Lecture 17: Planning IV (Decision-Making II)

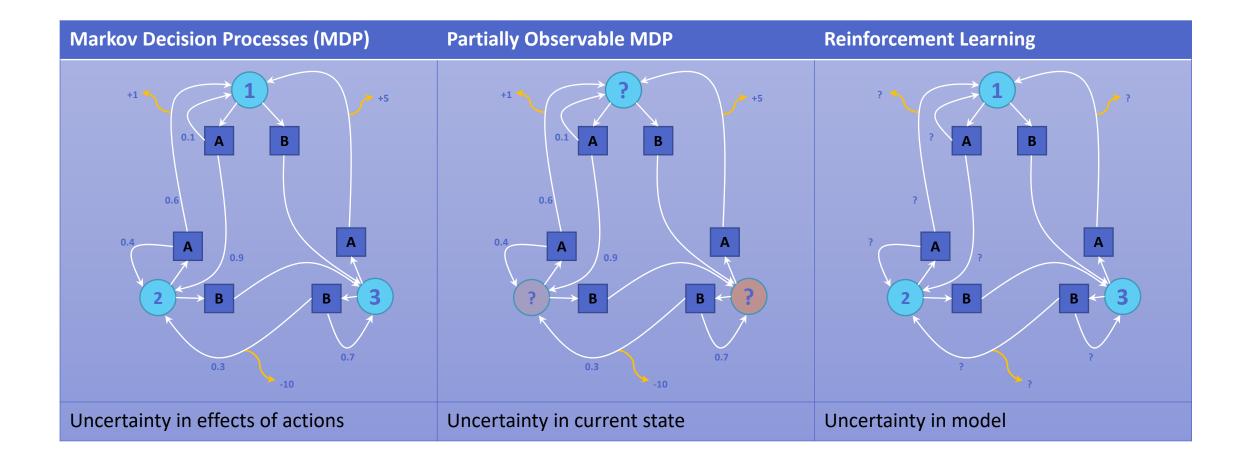
Professor Katie Driggs-Campbell

April 11, 2024

ECE484: Principles of Safe Autonomy

Administrivia

- Upcoming due dates:
 - Final Presentations in class on 4/23 and 4/25
 - Final Video due 5/3
- Exam on 4/18 at 7pm
 - Email me ASAP about conflict exams
 - Make reservation in testing center for DRES accommodations
 - No cheatsheet will be needed
 - CA review session on Friday 4/12 (HW party time)
 - In-class review session on Tuesday 4/16
- Prof. DC OH by appointment next week (4/16)
 - Otherwise in 260 CSL



Today's Plan

- Possible solutions for decision-making
- Markov Decision Processes
- MDP Policies and Value Iteration

Markov Models

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the future payoff *in expectation*

Decision-Making Policies

- We want to devise a scheme that generates actions to optimize the future payoff *in expectation*
- Policy: $\pi : x_t \to u_t$
 - Maps states to actions
 - Can be low-level reactive algorithm or a long-term, high-level planner
 - May or may not be deterministic

Decision-Making Policies

- We want to devise a scheme that generates actions to optimize the future payoff *in expectation*
- Policy: $\pi : x_t \to u_t$
 - Maps states to actions
 - Can be low-level reactive algorithm or a long-term, high-level planner
 - May or may not be deterministic
- Typically, we want a policy that optimizes <u>future</u> payoff, considering optimal actions over a <u>planning (time) horizon</u>

MDP Policies

Policies map states to actions

 $\pi: x \to u$

- We want to find a policy that maximizes future pay off
 - Suppose T = 1: $\pi_1(x) = \operatorname{argmax}_u r(x, u)$

MDP Policies

Policies map states to actions

 $\pi: x \to u$

- We want to find a policy that maximizes future pay off
 - Suppose T = 1: $\pi_1(x) = \operatorname{argmax}_u r(x, u)$
- We write the Value Function for given π :

 $V_1(x) = \gamma \max_u r(x, u)$

• Generally, we want to find the sequence of actions that optimize the *expected cumulative discounted future payoff*

Expected Cumulative Payoff

$$R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^\tau r_{t+\tau}\right]$$

Expected Cumulative Payoff $R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau}\right]$

1. Greedy case: T = 1 \rightarrow Optimize next payoff

Expected Cumulative Payoff

$$R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^\tau r_{t+\tau}\right]$$

