
Lecture 15: Planning II
Professor Katie Driggs-Campbell

March 21, 2024

ECE484: Principles of Safe Autonomy



Administrivia 
• Upcoming due dates:

§ HW3 and MP3 due Friday 3/22 
§ Mid-point check in on 3/29 or 4/05
§ Final Presentations in class on 4/23 and 4/25
§ Final Video due 5/3

• Guest Lectures next week (3/26 and 3/28)
§ Attendance will be taken as that week’s pop quiz: Attending both will give 100% 

for that week’s pop quiz, attending one will give 50%
§ Tuesday will start at 10am – I’ll have office hours at 9:30am

• Exam on 4/18 at 7pm
§ Email me about conflict exams
§ Will use testing center for DRES accommodations 



Typical planning and control modules
• Global navigation and planner

§ Find paths from source to destination with static obstacles
§ Algorithms: Graph search, Dijkstra, Sampling-based planning
§ Time scale: Minutes
§ Look ahead: Destination
§ Output: reference center line, semantic commands

• Local planner 
§ Dynamically feasible trajectory generation
§ Dynamic planning w.r.t. obstacles
§ Time scales: 10 Hz
§ Look ahead: Seconds
§ Output: Waypoints, high-level actions, directions / velocities

• Controller
§ Waypoint follower using steering, throttle
§ Algorithms: PID control, MPC, Lyapunov-based controller
§ Lateral/longitudinal control
§ Time scale: 100 Hz
§ Look ahead: current state
§ Output: low-level control actions



Examples

The number of states or 
vertices can be large!

Rubik's cube num states: 
43,252,003,274,489,856,000

Many paths and weights are not often known upfront!



Example: Find the minimal path from s to g

a

c

s

d

b

g

2 3

4 2

2

5

5



Today’s Plan

• Finish up graph search methods:
§ A and A* Search

• Sampling-based motion planning
§ Probabilistic Roadmaps
§ RRTs



Informed Search: A Search
• UCS is optimal, but may wander around a lot before finding the goal
• Greedy is not optimal, but can be efficient, as it is heavily biased 

towards moving towards the goal
• A new idea:

§ Keep track of both the cost of the partial path to get to a vertex 𝑔 𝑣 and the 
heuristic function estimating the cost to reach the goal from a vertex ℎ 𝑣

§ Choose a “ranking” function to be the sum of the two costs: 
𝑓 𝑣 = 𝑔 𝑣 + ℎ 𝑣

§ 𝑔 𝑣 : cost-to-arrive (from the start to 𝑣)
§ ℎ 𝑣 : cost-to-go estimate (from 𝑣 to the goal)
§ 𝑓 𝑣 : estimated cost of the path (from the start to 𝑣 and then to the goal)



A Search
𝑸 ← 𝒔𝒕𝒂𝒓𝒕 // initialize queue with start

while𝑸 ≠ ∅:
pick (and remove) the path 𝑷 with the lowest estimated cost (𝒇 𝑷 = 𝒈 𝑷 + 𝒉(𝒉𝒆𝒂𝒅 𝑷 ) from Q

if 𝒉𝒆𝒂𝒅 𝑷 = 𝒙𝒈𝒐𝒂𝒍 then return 𝑷 // Reached the goal 

for each vertex 𝒗 such that 𝒉𝒆𝒂𝒅 𝑷 , 𝒗 ∈ 𝑬, do // for all neighbors 

add ⟨𝑣, 𝑃⟩ to 𝑄 // Add expanded paths

Return FAILURE // nothing left to consider



Example of A Search

Q:

a
2

c
1

s
10

d
5

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑠⟩ 0 10 10

⟨𝑎, 𝑠⟩ 2 2 4

⟨𝑏, 𝑠⟩ 5 3 8
⟨𝑐, 𝑎, 𝑠⟩ 4 1 5
⟨𝑑, 𝑎, 𝑠⟩ 6 5 11
⟨𝑑, 𝑐, 𝑎, 𝑠⟩ 7 5 12
⟨𝑔, 𝑏, 𝑠⟩ 10 0 10



