
Lecture 14: Planning I
Professor Katie Driggs-Campbell

March 19, 2024

ECE484: Principles of Safe Autonomy

Administrivia
• Upcoming due dates:

§ HW3 and MP3 due Friday 3/22
§ Final Presentations in class on 4/23 and 4/25
§ Final Video due 5/3

• Guest Lectures next week (3/26 and 3/28)
§ Attendance will be taken as that week’s pop quiz: Attending both will give 100% for that

week’s pop quiz, attending one will give 50%
§ Tuesday will start at 10am – I’ll have office hours at 9:30am

• Safety discussion and Bonus MP walkthrough on 4/2
• Project support starting this week – information on Canvas
• Exam on 4/18 at 7pm

§ Email me about conflict exams
§ Will use testing center for DRES accommodations

• Vehicle Modeling

• Vehicle Modeling
• Localization

• Vehicle Modeling
• Localization
• Detection & Recognition

• Vehicle Modeling
• Localization
• Detection & Recognition
• Control
• Recall Simple Safety

• Vehicle Modeling
• Localization
• Detection & Recognition
• Control
• Recall Simple Safety
• Next up: Planning!

Today’s Plan
• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path

§ Uninformed (uniform) search
§ Greedy search

Today’s Plan
• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path

§ Uninformed (uniform) search
§ Greedy search

Overview of Motion Planning
• Motion planning is the problem of finding a robot motion from start

state to a goal state that avoids obstacles in the environment
• Recall the configuration space or C-space: every point in the C-space
! ⊂ ℝ! corresponds to a unique configuration $ of the robot
§ E.g., configuration of a simple car is ! = ($, &, ', ()

• The free C-space !"#$$ consists of the configurations where the robot
neither collides with obstacles nor violates constraints

Motion Planning

Given an initial state ! 0 = !!"#$" and a desired final state
!%&#', find a time $ and a set of controls %: 0, $ →) such
that the motion satisfies ! $ = !%&#' and * ! + ∈ -()**
for all + ∈ 0, $
Assumptions:
1. A feedback controller can ensure that the planned motion is

followed closely
2. An accurate model of the robot and environment will evaluate

!"#$$ during motion planning

Quick Discussion
What are some use cases / tasks, considerations, and requirements for planning?

Typical planning and control modules
• Global navigation and planner

§ Find paths from source to destination with static obstacles
§ Algorithms: Graph search, Dijkstra, Sampling-based planning
§ Time scale: Minutes
§ Look ahead: Destination
§ Output: reference center line, semantic commands

• Local planner
§ Dynamically feasible trajectory generation
§ Dynamic planning w.r.t. obstacles
§ Time scales: 10 Hz
§ Look ahead: Seconds
§ Output: Waypoints, high-level actions, directions / velocities

• Controller
§ Waypoint follower using steering, throttle
§ Algorithms: PID control, MPC, Lyapunov-based controller
§ Lateral/longitudinal control
§ Time scale: 100 Hz
§ Look ahead: current state
§ Output: low-level control actions

Types of Motion Planning Problems
• Path planning versus motion planning
• Control inputs: ! = # versus ! < #

§ Holonomic versus nonholonomic
• Online versus offline

§ How reactive does your planner need to be?
• Optimal versus satisficing

§ Minimum cost or just reach goal?
• Exact versus approximate

§ What is sufficiently close to goal?
• With or without obstacles

§ How challenging is the problem?

Motion Planning Methods
• Complete methods: exact representations of the geometry of the

problem and space
• Grid methods: discretize !"#$$ and search the grid from $%&'(& to goal
• Sampling Methods: randomly sample from the C-space, evaluate if

the sample is in %"#$$, and add new sample to previous samples

Motion Planning Methods
• Complete methods: exact representations of the geometry of the

problem and space
• Grid methods: discretize !"#$$ and search the grid from $%&'(& to goal
• Sampling Methods: randomly sample from the C-space, evaluate if

the sample is in %"#$$, and add new sample to previous samples
• Virtual potential fields: create forces on the robot that pull it toward

goal and away from obstacles
• Nonlinear optimization: minimize some cost subject to constraints on

the controls, obstacles, and goal
• Smoothing: given some guess or motion planning output, improve

the smoothness while avoiding collisions

Properties of Motion Planners
• Multiple-query versus single-query planning
• “Anytime” planning

§ Continues to look for better solutions after first solution is found
• Computational complexity

§ Characterization of the amount of time a planner takes to run or the amount of
memory it requires

Properties of Motion Planners
• Multiple-query versus single-query planning
• “Anytime” planning

§ Continues to look for better solutions after first solution is found
• Computational complexity

§ Characterization of the amount of time a planner takes to run or the amount of
memory it requires

• Completeness
§ A planner is complete if it is guaranteed to find a solution in finite time if one exists,

and report failure if no feasible plan exists
§ A planner is resolution complete if it is guaranteed to find a solution, if one exists, at

the resolution of a discretized representation
§ A planner is probabilistically complete if the probability of finding a solution, if one

exists, tends to 1 as planning time goes to infinity

Search Performance Metrics
• Soundness: when a solution is returned, is it guaranteed to be a

correct path?
• Completeness: is the algorithm guaranteed to find a solution when

there is one?
• Optimality: How close is the found solution to the best solution?
• Space complexity: How much memory is needed?
• Time complexity: What is the running time? Can it be used for online

planning?

