
Lecture 16: Planning III
(Decision-Making I)

Professor Katie Driggs-Campbell
April 9, 2024

ECE484: Principles of Safe Autonomy

Administrivia
• Upcoming due dates:

§ Final Presentations in class on 4/23 and 4/25
§ Final Video due 5/3

• Exam on 4/18 at 7pm
§ Email me ASAP about conflict exams
§ Make reservation in testing center for DRES accommodations
§ Practice questions will be posted on CampusWire today
§ No cheatsheet will be needed
§ CA review session on Friday 4/19
§ In-class review session on Tuesday 4/16

• Prof. DC OH by appointment next week (4/16)
§ Otherwise in 260 CSL

Typical planning and control modules
• Global navigation and planner

§ Find paths from source to destination with static obstacles
§ Algorithms: Graph search, Dijkstra, Sampling-based planning
§ Time scale: Minutes
§ Look ahead: Destination
§ Output: reference center line, semantic commands

• Local planner
§ Dynamically feasible trajectory generation
§ Dynamic planning w.r.t. obstacles
§ Time scales: 10 Hz
§ Look ahead: Seconds
§ Output: Waypoints, high-level actions, directions / velocities

• Controller
§ Waypoint follower using steering, throttle
§ Algorithms: PID control, MPC, Lyapunov-based controller
§ Lateral/longitudinal control
§ Time scale: 100 Hz
§ Look ahead: current state
§ Output: low-level control actions

High-Level Decision-Making
agent

environment

ot at

From Filtering to Decision-Making

Recall: Filtering allows us to recursively
update our belief about some state

Door
Open

Door
Closed

From Filtering to Decision-Making

Recall: Filtering allows us to recursively
update our belief about some state

collision

inside

outside

Door
Open

Door
Closed

Decision-making helps us reason
about what actions we should take

Today’s Plan

• Possible solutions for decision-making
• Markov Decision Processes
• MDP Policies and Value Iteration

Today’s Plan

• Possible solutions for decision-making
• Markov Decision Processes
• MDP Policies and Value Iteration

Decision-Making Methods
1. Explicit programming

§ Ex: if/then statements
à Heavy burden on designer

2. Supervised learning
§ Ex: imitation learning
à Generalizing is often a challenge

3. Optimization / optimal control
§ Ex: MPC
à Requires a high-fidelity model and lots of computation

4. Planning
§ Given a stochastic model, how to algorithmically determine best policy?

5. Reinforcement Learning
§ If model is unknown (or very complex), learn policy through experience

Heuristic Method for Lane Changing: MOBIL

§ Safety criterion:
!𝑎! ≥ −𝑏"#$%

§ Decision rule:
!𝑎! − 𝑎! + 𝑝 !𝑎& − 𝑎& + !𝑎' − 𝑎' > Δ𝑎()

§ Politeness factor, 𝑝: 0.35
§ Safe braking limit, 𝑏"#$%: 2 ⁄* "!

§ Acceleration threshold: 0.1 ⁄* "!

§ Look-ahead horizon: 30𝑚

Decision-Making Methods
1. Explicit programming

§ Ex: if/then statements
à Heavy burden on designer

2. Supervised learning
§ Ex: imitation learning
à Generalizing is often a challenge

3. Optimization / optimal control
§ Ex: MPC
à Requires a high-fidelity model and lots of computation

4. Planning
§ Given a stochastic model, how to algorithmically determine best policy?

5. Reinforcement Learning
§ If model is unknown (or very complex), learn policy through experience

Today’s Plan

• Introduction to decision-making
• Markov Decision Processes
• MDP Policies and Value Iteration
• Simple Example

Markov Decision Processes (MDPs)

Uncertainty in Motion

• Markov Decision Processes (MDPs) model the AV and environment
assuming full observability
§ 𝑃(𝑧|𝑥) : deterministic and bijective
§ 𝑃(𝑥’|𝑥, 𝑢) : may be nondeterministic
§ Must incorporate uncertainty into the planner and generate actions for each state

• A policy for action selection is defined for all states

Markov Models
Markov Decision Processes (MDP) Partially Observable MDP Reinforcement Learning

Uncertainty in effects of actions Uncertainty in current state Uncertainty in model

2 3

1

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

2 3

1

A B

A

B B

A
?

