Iteration Setup

Example: Value Iteration

Example: Rewards, Values, Policy

Grid world example
• States: cells in 10 × 10 grid
• Actions: up, down, left, right
• Transition model: 0.7 chance of

moving in intended direction,
uniform in other directions
• Reward:

§ two states with cost
§ two terminal states with rewards
§ −1 for wall crash

• Discount is 0.9

Converged!

𝛾 = 0.9 𝛾 = 0.5

Decision-Making Summary
• Given an MDP, we defined Expected Cumulative Payoff, which plays a

key role in optimizing actions over planning horizons
• Used value iteration to determine the “value” of a particular state, which

helps us determine the best action to take considering future payoff
• We generally assumed the transition and reward function are known

exactly – but what if we don’t have access to this information?

Return to Safety
How would you incorporate desirable behaviors and safety requirements
into your AV using the various decision-making frameworks?

Responsibility Sensitive Safety
developed by Intel / MobilEye

Instead of looking at absolute safety, introduce a safety notion that
depends on responsibility
à AV should never be responsible for an accident
RSS Rules:
1. Keep a safe longitudinal distance from the car ahead.
2. Keep a safe lateral distance from the cars on your sides.
3. Respect right-of-way rules (multiple geometries, traffic lights,

pedestrians, unstructured roads).
4. Be cautious of occluded areas.

RSS Example: Safe Following Distance
The longitudinal distance between a car (𝑐+) that drives behind another
car (𝑐,) is safe w.r.t. a response time 𝜌 if:
• 𝑐, applies at most 𝑎-./01234

• 𝑐+ will apply at most 𝑎-./.5567 during response time
• After 𝜌, 𝑐+ will brake by at least 𝑎-8901234 until full stop
à 𝑐+ will not collide with 𝑐,

RSS Example: Safe Following Distance
The longitudinal distance between a car (𝑐+) that drives behind another
car (𝑐,) is safe w.r.t. a response time 𝜌 if:
• 𝑐, applies at most 𝑎-./01234

• 𝑐+ will apply at most 𝑎-./.5567 during response time
• After 𝜌, 𝑐+ will brake by at least 𝑎-8901234 until full stop
à 𝑐+ will not collide with 𝑐,
Remarks:
1. This is basic reachability!
2. The safe distance depends on a set of

parameters that can be determined by
regulation.

3. The parameters can be different for a
robotic car and a human driver.

4. The parameters can be different for
different road conditions.

RSS Example: Safe Following Distance

• Let 𝑣+ , 𝑣, be the longitudinal velocities of the cars
• The minimal safe distance is:

𝑑-89 = 𝑣+ ⋅ 𝜌 +
1
2
𝑎-./2::4; ⋅ 𝜌< +

𝑣+ + 𝜌 ⋅ 𝑎-./2::4; <

2𝑎-8901234 −
𝑣,<

2𝑎-./01234
(

Bonus MP4: Designing Decision-Logic

Task 1: Emergency Braking Task 2: Stopping at a Red Light

Bonus MP4: Designing Decision-Logic

Validation Verification
• Define uncertainty
• Compute reachable sets to assess

safety and provide guarantees

• Define test cases
• Gather samples through simulation
• Collect statistical evidence of safety

Course Recap

Safety Analysis

Sensing Environment Vehicle
Dynamics

Perception Planning +
Decision-Making Control

Why are we here?

Know

Do

Understand

Get Inspired

Components of an autonomous system and safety standards.
à How to use software modules for perception, planning, control, ROS, OpenCV, …

Code and analyze algorithms for perception, localization, planning, control, & verification
à Plan, propose, organize and execute a team project

Models, algorithms, data, biases, assumptions for building trustworthy autonomous systems
à Theoretical properties of algorithms and their limitations

Become the Isaac Newton of Autonomy
à “To do things right, first you need love, then technique.” – Antoni Gaudí