1. Greedy case: T = 1

 \rightarrow Optimize next payoff

2. Finite Horizon: $1 \le T < \infty$, $(\gamma \le 1)$

 \rightarrow Optimize R_T for set time window

Expected Cumulative Payoff

$$R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^\tau r_{t+\tau}\right]$$

- 1. Greedy case: T = 1
 - \rightarrow Optimize next payoff
- 2. Finite Horizon: $1 \le T < \infty$, $(\gamma \le 1)$ \rightarrow Optimize R_T for set time window
- 3. Infinite Horizon: $T = \infty$, ($\gamma < 1$)
 - → Optimize R_{∞} for all time

If $|r| \leq r_{max}$, discounting guarantees R_{∞} is finite

$$R_{\infty} \le r_{max} + \gamma r_{max} + \gamma^2 r_{max} + \dots = \frac{r_{max}}{1 - \gamma}$$

Value Functions For longer time horizons (T), we define V(x) recursively:

Recall: $V_1(x) = \gamma \max r(x, u)$ U

Value Functions

• In the infinite time horizon, we tend to reach equilibrium:

$$V_{\infty}(x) = \gamma \max_{u} \left[r(x,u) + \int V_{\infty}(x')p(x'|x,u) \, dx' \right]$$

- This is the *Bellman Equation*
 - Satisfying this is necessary and sufficient for an optimal policy

• Initial guess for \hat{V}

• $\hat{V}(x) \leftarrow r_{min}, \forall x$

• Initial guess for \hat{V}

•
$$\hat{V}(x) \leftarrow r_{min}, \forall x$$

Successively update for increasing horizons

•
$$\hat{V}(x) \leftarrow \gamma \max_{u} \left[r(x,u) + \int \hat{V}(x') p(x'|x,u) dx' \right]$$

• Value iteration converges if $\gamma < 1$

• Initial guess for \widehat{V}

•
$$\hat{V}(x) \leftarrow r_{min}, \forall x$$

- Successively update for increasing horizons
 - $\hat{V}(x) \leftarrow \gamma \max_{u} \left[r(x,u) + \int \hat{V}(x') p(x'|x,u) dx' \right]$
- Value iteration converges if $\gamma < 1$
- Given estimate $\hat{V}(x)$, policy is found:
 - $\pi(x) = \operatorname{argmax}_u \left[r(x, u) + \int \hat{V}(x') p(x'|x, u) dx' \right]$

• Initial guess for \widehat{V}

•
$$\hat{V}(x) \leftarrow r_{min}, \forall x$$

- Successively update for increasing horizons
 - $\hat{V}(x) \leftarrow \gamma \max_{u} \left[r(x,u) + \int \hat{V}(x') p(x'|x,u) dx' \right]$
- Value iteration converges if $\gamma < 1$
- Given estimate $\hat{V}(x)$, policy is found:
 - $\pi(x) = \operatorname{argmax}_u \left[r(x, u) + \int \hat{V}(x') p(x'|x, u) dx' \right]$
- Often, we use the discrete version:

•
$$\pi(x) = \operatorname{argmax}_{u} \left[r(x, u) + \sum_{x'} \widehat{V}(x') p(x'|x, u) \right]$$

A Simple MDP

Example: Value Iteration Setup

Example: Value Iteration

Example: Rewards, Values, Policy

Grid world example

- States: cells in 10 × 10 grid
- Actions: up, down, left, right
- Transition model: 0.7 chance of moving in intended direction, uniform in other directions
- Reward:
 - two states with cost
 - two terminal states with rewards
 - -1 for wall crash
- Discount is 0.9

	— <mark>0</mark> .2	-0.1	-0.1	- 0 .1	-0.1	-0.1	-0.1	-0.1	- 0 .1	_0 .2
	- <mark>0</mark> .1	0	0	0	0	0	0	0	0	0.1
		+		+				_		
	- 0 .1	0	0	0	0	0	0	3	0	-0.1
f	-0.1	0	0	0	0	0	0	0	0	-0.1
		-			•				•	
	-0.1	0	0	-5	0	0	0	0	0	-0 .1
-										
	- <mark>0</mark> .1	0	0	0	0	0	0	0	0	- 0 .1
S			-	\rightarrow					-	
	- <mark>0</mark> .1	0	0	0	0	0	0	0	0	-0.1
	-0.1	0	0	-10	0	0	0	0	10	-0.1
-		•	0		0	•	•	•	10	
	-0.1	0	0	0	0	0	0	0	0	-0 .1
	-0.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2