Remarks on A search

• A search is similar to UCS, with a bias induced by the heuristic ℎ
§ If h = 0, A is equivalent to UCS 

• A search is complete, but is not optimal
• Let’s try to make it optimal with A* Search
• Choose an admissible heuristic:  ℎ 𝑣 ≤ ℎ∗ 𝑣

§ ℎ∗(𝑣) is the “optimal” heuristic (i.e., perfect cost to go)
§ An admissible ℎ(𝑣) should be at most ℎ∗(𝑣)
§ Guaranteed to find optimal path



Proof of optimality of A*
• Let 𝑤∗ be the cost of the optimal path
• Suppose for the sake of contradiction, that A* returns 𝑃 with 𝑤 𝑃 > 𝑤∗

• Find the first unexpanded node 𝑛 on the optimal path 𝑃∗

§ 𝑓 𝑛 > 𝑤 𝑃 , otherwise 𝑛 would have been expanded
• 𝑓 𝑛 = 𝑔 𝑛 + ℎ 𝑛

= 𝑔∗ 𝑛 + ℎ 𝑛 [since 𝑛 is on the optimal path]
≤ 𝑔∗ 𝑛 + ℎ∗ 𝑛 [since ℎ is admissible]
= 𝑓∗ 𝑛 = 𝑤∗ [by def. of 𝑓, and since 𝑤∗ is the cost of the optimal path] 

• Hence, 𝑤∗ ≥ 𝑓 𝑛 = 𝑤 𝑃 , which is a contradiction



Example of A* Search

Q:

a
2

c
1

s
6

d
1

b
3

g
0

2 3

4 2

2
5

5

Path g h f

⟨𝑠⟩ 0 6 6

⟨𝑎, 𝑠⟩ 2 2 4 ⟨𝑏, 𝑠⟩ 5 3 8
⟨𝑐, 𝑎, 𝑠⟩ 4 1 5
⟨𝑑, 𝑎, 𝑠⟩ 6 1 7
⟨𝑑, 𝑐, 𝑎, 𝑠⟩ 7 1 8

⟨𝑔, 𝑏, 𝑠⟩ 10 0 10

⟨𝑔, 𝑑, 𝑎, 𝑠⟩ 8 1 9



Admissible heuristics

• How to find an admissible heuristic? 
§ i.e., a heuristic that never overestimates the cost-to-go

• Examples of admissible heuristics 
§ ℎ(𝑣) = 0: this always works! However, it is not very useful,  A* = UCS
§ ℎ(𝑣) = 𝑑 𝑣, 𝑔 : when the vertices of the graphs are physical locations 
§ ℎ(𝑣) = 𝑣 − 𝑔 ": when the vertices of the graph are points in a normed 

vector space

• Generally: Choose ℎ as the optimal cost-to-go function for a relaxed 
problem, that is easy to compute 
§ A relaxed problem ignores some of the constraints in the original problem



Admissible heuristics for the 8-puzzle

Which of the following are admissible heuristics? 
• h = 0
• h = 1
• h = number of tiles in the wrong position
• h = sum of (Manhattan) distance between tiles 

and their goal position

YES, always good 

Not valid in goal state 

YES, “teleport” each tile to the goal in one move 

YES, move each tile to the goal ignoring other tiles

1 5

2 6 3

7 4 8

1 2 3

4 5 6

7 8

Initial: Goal:



A partial order of admissible heuristics
• Some admissible heuristics are better than others 

§ ℎ = 0 is an admissible heuristic, but is not very useful
§ ℎ = ℎ∗ is also an admissible heuristic (because it is the “best” possible one)

• Partial order 
§ We say that ℎ+ dominates ℎ, if ℎ+(𝑣) ≥ ℎ,(𝑣) for all vertices 𝑣
§ ℎ∗ dominates all admissible heuristics, and 0 is dominated by all admissible heuristics