?

?

?

?
?

?

?

?

? ?

?

A B

A

B B

A
0.9

0.1

0.6

0.4

0.3
0.7

+5

-10

+1

Markov Assumptions and Common Violations
Markov Assumption postulates that past and future data are independent if
you know the current state.

Probabilistic Robotics, Section 2.4.4

Markov Assumptions and Common Violations
Markov Assumption postulates that past and future data are independent if
you know the current state.
What are some common violations?
• Unmodeled dynamics in the environment not included in state

§ E.g., moving people and their effects on sensor measurements in localization

• Inaccuracies in the probabilistic model
§ E.g., error in the map of a localizing agent or incorrect model dynamics

• Approximation errors when using approximate representations
§ E.g., discretization errors from grids, Gaussian assumptions

• Variables in control scheme that influence multiple controls
§ E.g., the goal or target location will influence an entire sequence of control commands

Probabilistic Robotics, Section 2.4.4

Grid World Example

De
te

rm
in

ist
ic

 a
ct

io
ns

N
on

de
te

rm
in

ist
ic

 a
ct

io
ns

Defining Values
• Actions are driven by goals

§ E.g., reach destination, stay in lane

• Often, we want to reach goal while optimizing some cost
§ E.g., minimize time / energy consumption, obstacle avoidance

• We express both costs and goals in a single function, called the
payoff function

Traffic Alert and Collision Avoidance System (TCAS)

Surveillance Advisory Logic Display

IF (ITF.A LT G.ZTHR)
THEN IF(ABS(ITF.VMD) LT G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR ZHIT;

ELSE IF (ITF.ADOT GE P.ZDTHR)
THEN CLEAR ZHIT
ELSE
ITF.TAUV = -ITF.A/ITF.ADOT;
IF (ITF.TAUV LT TVTHR AND
((ABS(ITF.VMD) LT G.ZTHR) OR
(ITF.TAUV LT ITF.TRTRU))
THEN SET ZHIT
ELSE CLEAR ZHIT

IF (ZHIT EQ $TRUE AND
ABS(ITF.ZDINT) GT P.MAXZDINT
THEN CLEAR ZHIT

IF (ITF.A LT G.ZTHR)
THEN IF(ABS(ITF.VMD) LT G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR ZHIT;

ELSE IF (ITF.ADOT GE P.ZDTHR)
THEN CLEAR ZHIT
ELSE
ITF.TAUV = -ITF.A/ITF.ADOT;
IF (ITF.TAUV LT TVTHR AND
((ABS(ITF.VMD) LT G.ZTHR) OR
(ITF.TAUV LT ITF.TRTRU))
THEN SET ZHIT
ELSE CLEAR ZHIT

IF (ZHIT EQ $TRUE AND
ABS(ITF.ZDINT) GT P.MAXZDINT
THEN CLEAR ZHIT

IF (ITF.A LT G.ZTHR)
THEN IF(ABS(ITF.VMD) LT G.ZTHR)
THEN SET ZHIT;
ELSE CLEAR ZHIT;

ELSE IF (ITF.ADOT GE P.ZDTHR)
THEN CLEAR ZHIT
ELSE
ITF.TAUV = -ITF.A/ITF.ADOT;
IF (ITF.TAUV LT TVTHR AND
((ABS(ITF.VMD) LT G.ZTHR) OR
(ITF.TAUV LT ITF.TRTRU))
THEN SET ZHIT
ELSE CLEAR ZHIT

IF (ZHIT EQ $TRUE AND
ABS(ITF.ZDINT) GT P.MAXZDINT
THEN CLEAR ZHIT

Sensor
Measurements

Resolution
Advisory

Slide Credit: Mykel Kochenderfer

ACAS X: Simplified MDP

Own aircraft
ACAS X

Intruder Aircraft

Slide Credit: Mykel Kochenderfer

State space Action space
• Relative altitude
• Own vertical rate
• Intruder vertical rate
• Time to lateral NMAC
• State of advisory