— <mark>0</mark> .2	- <mark>0</mark> .1	-0.1	- <mark>0</mark> .1	- <mark>0</mark> .1	_ <mark>0</mark> .2				
- <mark>0</mark> .1	0	0	0	0	0	0	0	0	- <mark>0</mark> .1
- <mark>0</mark> .1	0	0	0	0	0	0	3	0	- <mark>0</mark> .1
- <mark>0</mark> .1	0	0	0	0	0	0	0	0	- <mark>0</mark> .1
- <mark>0</mark> .1	0	0	-5	0	0	0	0	0	- <mark>0</mark> .1
- <mark>0</mark> .1	0	0	0	0	0	0	0	0	- <mark>0</mark> .1
- <mark>0</mark> .1	0	0	0	0	0	0	0	0	- <mark>0</mark> .1
- <mark>0</mark> .1	0	0	- <mark>1</mark> 0	0	0	0	0	10	- <mark>0</mark> .1
- <mark>0</mark> .1	0	0	0	0	0	0	0	0	- <mark>0</mark> .1
-0.2	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2

- <mark>0</mark> .31	- <mark>0</mark> .14	- <mark>0</mark> .13	— <mark>0</mark> .13	- <mark>0</mark> .13	- <mark>0</mark> .13	— <mark>0</mark> .13	— <mark>0</mark> .13	— <mark>0</mark> .14	- <mark>0</mark> .31
-0.14	- <mark>0</mark> .02	-0.01	-0.01	-0.01	- 0 .01	- <mark>0</mark> .01	1. <mark>8</mark> 8	- <mark>0</mark> .02	-0.14
-0.13	-0.01	0	0	0	0	1.89	3	1.88	-0.13
-0.13	-0.01	0	-0.45	0	0	0	1.89	-0.01	-0.13
-0.13	-0.01	-0.45	5	-0.45	0	0	0	-0.01	-0.13
-0.13	-0.01	0	— <mark>0</mark> .45	0	0	0	0	-0.01	-0.13
-0.13	-0.01	0	-0.9	0	0	0	0	6. <mark>2</mark> 9	-0.13
-0.13	-0.01	-0.9	-10	-0.9	0	0	6.3	10	6.17
-0.14	-0.02	-0.01	-0.91		-0.01		-0.01	6.28	-0.14
-0.31	-0.14	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.14	-0.31

— <mark>0</mark> .35	— <mark>0</mark> .16	- <mark>0</mark> .14	— <mark>0</mark> .14	- <mark>0</mark> .14	- <mark>0</mark> .14	- <mark>0</mark> .14	1. <mark>0</mark> 5	— <mark>0</mark> .16	-0.35
-0.16	— <mark>0</mark> .03	- <mark>0</mark> .01	- <mark>0</mark> .01	_ <mark>0</mark> .01	_ <mark>0</mark> .01	1. <mark>3</mark> 5	1. <mark>8</mark> 8	1.33	-0.16
-0.14	-0.01	-0	-0.04	— <mark>0</mark>	1.19	1.89	3	1.88	1.05
-0.14	-0.01	-0.08	-0.45	-0.08	0	1.36	1.89	1.35	-0.14
-0.14	-0.06	-0.45	-5.4	-0.45	-0.04	0	1.19	-0.01	-0.14
-0.14	-0.01	- <mark>0</mark> .08	-0.53	- <mark>0.08</mark>	0	0	_0	3. <mark>9</mark> 5	-0.14
-0.14	-0.01	-0.16	-0.94	-0.16	0	0	4.54	6. <mark>2</mark> 9	4.4
	-0.1		-10.8				_	10	6.73
	-0.03		-0.92		-0.01		1	6.27	4.37
-0.35	-0.16		-0.28					L	-0.35

