Lecture 16: Planning III (Decision-Making I)

Professor Katie Driggs-Campbell

April 9, 2024

ECE484: Principles of Safe Autonomy

Administrivia

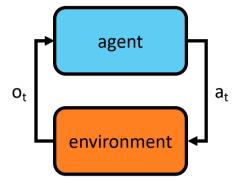
- Upcoming due dates:
 - Final Presentations in class on 4/23 and 4/25
 - Final Video due 5/3
- Exam on 4/18 at 7pm
 - Email me ASAP about conflict exams
 - Make reservation in testing center for DRES accommodations
 - Practice questions will be posted on CampusWire today
 - No cheatsheet will be needed
 - CA review session on Friday 4/10
 - In-class review session on Tuesday 4/16
- Prof. DC OH by appointment next week (4/16)
 - Otherwise in 260 CSL

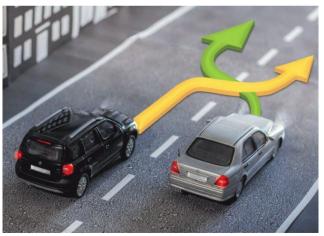
MP4 due May

Typical planning and control modules

- Global navigation and planner
 - Find paths from source to destination with static obstacles
 - Algorithms: Graph search, Dijkstra, Sampling-based planning
 - Time scale: Minutes
 - Look ahead: Destination
 - Output: reference center line, semantic commands
- Local planner
 - Dynamically feasible trajectory generation
 - Dynamic planning w.r.t. obstacles
 - Time scales: 10 Hz
 - Look ahead: Seconds
 - Output: Waypoints, high-level actions, directions / velocities
- Controller
 - Waypoint follower using steering, throttle
 - Algorithms: PID control, MPC, Lyapunov-based controller
 - Lateral/longitudinal control
 - Time scale: 100 Hz
 - Look ahead: current state
 - Output: low-level control actions

High-Level Decision-Making

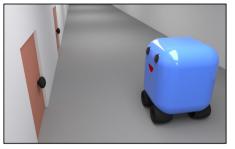


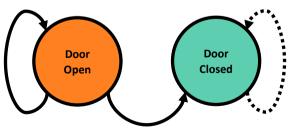


as a robotics major i can confirm this is 100% how coding works

From Filtering to Decision-Making

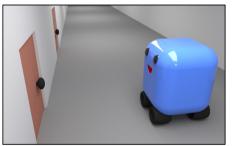
Recall: Filtering allows us to recursively update our belief about some state

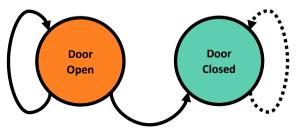


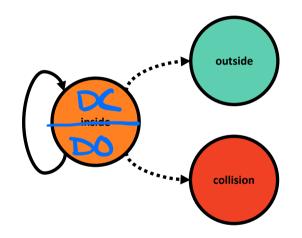


From Filtering to Decision-Making

Recall: Filtering allows us to recursively update our belief about some state







Decision-making helps us reason about what actions we should take

Today's Plan

- Possible solutions for decision-making
- Markov Decision Processes
- MDP Policies and Value Iteration

Today's Plan

Possible solutions for decision-making

- Markov Decision Processes
- MDP Policies and Value Iteration

Decision-Making Methods 1. Explicit programming / Decision Logic

if dsense

- - Ex: if/then statements
 - \rightarrow Heavy burden on designer

Heuristic Method for Lane Changing: MOBIL

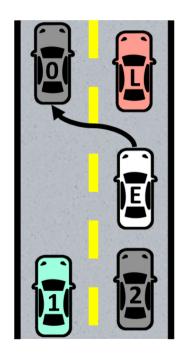
Safety criterion:

$$\tilde{a}_E \geq -b_{safe}$$

Decision rule:

$$\tilde{a}_E - a_E + p(\tilde{a}_1 - a_1 + \tilde{a}_2 - a_2) > \Delta a_{th}$$

- Politeness factor, p: 0.35
- Safe braking limit, $b_{safe}: 2^{m}/_{s^2}$
- Acceleration threshold: $0.1 \frac{m}{s^2}$
- Look-ahead horizon: 30m