• Clear of conflict
• Climb > 1500 ft/min
• Climb > 2500 ft/min
• Descend > 1500 ft/min
• Descend > 2500 ft/min

Dynamic model Reward model
• Head-on, constant closure
• Random vertical acceleration
• Pilot response delay (5 s)
• Pilot response strength (1/4 g)
• State of advisory

• NMAC (-1)
• Alert (-0.01)
• Reversal (-0.01)
• Strengthen (-0.009)
• Clear of conflict (0.0001)

State space Action space
• Relative altitude
• Own vertical rate
• Intruder vertical rate
• Time to lateral NMAC
• State of advisory

• Clear of conflict
• Climb > 1500 ft/min
• Climb > 2500 ft/min
• Descend > 1500 ft/min
• Descend > 2500 ft/min

Dynamic model Reward model
• Head-on, constant closure
• Random vertical acceleration
• Pilot response delay (5 s)
• Pilot response strength (1/4 g)
• State of advisory

• NMAC (-1)
• Alert (-0.01)
• Reversal (-0.01)
• Strengthen (-0.009)
• Clear of conflict (0.0001)

500 feet

100 feet

Near Mid-Air Collision (NMAC)

Slide Credit: Mykel Kochenderfer

ACAS X: Simplified MDP

Today’s Plan

• Possible solutions for decision-making
• Markov Decision Processes
• MDP Policies and Value Iteration

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the
future payoff in expectation

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the
future payoff in expectation
• Policy: 𝜋 ∶ 𝑥(→ 𝑢(

§ Maps states to actions
§ Can be low-level reactive algorithm or a long-term, high-level planner
§ May or may not be deterministic

Decision-Making Policies

• We want to devise a scheme that generates actions to optimize the
future payoff in expectation
• Policy: 𝜋 ∶ 𝑥(→ 𝑢(

§ Maps states to actions
§ Can be low-level reactive algorithm or a long-term, high-level planner
§ May or may not be deterministic

• Typically, we want a policy that optimizes future payoff, considering
optimal actions over a planning (time) horizon

Open vs. Closed Loop Planning

• Closed-Loop Planning: accounts for future information in planning.
This creates a reactive plan (policy) that can react to different
outcomes over time
• Open-Loop Planning: path panning algorithms develop a static

sequence of actions

Open Loop vs. Closed Loop Planning

𝑠!

𝑠"

𝑠#

𝑠$

𝑠%

𝑠&

𝑠'

𝑠(

𝑡 = 1𝑡 = 0 𝑡 = 2

𝑎&, 𝑎'

𝑠)

0.5

0.5

30

0

30

20

20

MDP Policies
• Policies map states to actions

𝜋: 𝑥 → 𝑢
• We want to find a policy that maximizes future pay off

§ Suppose 𝑇 = 1: 𝜋& 𝑥 = argmax+ 𝑟 𝑥, 𝑢

MDP Policies
• Policies map states to actions

𝜋: 𝑥 → 𝑢
• We want to find a policy that maximizes future pay off

§ Suppose 𝑇 = 1: 𝜋& 𝑥 = argmax+ 𝑟 𝑥, 𝑢
• We write the Value Function for given 𝜋:

𝑉& 𝑥 = 𝛾 max
+

𝑟(𝑥, 𝑢)

• Generally, we want to find the sequence of actions that optimize the
expected cumulative discounted future payoff