— <mark>0</mark> .38	— <mark>0</mark> .18	— <mark>0</mark> .15	— <mark>0</mark> .15	— <mark>0</mark> .15	— <mark>0</mark> .15	0. <mark>8</mark> 2	1. <mark>1</mark> 5	0. <mark>7</mark> 9	— <mark>0</mark> .38
-0.18	— <mark>0</mark> .04	— <mark>0</mark> .02	-0.03	— <mark>0</mark> .02	0.94	1. <mark>3</mark> 5	2. <mark>2</mark> 3	1. <mark>3</mark> 2	0.79
-0.15	-0.02	-0.02	-0.04	0.74	1.19	2.24	3	2.23	1.15
-0.15	-0.03	-0.08	-0.53	-0.08	0.95	1.36	2.24	1.35	0.82
-0.17	- <mark>0</mark> .06	-0.54	-5.41	-0.53	— <mark>0</mark> .04	0.96	1.19	2. <mark>7</mark>	-0.15
-0.15	— <mark>0</mark> .03	-0.11	-0.63	-0.1	- <mark>0</mark> .01	- 0	3. <mark>3</mark> 2	3. <mark>9</mark> 5	3
-0.15	-0.04	-0.18	-1.14	-0.17	-0.02	3.21	4. <mark>5</mark> 3	7. <mark>4</mark> 6	5.0 <mark>9</mark>
-0.2	-0.1	-1.07	-10.82	2 —1.06	2.42	3.96	7.47	10	7.6
							1		
-0.18	-0.11	-0.2	-1.13	-0.18	-0.04	3.19	4.52	7.44	5.07
-0.38	-0.18	-0.26	-0.31	-0.24	-0.15	-0.15	3.07	4.15	2.83

— <mark>0</mark> .4	— <mark>0</mark> .19	— <mark>0</mark> .15	— <mark>0</mark> .16	— <mark>0</mark> .15	0. <mark>5</mark> 4	0. <mark>9</mark> 1	1. <mark>5</mark> 5	0. <mark>8</mark> 7	0.3
-0.19	— <mark>0</mark> .04	— <mark>0</mark> .03	-0.03	0.64	0.94	1. <mark>7</mark> 7	2. <mark>2</mark> 3	1. <mark>7</mark> 4	0.87
-0.15	-0.03	-0.02	0.41	0.74	1.65	2.24	3	2.23	1.55
								_	
-0.16	-0.04	-0.11	-0.53	0.57	0.95	1.79	2.24	2. <mark>1</mark> 8	0.91
-0.18	— <mark>0</mark> .09	-0.54	-5.48	-0.53	0.64	0.96	2. <mark>6</mark> 2	2.7	2. <mark>0</mark> 9
							_		
-0.16	— <mark>0</mark> .06	-0.14	-0.66	-0.13	-0.01	2.47	3. <mark>3</mark> 2	5. <mark>5</mark> 1	3. <mark>7</mark> 2
							_	_	_
-0.17	-0.06	-0.24	-1.16	-0.22	2.23	3.21	5. <mark>9</mark> 7	7. <mark>5</mark> 2	6. <mark>0</mark> 8
-0.21	-0.15	-1.07	-10.9	ō 0.52	2.39	5.5	7.47	10	7.8
-0.24	-0.12	-0.29	-1.14	-0.25	2.2	3.19	5.94	7.54	6.07
-0.4	-0.24	-0.28	-0.41	-0.26	-0.18	2.16	3.38	5.49	3.88

— <mark>0</mark> .4	— <mark>0</mark> .19	— <mark>0</mark> .15	— <mark>0</mark> .16	— <mark>0</mark> .15	0. <mark>5</mark> 4	0. <mark>9</mark> 1	1. <mark>5</mark> 5	0. <mark>8</mark> 7	0.3
-0.19	— <mark>0</mark> .04	— <mark>0</mark> .03	-0.03	0.64	0.94	1. <mark>7</mark> 7	2. <mark>2</mark> 3	1. <mark>7</mark> 4	0.87
-0.15	-0.03	-0.02	0.41	0.74	1.65	2.24	3	2.23	1.55
								_	
-0.16	-0.04	-0.11	-0.53	0.57	0.95	1.79	2.24	2. <mark>1</mark> 8	0.91
-0.18	— <mark>0</mark> .09	-0.54	-5.48	-0.53	0.64	0.96	2. <mark>6</mark> 2	2.7	2. <mark>0</mark> 9
							_		
-0.16	— <mark>0</mark> .06	-0.14	-0.66	-0.13	-0.01	2.47	3. <mark>3</mark> 2	5. <mark>5</mark> 1	3. <mark>7</mark> 2
							_	_	_
-0.17	-0.06	-0.24	-1.16	-0.22	2.23	3.21	5. <mark>9</mark> 7	7. <mark>5</mark> 2	6. <mark>0</mark> 8
-0.21	-0.15	-1.07	-10.9	ō 0.52	2.39	5.5	7.47	10	7.8
-0.24	-0.12	-0.29	-1.14	-0.25	2.2	3.19	5.94	7.54	6.07
-0.4	-0.24	-0.28	-0.41	-0.26	-0.18	2.16	3.38	5.49	3.88