Today’s Plan
• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path

§ Uninformed (uniform) search
§ Greedy search

Planning as a Search Problem
This is a 2D discretization, but we can
generalize to higher dimensions
(e.g., position, heading, mode)

Graphs and Trees
A graph is a collection of nodes & and edges ℰ, where edge (connects two nodes

Problem Statement: find shortest path
• Input:), +, ,, -%&'(& , -)*'+

§ *: (finite) set of vertices
§ , ⊆ *×*: (finite) set of edges
§ /:, → ℝ!": a function that associates to each edge 2 to a strictly positive

weight /(2) (e.g., cost, distance, time, fuel)
§ $#$%&$, $'(%) ∈ *: start and end vertices (i.e., initial and desired configuration)

Problem Statement: find shortest path
• Input:), +, ,, -%&'(& , -)*'+

§ *: (finite) set of vertices
§ , ⊆ *×*: (finite) set of edges
§ /:, → ℝ!": a function that associates to each edge 2 to a strictly positive

weight /(2) (e.g., cost, distance, time, fuel)
§ $#$%&$, $'(%) ∈ *: start and end vertices (i.e., initial and desired configuration)

• Output: ⟨/⟩
§ 4 is a path starting at $#$%&$ and ending in $'(%), such that its weight /(4) is

minimal among all such paths
§ The weight of a path is the sum of the weights of its edges
§ The graph may be unknown, partially known, or known

Examples

The number of states or
vertices can be large!

Rubik's cube num states:
43,252,003,274,489,856,000

Many paths and weights are not often known upfront!

Example: Find the minimal path from s to g

a

c

s

d

b

g

2 3

4 2

2
5

5

Today’s Plan
• Overview of Motion Planning
• Planning as a graph search problem
• Finding the shortest path

§ Uninformed (uniform) search
§ Greedy search

Uniform cost search (Uninformed search)
! ← #$%&$ // maintains paths

// initialize queue with start
while! ≠ ∅:

pick (and remove) the path * with the lowest cost (+ = - *) from Q

if ./%0 * = 1!"#$ then return * // Reached the goal

for each vertex 2 such that ./%0 * , 2 ∈ 5, do // for all neighbors
add ⟨2, *⟩ to ! // Add expanded paths

Return FAILURE // nothing left to consider

Example of Uniform-Cost Search

a

c

s

d

b

g

2 3

4 2

2
5

5

Remarks on Uniform Cost Search (UCS)
• UCS is an extension of Breadth First Search (BFS) to the weighted-

graph case
§ i.e., UCS is equivalent BFS if all edges have the same cost

• UCS is complete and optimal assuming costs bounded away from zero
§ UCS is guided by path cost rather than path depth, so it may get in trouble if

some edge costs are very small

• Worst-case time and space complexity 1(3,∗/.), where 5∗ is the
optimal cost, and 6 is such that all edge weights are no smaller than

Greedy (Best-First) Search
• UCS explores paths in all directions through all neighbor nodes
• Can we bias the search to try to get “closer” to the goal?

§ We need a measure of distance to the goal
à It would be ideal to use the length of the shortest path
à but this is exactly what we are trying to compute!

Greedy (Best-First) Search
• UCS explores paths in all directions through all neighbor nodes
• Can we bias the search to try to get “closer” to the goal?

§ We need a measure of distance to the goal
à It would be ideal to use the length of the shortest path
à but this is exactly what we are trying to compute!

• We can estimate the distance to the goal through a heuristic function:
ℎ: # → ℝ89

§ ℎ(#) is the estimate of the distance from # to goal
§ Ex: the Euclidean distance to the goal (as the crow flies)

• A reasonable strategy is to always try to move in such a way to minimize
the estimated distance to the goal

Greedy Search
0 ← 23453 // initialize queue with start

while0 ≠ ∅:
pick (and remove) the path 9 with the lowest heuristic cost (:(:<4= 9) from Q

if :<4= 9 = ?!"#$ then return 9 // Reached the goal

for each vertex @ such that :<4= 9 , @ ∈ C, do // for all neighbors

add ⟨", $⟩ to & // Add expanded paths

Return FAILURE // nothing left to consider

Example of Greedy Search

a
2

c
1

s
10

d
4

b
3

g
0

2 3

4 2

2
5

5

Remarks on Greedy Search
• Greedy (Best-First) search is similar to Depth-First Search

§ keeps exploring until it has to back up due to a dead end
• Not complete and not optimal, but is often fast and efficient,

depending on the heuristic function ℎ

Summary
• Introduced basic concepts important for path and motion planning

§ Discussed the differences between the two planning strategies and
considerations for various algorithms

• Reviewed graph definitions and naïve search methods
§ Uninformed and Greedy searches are okay, but not perfect

• Next time: Learn about the final search method that is better
informed: A Search (A* and Hybrid A*)

Extra Slides

Graph Search Methods

A* search algorithm. Dijkstra’s algorithm.

Credit: Subh83 on Wikipedia