• Choosing the right heuristic 
§ We want a heuristic that is as close to ℎ∗ as possible
§ However, such a heuristic may be too complicated to compute
à There is a tradeoff between complexity of computing ℎ and the complexity of the search



Consistent Heuristics

• An additional useful property for A* heuristics is called consistency
§ A heuristic ℎ: 𝑋 → ℝ#$ is said consistent if ∀𝑒%& ∈ 𝐸

ℎ 𝑢 ≤ 𝑤 𝑒 + ℎ 𝑣
à a consistent heuristics satisfies a triangle inequality

• If ℎ is a consistent heuristic, then 𝑓 = 𝑔 + ℎ is non-decreasing along 
paths: 𝑓 𝑣 = 𝑔 𝑣 + ℎ 𝑣 = 𝑔 𝑢 + 𝑤 𝑢, 𝑣 + ℎ 𝑣 ≥ 𝑓 𝑢
• Hence, the values of 𝑓 on the sequence of nodes expanded by A* is 

non-decreasing: the first path found to a node is also the optimal 
path ⇒ no need to compare costs!



A* recap
• A* algorithm is an informed search 

technique that combines cost-to-arrive 
𝑔(𝑣) and a heuristic function ℎ 𝑣 for 
cost-to-go to find shortest path
• Heuristic function must be admissible: 
ℎ 𝑣 ≤ ℎ∗ 𝑣
• Never over-estimates actual cost to go
• Are all ℎ(𝑣) values needed? 
• What if ℎ is not admissible?
• How to find heuristic functions?



A* variants are widely used in practice!

http://robots.stanford.edu/papers/junior08.pdf

http://robots.stanford.edu/papers/junior08.pdf


Today’s Plan

• Finish up graph search methods:
§ A and A* Search

• Sampling-based motion planning
§ Probabilistic Roadmaps
§ RRTs



Probabilistic RoadMaps (PRM)
Kavraki and Latombe, 1994
• Idea: build (offline) a graph (i.e., the roadmap) representing the 

“connectivity” of the environment
• Offline phase:

§ Sample 𝑁 points from 𝑋-.// = 0, 1 0\ 𝑋123
§ Try to connect these points using a fast “local planner”
§ If connection is successful, add an edge between the points. 

• At run time:
§ Connect the start and end goal to the closest nodes in the roadmap
§ Find a path on the roadmap

• First planner ever to demonstrate the ability to solve general planning 
problems in > 4-5 dimensions!



Probabilistic completeness
Definition. A motion planning problem 𝑃 = (𝑋%&'', 𝑥()(*, 𝑋+,-.) is robustly feasible if there exists 
some small δ>0 such that a solution remains a solution if obstacles are “dilated” by δ.

Definition. An algorithm ALG is probabilistically complete if 
lim
/→1

Pr(𝐴𝐿𝐺 returns a solution to 𝑃) = 1

for any robustly feasible motion planning problem defined by 𝑃 = 𝑋%&'', 𝑥()(*, 𝑋+,-. .
à Applicable to motion planning problems with a robust solution 



Asymptotic optimality

Suppose we have a cost function 𝑐 that associates to each path 𝜎 a 
non-negative cost 𝑐(𝜎), e.g., 𝑐(𝜎) = ∫R 𝜒(𝑠) 𝑑𝑠.