- <mark>0</mark> .41	— <mark>0</mark> .19	— <mark>0</mark> .17	— <mark>0</mark> .16	0. <mark>3</mark> 3	0. <mark>6</mark> 1	1. <mark>2</mark> 9	1. <mark>6</mark> 1	1. <mark>2</mark> 4	0. <mark>4</mark> 8
-0.19	-0.06	— <mark>0</mark> .04	0.43	0.64	1.37	1. <mark>7</mark> 8	2. <mark>3</mark> 5	1. <mark>7</mark> 7	1.24
-0.17	-0.04	0.24	0.41	1.19	1.65	2.36	3	2.38	1.61
-0.17	-0.05	-0.12	-0.11	0.57	1.38	1.79	2.48	2. <mark>1</mark> 9	1.68
-0.2	-0.09	-0.57	-5.49	-0.05	0.64	2.09	2. <mark>6</mark> 2	4. <mark>0</mark> 9	2. <mark>7</mark> 6
-0.18	— <mark>0</mark> .07	-0.17	-0.69	-0.14	1.8	2.46	4. <mark>7</mark> 1	5. <mark>6</mark> 2	4. <mark>7</mark> 5
-0.19	-0.09	-0.25	-1.21	1.33	2.22	4.68	6	7.88	6.37
									_
-0.25	-0.16	-1.13	-9.98	0.48	3.91	5.5	7.87	10	8
-0.25	-0.16	-0.3	-1.2	1.31	2.18	4.63	6.01	7.88	6.39
-0.44	-0.26	-0.34	-0.43	-0.29	1.44	2.5	4.64	5.8	4.81

			_	_		_	_		
- <mark>0</mark> .41	— <mark>0</mark> .21	— <mark>0</mark> .17	0. <mark>1</mark> 7	0. <mark>3</mark> 7	0. <mark>9</mark> 6	1. <mark>3</mark> 4	1. <mark>7</mark> 5	1. <mark>3</mark> 1	0. <mark>7</mark> 8
							_		
-0.21	-0.06	0.27	0.42	1.04	1.38	1.94	2. <mark>3</mark> 5	1. <mark>9</mark> 4	1.31
-0.17	0.13	0.24	0.8	1.18	1.84	2.36	3	2.39	1.81
-0.18	-0.06	0.09	-0.11	0.96	1.38	2.09	2.48	3. <mark>1</mark> 7	2. <mark>1</mark> 3
-0.21	-0.11	-0.58	-5.15	-0.05	1.6	2.09	3. <mark>7</mark> 5	4. <mark>2</mark> 2	3. <mark>6</mark> 6
-0.2	— <mark>0</mark> .09	-0.18	-0.7	1.19	1.8	3.74	4. <mark>7</mark> 4	6. <mark>1</mark> 9	5.1
-0.21	-0.1	-0.28	-0.14	1.32	3.58	4.7	6.52	7. <mark>9</mark> 2	6.65
-0.27	-0.19	-1.05	-10.02	² 1.8	3.9	6.15	7.88	10	8.07
-0.29	-0.18	-0.34	-0.14	1.28	3.52	4.7	6.5	7.94	6.65
-0.46	-0.3	-0.36	-0.46	0.86	1.77	3.59	4.85	6.23	5.21