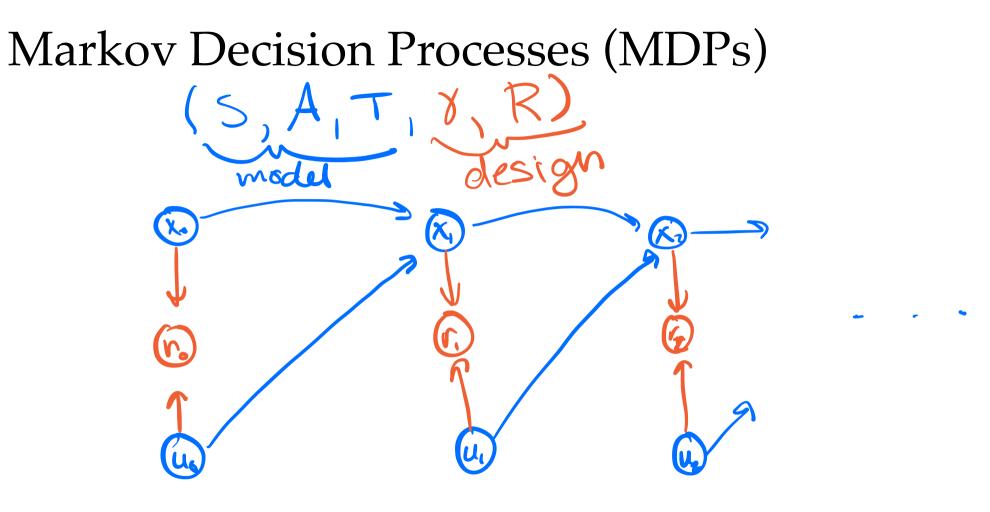


Decision-Making Methods

- 1. Explicit programming
 - Ex: if/then statements
 - ightarrow Heavy burden on designer
- 2. Supervised learning
 - Ex: imitation learning
 - ightarrow Generalizing is often a challenge
- 3. Optimization / optimal control
 - Ex: MPC
 - ightarrow Requires a high-fidelity model and lots of computation
- 4. Planning
 - Given a stochastic model, how to algorithmically determine best policy?
- 5. Reinforcement Learning
 - If model is unknown (or very complex), learn policy through experience

Today's Plan

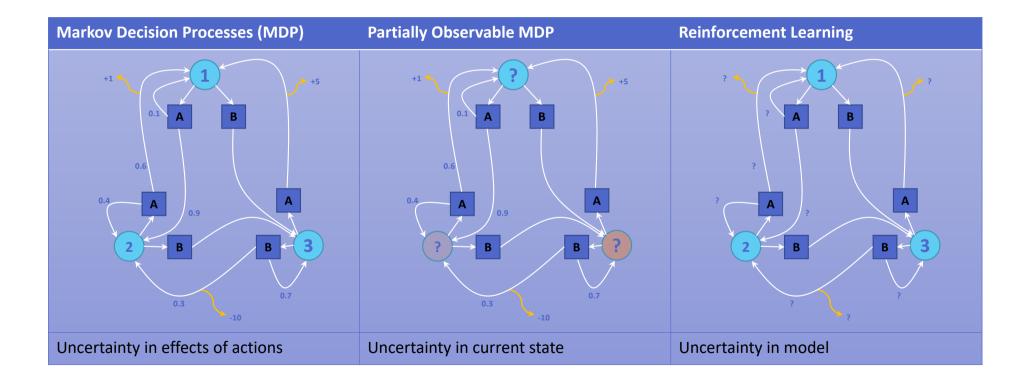
- Introduction to decision-making
- Markov Decision Processes
- MDP Policies and Value Iteration
- Simple Example



Uncertainty in Motion

- Markov Decision Processes (MDPs) model the AV and environment assuming full observability
 - P(z|x) : deterministic and bijective
 - P(x'|x,u) : may be nondeterministic
 - Must incorporate uncertainty into the <u>planner</u> and generate actions for each state
- A <u>policy</u> for action selection is defined for all states

Markov Models



Markov Assumptions and Common Violations

Markov Assumption postulates that past and future data are independent if you know the current state.