Expected Cumulative Payoff
𝑅, = 𝔼 G

-./

,

𝛾- 𝑟(0-

Expected Cumulative Payoff
𝑅, = 𝔼 G

-./

,

𝛾- 𝑟(0-

1. Greedy case: 𝑇 = 1
à Optimize next payoff

Expected Cumulative Payoff
𝑅, = 𝔼 G

-./

,

𝛾- 𝑟(0-

1. Greedy case: 𝑇 = 1
à Optimize next payoff

2. Finite Horizon: 1 ≤ 𝑇 < ∞, 𝛾 ≤ 1
à Optimize 𝑅* for set time window

Expected Cumulative Payoff
𝑅, = 𝔼 G

-./

,

𝛾- 𝑟(0-

1. Greedy case: 𝑇 = 1
à Optimize next payoff

2. Finite Horizon: 1 ≤ 𝑇 < ∞, 𝛾 ≤ 1
à Optimize 𝑅* for set time window

3. Infinite Horizon: 𝑇 = ∞, 𝛾 < 1
à Optimize 𝑅+ for all time
If 𝑟 ≤ 𝑟,-., discounting guarantees 𝑅+ is finite

𝑅+ ≤ 𝑟,-. + 𝛾𝑟,-. + 𝛾/𝑟,-. +⋯ =
𝑟,-.
1 − 𝛾

Value Functions
For longer time horizons (T), we define V(x) recursively:

Recall: 𝑉0 𝑥 = 𝛾max
1
𝑟 𝑥, 𝑢

Value Functions

• In the infinite time horizon, we tend to reach equilibrium:

𝑉1 𝑥 = 𝛾max
+

𝑟 𝑥, 𝑢 + ∫ 𝑉1 𝑥2 𝑝 𝑥2|𝑥, 𝑢 𝑑𝑥2

• This is the Bellman Equation
§ Satisfying this is necessary and sufficient for an optimal policy

Computing the (Approximate) Value Function
• Initial guess for N𝑉

§ 7𝑉 𝑥 ← 𝑟,23, ∀𝑥

Computing the (Approximate) Value Function
• Initial guess for N𝑉

§ 7𝑉 𝑥 ← 𝑟,23, ∀𝑥
• Successively update for increasing horizons

§ 7𝑉 𝑥 ← 𝛾 max
1

𝑟 𝑥, 𝑢 + ∫ 7𝑉 𝑥4 𝑝 𝑥4|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1

Computing the (Approximate) Value Function
• Initial guess for N𝑉

§ 7𝑉 𝑥 ← 𝑟,23, ∀𝑥
• Successively update for increasing horizons

§ 7𝑉 𝑥 ← 𝛾 max
1

𝑟 𝑥, 𝑢 + ∫ 7𝑉 𝑥4 𝑝 𝑥4|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1
• Given estimate N𝑉(𝑥), policy is found:

§ 𝜋 𝑥 = argmax1 𝑟 𝑥, 𝑢 + ∫ 7𝑉 𝑥4 𝑝 𝑥4|𝑥, 𝑢 𝑑𝑥′

Computing the (Approximate) Value Function
• Initial guess for N𝑉

§ 7𝑉 𝑥 ← 𝑟,23, ∀𝑥
• Successively update for increasing horizons

§ 7𝑉 𝑥 ← 𝛾 max
1

𝑟 𝑥, 𝑢 + ∫ 7𝑉 𝑥4 𝑝 𝑥4|𝑥, 𝑢 𝑑𝑥′

• Value iteration converges if 𝛾 < 1
• Given estimate N𝑉(𝑥), policy is found:

§ 𝜋 𝑥 = argmax1 𝑟 𝑥, 𝑢 + ∫ 7𝑉 𝑥4 𝑝 𝑥4|𝑥, 𝑢 𝑑𝑥′

• Often, we use the discrete version:
§ 𝜋 𝑥 = argmax1 𝑟 𝑥, 𝑢 + ∑.4 7𝑉 𝑥4 𝑝 𝑥4|𝑥, 𝑢

Summary
• Discussed a different form of planning (often referred to as decision-

making) schemes and how they fit into the AV stack
• Defined the MDP model for decision-making, including goals, costs,

payoff, and policies
• Defined Expected Cumulative Payoff, which plays a key role in

optimizing actions over planning horizons
• Next time:

§ Examples of computing policies for MDPs
§ Course wrap-up