			-	-		-			
-0.42	- <mark>0</mark> .21	0. <mark>0</mark> 5	0. <mark>2</mark>	0. <mark>6</mark> 9	1. <mark>0</mark> 1	1. <mark>4</mark> 8	1.78	1.47	0. <mark>8</mark> 9
						_	_	_	
-0.21	0.15	0.27	0.77	1.05	1.57	1.94	2. <mark>4</mark>	1.95	1.47
								_	
-0.07	0.13	0.55	0.8	1.41	1.84	2.42	3	2. <mark>6</mark>	1.88
-0.19	0.06	0.09	0.22	0.96	1.71	2.09	3.11	3. <mark>2</mark> 9	2. <mark>8</mark> 5
-0.22	-0.12	-0.43	-5.16	0.74	1.6	3.03	3. <mark>7</mark> 8	4.85	4.01
-0.21	- <mark>0</mark> .11	-0.2	0.26	1.18	2.93	3.76	5. <mark>3</mark> 4	6. <mark>2</mark> 5	5. <mark>4</mark> 3
-0.22	-0.12	-0.19	-0.16	2.51	3.59	5.32	6.55	8. <mark>0</mark> 4	6. <mark>7</mark> 5
-0.29	-0.2	-1.08	-8.98	1.79	4.67	6.16	8.03	10	8.12
-0.3	-0.21	-0.23	-0.16	2.44	3.59	5.29	6.57	8.05	6.76
-0.49	-0.31	-0.39	0.36	1.17	2.72	3.86	5.32	6.37	5.49

-0.43	— <mark>0</mark> .06	0. <mark>0</mark> 7	0. <mark>4</mark> 7	0. <mark>7</mark> 3	1. <mark>1</mark> 7	1. <mark>5</mark> 1	1. <mark>8</mark> 4	1. <mark>5</mark>	1. <mark>0</mark> 2
-0.07	0.14	0.55	0.77	1.24	1.58	2. <mark>0</mark> 1	2.4	2. <mark>1</mark> 2	1.51
-0.06	0.36	0.55	1.03	1.41	1.95	2.42	3	2. <mark>6</mark> 9	2. <mark>2</mark> 3
-0.1	0.06	0.33	0.22	1.29	1.71	2.6	3. <mark>1</mark> 3	3.82	3.15
-0.23	-0.03	-0.44	-4.53	0.74	2.39	3.05	4. <mark>3</mark> 5	4. <mark>9</mark> 4	4. <mark>3</mark> 8
-0.23	-0.12	0.1	0.25	2.16	2.94	4.38	5. <mark>3</mark> 7	6. <mark>4</mark> 7	5. <mark>5</mark> 7
-0.24	-0.12	-0.21	0.78	2.52	4.26	5.34	6.75	8. <mark>0</mark> 6	6. <mark>8</mark> 4
-0.3	_0.22	-0.96	-9	2.58	4.69	6.43	8.03	10	8.15
-0.33	-0.2	-0.25	0.74	2.51	4.22	5.36	6.75	8.07	6.84
							1	1	
-0.51	-0.34	0.04	0.62	1.97	3.01	4.32	5.44	6.51	5.62

0.41	0. <mark>7</mark> 4	0. <mark>9</mark> 6	1. <mark>1</mark> 8	1. <mark>4</mark> 3	1. <mark>7</mark> 1	1. <mark>9</mark> 8	2. <mark>1</mark> 1	2. <mark>3</mark> 9	2. <mark>0</mark> 9
0.74	1.04	1.27	1.52	1. <mark>8</mark> 1	2. <mark>1</mark> 5	2. <mark>4</mark> 7	2.58	3. <mark>0</mark> 2	2. <mark>6</mark> 9
0.86	1.18	1.45	1.76	2.15	2. <mark>5</mark> 5	2. <mark>9</mark> 7	3	3. <mark>6</mark> 9	3. <mark>3</mark> 2
0.84	1.11	1.31	1.55	2.45	3.01	3. <mark>5</mark> 6	4. <mark>1</mark>	4. <mark>5</mark> 3	4.04
0.91	1.2	1. <mark>0</mark> 9	-3	2.48	3.53	4.21	4.93	5.5	4.88
	_							6. <mark>6</mark> 8	5.84
1.1	1.46	1.79	2.24	3.42	4.2	4.97	5.85		
1.06	1.41	1.7	2.14	3.89	4.9	5.85	6.92	8.15	6.94
0.92	1. <mark>1</mark> 8	0. <mark>7</mark>	-7.39	3.43	5.39	6.67	8.15	10	8.19
1.09	1.45	1.75	2.18	3.89	4.88	5.84	6.92	8.15	6.94
1.07	1.56	2.05	2.65	3.38	4.11	4.92	5.83	6.68	5.82

Converged!