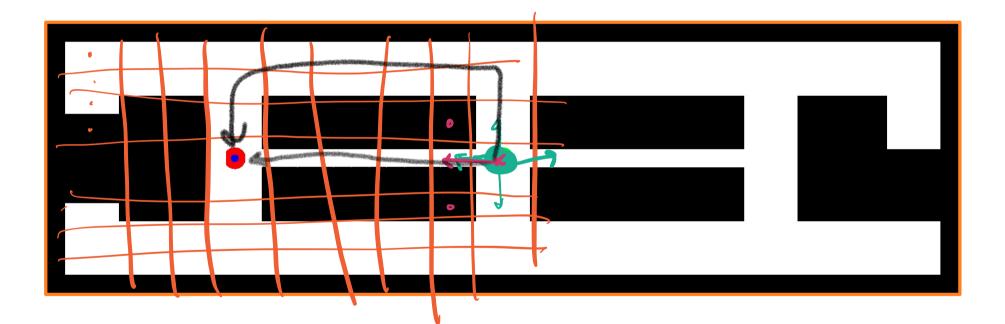
Markov Assumptions and Common Violations

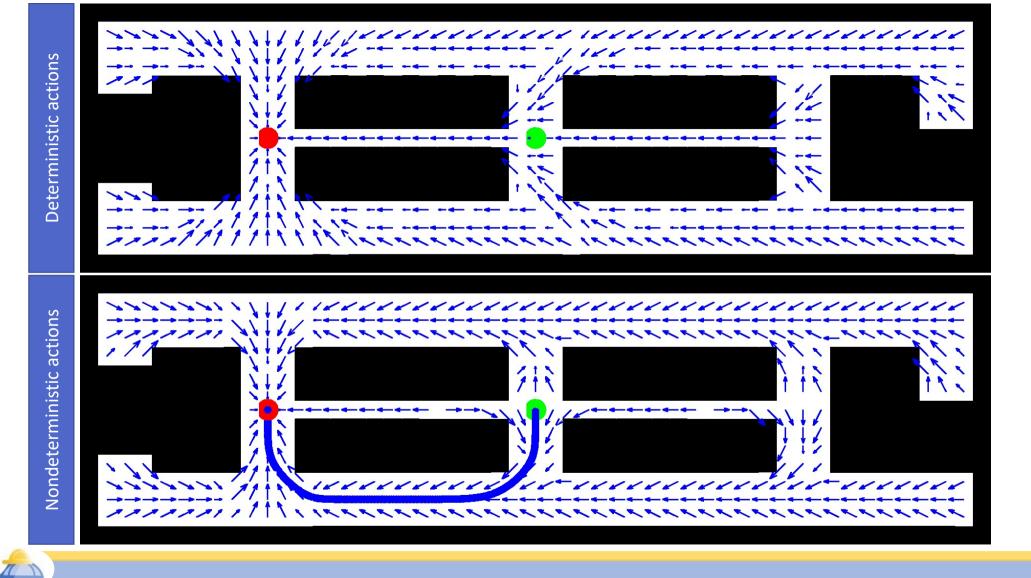
Markov Assumption postulates that past and future data are independent if you know the current state.

What are some common violations?

- Unmodeled dynamics in the environment not included in state
 - E.g., moving people and their effects on sensor measurements in localization
- Inaccuracies in the probabilistic model
 - E.g., error in the map of a localizing agent or incorrect model dynamics
- Approximation errors when using approximate representations
 - E.g., discretization errors from grids, Gaussian assumptions
- Variables in control scheme that influence multiple controls
 - E.g., the goal or target location will influence an entire sequence of control commands