Definition. An algorithm ALG is asymptotically optimal if, for any 
motion planning problem 𝑃 = (𝑋STUU , 𝑥VWVX , 𝑋YZ[\) and cost function 𝑐
that admit a robust optimal solution with finite cost 𝑐∗,

𝑷 lim
V→^

𝑌V_`a = 𝑐∗ = 1



Simple PRM construction: Step 1
PRM(N,k)
V ← {xinit} ∪ {SampleFreei}i=1,...,N−1
E ← ∅
foreach v ∈ V do

U ← Near(V, v, k) // selects the k nearest neighbors of v in V
foreach u ∈ U do

if CollisionFree(v, u) then

E ← E ∪ {(v, u),(u, v)}
return G = (V, E)



𝑋!"#

Sampled configurations



𝑋!"#

Sampled vs Grid configurations



𝑋!"#

Sampled configurations tested for collisions



𝑋!"#

Collision-free configurations retained as milestones



𝑋!"#

Milestones connected to k nearest neighbors by straight line paths



𝑋!"#

Collision-free paths are retained



𝑋!"#

Collision-free paths form PRM



𝑋!"#

Collision-free paths form PRM



𝑋!"#

Collision-free paths form PRM



𝑋!"#

Start and goal configurations included or searched 



Remarks on PRM

• PRM has been shown to be probabilistically complete
§ Moreover, the probability of success goes to 1 exponentially fast, if the 

environment satisfies certain “good visibility” conditions. 

• However, there are some limitations:
§ NOT asymptotically optimal
§ Builds graph without particular focus on generating path
§ Required to solve 2-point collision detection problem



Complexity of Sampling-based Algorithms

• How can we measure complexity for an algorithm that does not necessarily 
terminate? 
§ Treat the number of samples as “the size of the input.” (Everything else stays the same)
§ Complexity per sample: how much work (time/memory) is needed to process one sample.
§ Useful for comparison of sampling-based algorithms. Not for deterministic, complete 

algorithms.

• Complexity of PRM for N samples Θ(𝑁()
• Practical complexity reduction tricks

§ k-nearest neighbors: connect to the k nearest neighbors. Complexity Θ(N log N). 
§ Bounded degree: connect at most k neighbors among those within radius r.
§ Variable radius: change the connection radius r as a function of N. How?



Rapidly Exploring Random Trees
LaValle and Kuffner, 1998

• Idea: build (online) a tree, exploring the region of the state space that 
can be reached from the initial condition
• At each step: 

§ sample one point from 𝑋)*++
§ Try to connect it to the closest vertex in the tree

• Very effective in practice



Reachability Tree for Dubin’s Car

Credit: Steven LaValle, Planning Algorithms



RRT
V ← {xinit}; E ← ∅
for i = 1, . . . , N do

xrand ← SampleFreei

xnearest ← Nearest(G = (V, E), xrand) // Find node in G that is closest to xrand
xnew ← Steer(xnearest, xrand) // Use local controller to steer xnearest to xrand

if ObtacleFree(xnearest, xnew) then
V ← V ∪ {xnew}
E ← E ∪ {(xnearest, xnew)} 

return G = (V, E)



𝑋$%&'𝑋!"#



𝑋$%&'𝑋!"#



𝑋$%&'𝑋!"#



RRTs and Asymptotic Optimality*
• RRTs have many nice properties:

§ RRTs are probabilistically complete
§ RRTs are great at finding feasible trajectories quickly and work well in practice

• However, the generated trajectories are often not “good”. Why? 
§ Let YRRT

n be the cost of the best path in the RRT at the end of iteration n.
§ It is shown that YRRT

n converges (to a random variable), lim
4→6

𝑌4778 =𝑌6778.

§ The random variable 𝑌6778 is sampled from a distribution with zero mass at the 
optimum

§ Theorem [Karaman & Frizzoli`10] (Almost sure suboptimality of RRTs) If the set of 
sampled optimal paths has measure zero, the sampling distribution is absolutely 
continuous with positive density in 𝑋-.//, and d ≥ 2, then the best path in the RRT 
converges to a sub-optimal solution almost surely, i.e.,  Pr[𝑌6778 > 𝑐∗] = 1.



Summary
• Introduced the graph search algorithm A*, which uses admissible heuristic 

functions to efficiently find the shortest path
§ Hybrid A* will be covered in MP4!