 $\gamma = 0.9$

 $\gamma = 0.5$

0.41	0. <mark>7</mark> 4	0. <mark>9</mark> 6	1. <mark>1</mark> 8	1. <mark>4</mark> 3	1. <mark>7</mark> 1	1. <mark>9</mark> 8	2. <mark>1</mark> 1	2. <mark>3</mark> 9	2. <mark>0</mark> 9	-0.28	_ <mark>0</mark> .13	_ <mark>0</mark> .12	- <mark>0</mark> .11	— <mark>0</mark> .09	— <mark>0</mark> .04	0. <mark>0</mark> 8	0. <mark>3</mark> 1	0. <mark>0</mark> 7	— <mark>0</mark> .19
0.74	1.04	1.27	1.52	1. <mark>8</mark> 1	2. <mark>1</mark> 5	2. <mark>4</mark> 7	2.58	3. <mark>0</mark> 2	2. <mark>6</mark> 9	-0.13	-0.01	0	0.02	0.07	0.18	0. <mark>4</mark> 6	1.11	0. <mark>4</mark> 5	0.07
0.86	1.18	1.45	1.76	2.15	2. <mark>5</mark> 5	2. <mark>9</mark> 7	3	3. <mark>6</mark> 9	3. <mark>3</mark> 2	-0.12	-0	0.01	0.04	0.15	0.42	1.12	3	1.11	0.31
0.84	1.11	1.31	1.55	2.45	3.01	3. <mark>5</mark> 6	4. <mark>1</mark>	4. <mark>5</mark> 3	4. <mark>0</mark> 4	-0.12	-0.01	-0.02	- 0.24	0.05	0.19	0.47	1.12	0.48	0.09
0.91	1.2	1. <mark>0</mark> 9	-3	2.48	3.53	4. <mark>2</mark> 1	4. <mark>9</mark> 3	5. <mark>5</mark>	4. <mark>8</mark> 8	-0.13	-0.02	-0.27	-5.12	-0.23	0.08	0.2	0.46	0. <mark>5</mark> 4	0.13
1.1	1.46	1.79	2.24	3.42	4.2	4.97	5. <mark>8</mark> 5	6. <mark>6</mark> 8	5. <mark>8</mark> 4	-0.12	_ <mark>0</mark> .01	-0.04	-0.28	0.02	0.11	0.28	0. <mark>6</mark> 5	1. <mark>3</mark> 9	0. <mark>5</mark> 3
1.06	1.41	1.7	2.14	3.89	4.9	5.85	6.92	8.15	6. <mark>9</mark> 4	-0.12	-0.02	-0.06	-0.51	0.05	0.26	0.64	1. <mark>5</mark> 5	3.72	1. <mark>4</mark> 9
0.92	1. <mark>1</mark> 8	0.7	-7.39	3.43	5.39	6.67	8.15	10	8.19	-0.13	-0.04	-0.53	-10.19	9 –0.33	0.5	1.39	3.72	10	3.74
1.09	1.45	1.75	2.18	3.89	4.88	5.84	6.92	8.15	6.94	-0.14	-0.03	-0.07	-0.51	0.04	0.25	0.63	1.55	3.72	1.49
1.07	1.56	2.05	2.65	3.38	4.11	4.92	5.83	6.68	5.82	_0.28	-0.14	_0.15	-0.18	-0.1	-0.01	0.16	0.54	1.32	0.43

Decision-Making Summary

- Given an MDP, we defined Expected Cumulative Payoff, which plays a key role in optimizing actions over planning horizons
- Used value iteration to determine the "value" of a particular state, which helps us determine the best action to take considering future payoff
- We generally assumed the transition and reward function are known exactly – but what if we don't have access to this information?

Return to Safety

How would you incorporate desirable behaviors and safety requirements into your AV using the various decision-making frameworks?

Responsibility Sensitive Safety developed by Intel / MobilEye

Instead of looking at absolute safety, introduce a safety notion that depends on *responsibility*

 \rightarrow AV should never be responsible for an accident

RSS Rules:

- 1. Keep a safe longitudinal distance from the car ahead.
- 2. Keep a safe lateral distance from the cars on your sides.
- 3. Respect right-of-way rules (multiple geometries, traffic lights, pedestrians, unstructured roads).
- 4. Be cautious of occluded areas.