Grid World Example





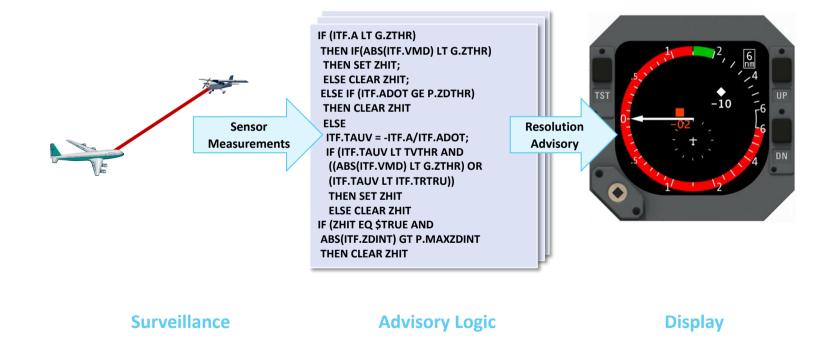
Defining Values

- Actions are driven by goals
 - E.g., reach destination, stay in lane

-veach goal -smooth -save fuel (time -collisions

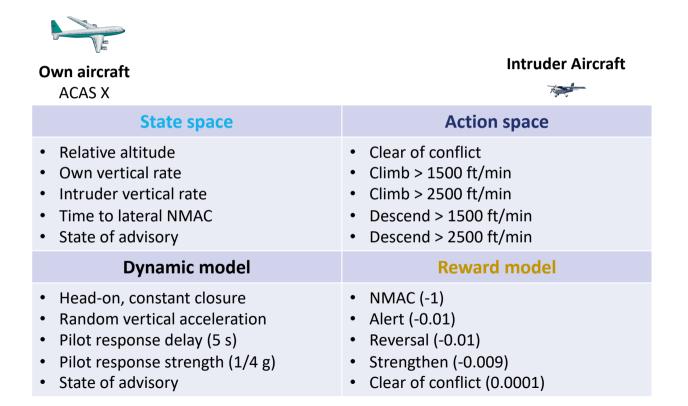
- Often, we want to reach goal while optimizing some <u>cost</u>
 - E.g., minimize time / energy consumption, obstacle avoidance
- We express both <u>costs and goals</u> in a single function, called the <u>payoff function</u>

Traffic Alert and Collision Avoidance System (TCAS)



Slide Credit: Mykel Kochenderfer

ACAS X: Simplified MDP



Slide Credit: Mykel Kochenderfer

ACAS X: Simplified MDP

500 feet

Near Mid-Air Collision (NMAC)

State space	Action space
 Relative altitude Own vertical rate Intruder vertical rate Time to lateral NMAC State of advisory 	 Clear of conflict Climb > 1500 ft/min Climb > 2500 ft/min Descend > 1500 ft/min Descend > 2500 ft/min
Dynamic model	Reward model
 Head-on, constant closure Random vertical acceleration Pilot response delay (5 s) Pilot response strength (1/4 g) State of advisory 	 NMAC (-1) Alert (-0.01) Reversal (-0.01) Strengthen (-0.009) Clear of conflict (0.0001)

Today's Plan

- Possible solutions for decision-making
- Markov Decision Processes
- MDP Policies and Value Iteration

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the future payoff *in expectation*

Decision-Making Policies

- We want to devise a scheme that generates actions to optimize the future payoff *in expectation*
- Policy: $\pi : x_t \to u_t$
 - Maps states to actions
 - Can be low-level reactive algorithm or a long-term, high-level planner
 - May or may not be deterministic

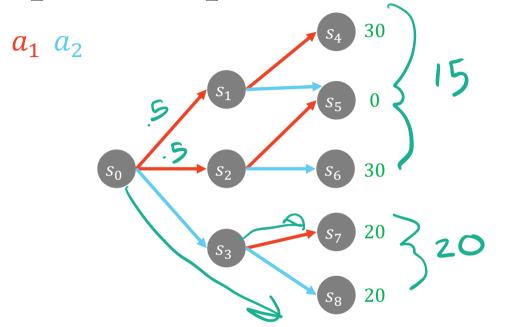
Decision-Making Policies

- We want to devise a scheme that generates actions to optimize the future payoff *in expectation*
- Policy: $\pi : x_t \to u_t$
 - Maps states to actions
 - Can be low-level reactive algorithm or a long-term, high-level planner
 - May or may not be deterministic
- Typically, we want a policy that optimizes <u>future</u> payoff, considering optimal actions over a <u>planning (time) horizon</u>

Open vs. Closed Loop Planning

- <u>Closed-Loop Planning</u>: accounts for future information in planning. This creates a reactive plan (policy) that can react to different outcomes over time
- <u>Open-Loop Planning</u>: path panning algorithms develop a static sequence of actions

Open Loop vs. Closed Loop Planning



MDP Policies

Policies map states to actions

 π : $x \rightarrow u$

- We want to find a policy that maximizes future pay off
 - Suppose T = 1: $\pi_1(x) = \operatorname{argmax}_u r(x, u)$