• Introduced probabilistic or sampling-based motion planning methods, 
which can help address complexity and feasibility concerns
§ State-of-the-art algorithms such as RRT converge to a NON-optimal solution almost-

surely
§ Not discussed: There are many new algorithms (e.g., RRG, RRT*), which almost-surely 

converge to optimal solutions with minimal cost

• Not discussed: Local trajectory planners (e.g., MPC) or smoothers are often 
needed to improve graph-based methods
• Next time: High-level decision making, which is often an input to control 

and planning algorithms



Extra Slides



Dynamic programming/Dijkstra

• The optimality principle 
§ Let P = (s, . . . , v, . . . g) be an optimal path (from s to g). 
§ Then, for any v ∈ P, the sub-path S = (v, . . . , g) is itself an optimal path (from v 

to g) 

• Using the optimality principle 
§ Essentially, optimal paths are made of optimal paths. Hence, we can construct 

long complex optimal paths by putting together short optimal paths, which 
can be easily computed. Fundamental formula in dynamic programming: h ∗
(u) = min (u,v)∈E [w( (u, v) ) + h ∗ (v)] . Typically, it is convenient to build 
optimal paths working backwards from the goal.



A* to Continuous State Spaces



How to apply A* to continuous 
state spaces? Hybrid A*
• Represent vehicle state in a uniform discrete grid

§ 4D grid: 𝑥, 𝑦, 𝜃 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 , 𝑑𝑖𝑟 (fwd,rev)

• A path (a) over this discrete grid is a start for a plan
§ But the discrete path (a) may not be executable by the vehicle 

dynamics

• Hybrid A* solves this problem by shifting the points that 
represent the discrete cells

(a) 



𝑋%"#

𝑋%"#

𝑋(%&'

𝑋)*)+

Algorithm Prob. 
Completeness

Asymptotic 
Optimality

Complexity

sPRM Yes Yes O(N)

k-nearest 
sPRM

No No O(log N)

RRT Yes No O(log N)

PRM* Yes Yes O(log N)

k-nearest 
PRM*

Yes Yes O(log N)

RRG Yes Yes O(log N)

k-nearest 
RRG

Yes Yes O(log N)

RRT* Yes Yes O(log N)

k-nearest 
RRT*

Yes Yes O(log N)



Probabilistic RoadMap

• Connect points within a radius r, 
starting from “closest” ones
• Do not attempt to connect points 

already on the same connected 
component of PRM
• What properties does this algorithm 

have? 
§ Will it find a solution if one exists? 
§ Is this an optimal solution? 
§ What is the complexity?

𝑋!"#

𝑋!"#

𝑋$!%&

𝑋'(')



Motion 
planning

Path 
planning

Dynamic 
environment

Truncation Any-angle 
planning

Field D*

Static 
environment

Shortest 
path

D* A*

Sub-optimal 
path

Anytime D*

Trajectory 
planning

Nonholono
mic 

constraints

PRM

Kinodynamic
constaints

RRT RRG



Voronoi bias

• Given n points in d dimensions, the Voronoi diagram of 
the sites is a partition of Rd into regions, one region per 
point, such that all points in the interior of each region lie 
closer to that regions site than to any other site.

• Try it: http://alexbeutel.com/webgl/voronoi.html

• Voronoi bias. Vertices of the RRT that are more 
“isolated” (e.g., in unexplored areas, or at the boundary 
of the explored area) have larger Voronoi regions—and 
are more likely to be selected for extension.

• http://lavalle.pl/rrt/

http://alexbeutel.com/webgl/voronoi.html
http://lavalle.pl/rrt/


Why is RRT not asymptotically optimal? 

• Root node has infinitely many subtrees that extend at least a distance 𝜖
away from 𝑥"#"$.
• The RRT algorithm “traps” itself by disallowing new better paths to 

emerge. Why? 
• Heuristics such as running the RRT multiple times, running multiple trees 

concurrently etc., work better than the standard RRT, but also result in 
almost-sure sub-optimality.
• A careful rethinking of the RRT algorithm is required for (asymptotic) 

optimality.