RSS Example: Safe Following Distance

The longitudinal distance between a car (c_r) that drives behind another car (c_f) is safe w.r.t. a response time ρ if:

- c_f applies at most a_{max}^{brake}
- c_r will apply at most a_{max}^{accel} during response time
- After ρ , c_r will brake by at least $a_{min}^{\rm brake}$ until full stop
- $\rightarrow c_r$ will not collide with c_f

RSS Example: Safe Following Distance

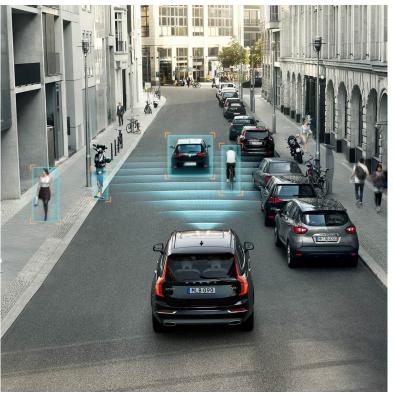
The longitudinal distance between a car (c_r) that drives behind another car (c_f) is safe w.r.t. a response time ρ if:

- c_f applies at most a_{max}^{brake}
- c_r will apply at most a_{max}^{accel} during response time
- After ho, c_r will brake by at least $a_{min}^{
 m brake}$ until full stop
- $\rightarrow c_r$ will not collide with c_f

Remarks:

- 1. This is basic reachability!
- 2. The safe distance depends on a set of parameters that can be determined by regulation.
- 3. The parameters can be different for a robotic car and a human driver.
- 4. The parameters can be different for different road conditions.

RSS Example: Safe Following Distance


- Let v_r , v_f be the longitudinal velocities of the cars
- The minimal safe distance is:

$$d_{min} = \left[v_r \cdot \rho + \frac{1}{2} a_{max}^{\text{accel}} \cdot \rho^2 + \frac{\left(v_r + \rho \cdot a_{max}^{\text{accel}} \right)^2}{2a_{min}^{\text{brake}}} - \frac{v_f^2}{2a_{max}^{\text{brake}}} \right]_+$$

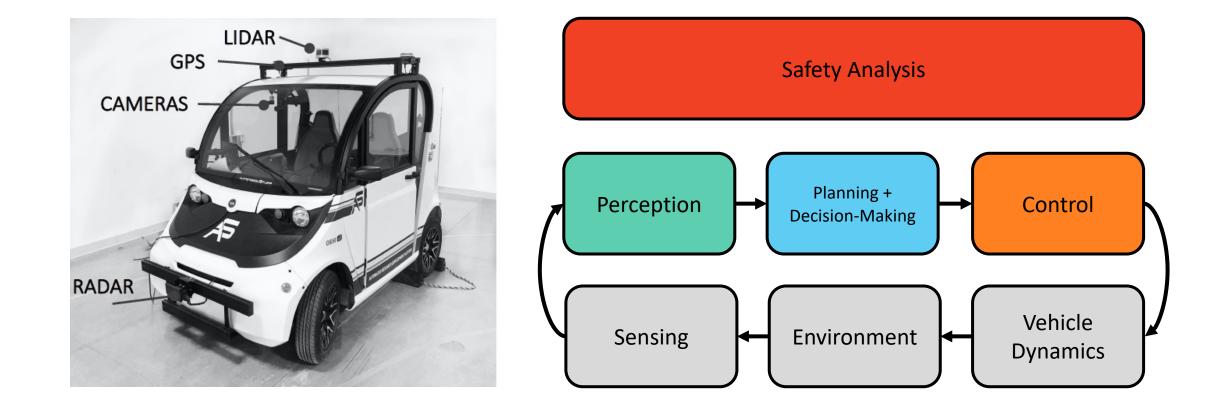
Bonus MP4: Designing Decision-Logic

Task 1: Emergency Braking

Task 2: Stopping at a Red Light

Bonus MP4: Designing Decision-Logic

Validation


- Define test cases
- Gather samples through simulation
- Collect statistical evidence of safety

Verification

- Define uncertainty
- Compute reachable sets to assess safety and provide guarantees

Course Recap

Why are we here?

Components of an autonomous system and safety standards. → How to use software modules for perception, planning, control, ROS, OpenCV, ...

Code and analyze algorithms for perception, localization, planning, control, & verification → Plan, propose, organize and execute a team project

Models, algorithms, data, biases, assumptions for building trustworthy autonomous systems → Theoretical properties of algorithms and their limitations

Become the Isaac Newton of Autonomy

ightarrow "To do things right, first you need love, then technique." – Antoni Gaudí