MDP Policies

Policies map states to actions

 $\pi: x \to u$

- We want to find a policy that maximizes future pay off
 - Suppose T = 1: $\pi_1(x) = \operatorname{argmax}_u r(x, u)$
- We write the Value Function for given π :

 $V_1(x) = \gamma \max_u r(x, u)$

• Generally, we want to find the sequence of actions that optimize the expected cumulative discounted future payoff

Expected Cumulative Payoff

$$R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^\tau r_{t+\tau}\right]$$

Expected Cumulative Payoff $R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^{\tau} r_{t+\tau}\right]$

1. Greedy case: T = 1 \rightarrow Optimize next payoff

Expected Cumulative Payoff

$$R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^\tau r_{t+\tau}\right]$$

- 1. Greedy case: T = 1 \rightarrow Optimize next payoff
- 2. Finite Horizon: $1 \le T < \infty$, $(\gamma \le 1)$

 \rightarrow Optimize R_T for set time window

Expected Cumulative Payoff

$$R_T = \mathbb{E}\left[\sum_{\tau=0}^T \gamma^\tau r_{t+\tau}\right]$$

- 1. Greedy case: T = 1 \rightarrow Optimize next payoff
- 2. Finite Horizon: $1 \le T < \infty$, $(\gamma \le 1)$

 \rightarrow Optimize R_T for set time window

3. Infinite Horizon: $T = \infty$, $(\gamma < 1)$

 \rightarrow Optimize R_{∞} for all time

If $|r| \leq r_{max}$, discounting guarantees R_{∞} is finite

$$R_{\infty} \le r_{max} + \gamma r_{max} + \gamma^2 r_{max} + \dots = \frac{r_{max}}{1 - \gamma}$$

Value Functions

For longer time horizons (T), we define V(x) recursively:

Recall: $V_1(x) = \gamma \max_u r(x, u)$

Value Functions

• In the infinite time horizon, we tend to reach equilibrium:

$$V_{\infty}(x) = \gamma \max_{u} \left[r(x,u) + \int V_{\infty}(x') p(x'|x,u) \, dx' \right]$$

- This is the Bellman Equation
 - Satisfying this is necessary and sufficient for an optimal policy

• Initial guess for \hat{V}

• $\hat{V}(x) \leftarrow r_{min}, \forall x$

- Initial guess for \widehat{V}
 - $\hat{V}(x) \leftarrow r_{min}, \forall x$
- Successively update for increasing horizons
 - $\hat{V}(x) \leftarrow \gamma \max_{u} \left[r(x,u) + \int \hat{V}(x') p(x'|x,u) dx' \right]$
- Value iteration converges if $\gamma < 1$

- Initial guess for \widehat{V}
 - $\hat{V}(x) \leftarrow r_{min}, \forall x$
- Successively update for increasing horizons
 - $\hat{V}(x) \leftarrow \gamma \max_{u} \left[r(x,u) + \int \hat{V}(x') p(x'|x,u) dx' \right]$
- Value iteration converges if $\gamma < 1$
- Given estimate $\hat{V}(x)$, policy is found:
 - $\pi(x) = \operatorname{argmax}_u \left[r(x, u) + \int \widehat{V}(x') p(x'|x, u) dx' \right]$

• Initial guess for \widehat{V}

•
$$\hat{V}(x) \leftarrow r_{min}, \forall x$$

- Successively update for increasing horizons
 - $\hat{V}(x) \leftarrow \gamma \max_{u} \left[r(x,u) + \int \hat{V}(x') p(x'|x,u) dx' \right]$
- Value iteration converges if $\gamma < 1$
- Given estimate $\hat{V}(x)$, policy is found:
 - $\pi(x) = \operatorname{argmax}_u \left[r(x, u) + \int \hat{V}(x') p(x'|x, u) dx' \right]$
- Often, we use the discrete version:

$$\pi(x) = \operatorname{argmax}_{u} \left[r(x, u) + \sum_{x}' \hat{V}(x') p(x'|x, u) \right]$$

Summary

- Discussed a different form of planning (often referred to as decisionmaking) schemes and how they fit into the AV stack
- Defined the MDP model for decision-making, including goals, costs, payoff, and policies
- Defined Expected Cumulative Payoff, which plays a key role in optimizing actions over planning horizons
- Next time:
 - Examples of computing policies for MDPs
 - Course wrap-up