RRT in action [Frazzoli]
• Talos, the MIT entry to the 2007 DARPA Urban Challenge, relied on an“RRT-like” algorithm for real-time 

motion planning and control.

• The devil is in the details: provisions needed for, e.g.,
§ Real-time, on-line planning for a safety-critical vehicle with substantial momentum.
§ Uncertain, dynamic environment with limited/faulty sensors.

• Main innovations [Kuwata, et al. ’09]
§ Closed-loop planning: plan reference trajectories for a closed-loop model of the vehicle under a stabilizing feedback
§ Safety invariance: Always maintain the ability to stop safely within the sensing region.
§ Lazy evaluation: the actual trajectory may deviate from the planned one,need to efficiently re-check the tree for feasibility.

• The RRT-based P+C system performed flawlessly throughout the race.

• https://journals.sagepub.com/doi/abs/10.1177/0278364911406761

https://journals.sagepub.com/doi/abs/10.1177/0278364911406761


Limitations
The MIT DARPA Urban Challenge code, as well as other incremental sampling 
methods, suffer from the following limitations:
• No characterization of the quality (e.g., “cost”) of the trajectories returned by the 

algorithm.
• Keep running the RRT even after the first solution has been obtained, for as long 

as possible (given the real-time constraints), hoping to find a better path than 
that already available. 
• No systematic method for imposing temporal/logical constraints, such as, e.g., 

the rules of the road, complicated mission objectives, ethical/deontic code.
• In the DARPA Urban Challenge, all logics for, e.g., intersection handling, had to be 

hand-coded, at a huge cost in terms of debugging effort/reliability of the code.



Rapidly Exploring Random Graphs (possibly 
cyclic)
V ← {xinit}; E ← ∅;

for i = 1, . . . , N do

xrand ← SampleFreei;

xnearest ← Nearest(G = (V, E), xrand);

xnew ← Steer(xnearest, xrand) ;

if ObtacleFree(xnearest, xnew) then

Xnear ← Near(G = (V, E), xnew, min{γRRG(log(card V)/ card V)1/d, η}) ;

V ← V ∪ {xnew}; E ← E ∪ {(xnearest, xnew),(xnew, xnearest)} ;

foreach xnear ∈ Xnear do

if CollisionFree(xnear, xnew) then E ← E ∪ {(xnear, xnew),(xnew, xnear)} 

return G = (V, E);

At each iteration, the RRG 
tries to connect the new 
sample to all vertices in a 
ball of radius rn centered 
at it. (Or just default to 
the nearest one if such b 
all is empty.)



Theorems [Proofs not required for exam]
• Probabilistic completeness. Since 𝑉/001 = 𝑉/002, for all n RRG has the same 

completeness properties as RRT, i.e., 
𝑃 𝑟 𝑉/001 ∩ 𝑋3456 = ∅ = 𝑂 𝑒78/ .

• Asymptotic optimality. If the Near procedure returns all nodes in V within a ball 
of volume 𝑉𝑜𝑙 = 9 :;< /

/ , 𝛾 > 2= 1 + >
= , under some additional technical 

assumptions (e.g., on the sampling distribution, on the 𝜖 clearance of the optimal 
path, and on the continuity of the cost function), the best path in the RRG 
converges to an optimal solution almost surely, i.e., 

Pr[𝑌?001 = 𝑐∗] = 1.



Final thoughts on RRG*

• What is the additional computational load? 
§ O(log n) extra calls to ObstacleFree compared to RRT

• Key idea in RRG/RRT∗:
§ Combine optimality and computational efficiency, it is necessary to attempt 

connection to Θ(log N) nodes at each iteration.
§ Reduce volume of the “connection ball” as log(N)/N;
§ Increase the number of connections as log(N).

• These principles can be used to obtain “optimal” versions of PRM, 
etc.


