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Administrivia 
• Any volunteers to swap from GEM to another project?
• Upcoming due dates:

§ HW2 and MP2 due Friday 3/01
§ HW3 and MP3 due
§ Project Pitches in class 3/05 and 3/07

o Presentation template on website
o Sign-up for ordering will be posted later today (1 extra point for going on Tuesday)

• Exam has been moved to 4/18 at 7pm in 1013 and 1015 ECEB
§ If you have DRES accommodations, please make an appointment at the testing 

center at this same time



Thought Experiment



Filtering and Localization Use Cases

HD Maps Object Tracking

Image Credit: BMW China
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Robot States and the Environment

• State represents the environment as well as the robot, for example:
§ location of walls or objects (environment or static)
§ pose of the robot (physical or dynamical)

• Environment interaction comes in the form of
§ Sensor measurements
§ Control actions

• Internal representation (or belief) of the state of the world
§ In general, the state (or the world) cannot be measured directly
§ Perception is the process by which the robot uses its sensors to obtain 

information about the state of the environment



Maps and Representations

• Mapping is one of the fundamental 
problems in (mobile) robotics

• Maps allow robots to efficiently carry out 
their tasks and enable localization

• Successful robot systems rely on maps for 
localization, navigation, path planning, 
activity planning, control, etc.

Robotic system



The General Problem of Mapping

• Sensor interpretation
• How do we extract relevant 

information from raw sensor data?
• How do we represent and integrate 

this information over time?

• Robot locations must be estimated
• How can we identify that we are at a 

previously visited place?
• This problem is the so-called data 

association problem
What does the environment look like?



Building a Map with Ultrasound Sensors
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The Localization Problem

• Determine the pose (state) of the robot 
relative to the given map of the environment 
• This is also known as position or state 

estimation problem
• Given uncertainty in our measurements and 

ambiguity from locally symmetric 
environment, we need to recursively update 
our estimate or belief



Probability review
• 𝑃(𝐴) denotes the probability that event A is true

§ 0 ≤ P 𝐴 ≤ 1, 𝑃 true = 1, 𝑃 false = 0
• 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵



Probability review
• 𝑃(𝐴) denotes the probability that event A is true

§ 0 ≤ P 𝐴 ≤ 1, 𝑃 true = 1, 𝑃 false = 0
• 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
Discrete Random Variables
• 𝑋 can take on a countable number of values in 

𝑥1, 𝑥2, … , 𝑥𝑛
• 𝑃(𝑋 = 𝑥!), or 𝑃(𝑥!), is the probability that the 

random variable 𝑋 takes on value 𝑥!
• 𝑃 ) is called probability mass function

Continuous Random Variables
• 𝑋 takes on values in the continuum
• 𝑝(𝑋 = 𝑥), or 𝑝(𝑥), is a probability density func<on
• 𝑃 𝑥 ∈ 𝑎, 𝑏 = ∫"

# 𝑝 𝑥 𝑑𝑥
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• Conditional Probability: 𝑃 𝑥 𝑦
§ 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃 𝑦 à 𝑃 𝑥 𝑦 = 0 1,2

0 2
§ If independent, then 𝑃 𝑥 𝑦 = 𝑃 𝑥

• Total Probability and Marginals
Discrete case: Continuous case:

∑!𝑃 𝑥 = 1 ∫! 𝑝 𝑥 𝑑𝑥 = 1
𝑃 𝑥 = ∑"𝑃(𝑥, 𝑦) = ∑"𝑃 𝑥 𝑦 𝑃 𝑦 𝑝 𝑥 = ∫ 𝑝 𝑥, 𝑦 𝑑𝑦 = ∫ 𝑝 𝑥 𝑦 𝑝 𝑦 𝑑𝑦



Bayes’s Formula Recall: 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦 𝑃 𝑦 = 𝑃 𝑦 𝑥 𝑃 𝑥

𝑃 𝑥 𝑦 =
𝑃 𝑦 𝑥 𝑃(𝑥)

𝑃(𝑦)



Door example of Bayes Rule

Suppose a robot obtains measurement 𝑧. 
What is 𝑃 open 𝑧 ?



Robot’s Belief over States
Belief: Robot’s knowledge about the state 
of the environment

Robotic system



Robot’s Belief over States
Belief: Robot’s knowledge about the state 
of the environment

𝑏𝑒𝑙(𝑥!) = 𝑝(𝑥!|𝑧":! , 𝑢":!)
Posterior distribution over state at time t
given all past measurements and control

Robotic system



Robot’s Belief over States
Belief: Robot’s knowledge about the state 
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Prediction: 𝑏𝑒𝑙(𝑥!) = 𝑝(𝑥!|𝑧":!$", 𝑢":!)

Calculating 𝑏𝑒𝑙(𝑥!) from 𝑏𝑒𝑙(𝑥!) is called 
correction or measurement update

Robotic system



Today’s Plan

• What is filtering, mapping, and localization?
§ Probability review!

• Bayes Filters (discrete)



Notation and Definitions

• Discrete time model
𝑥-!:-" = 𝑥-! , 𝑥-!/0, 𝑥-!/1, … , 𝑥-" sequence of states 𝑡0 to 𝑡1

• Robot takes one measurement at a time
𝑧-!:$" = 𝑧-! , … , 𝑧-" sequence of all measurements from 𝑡0 to 𝑡1

• Control also exercised at discrete steps
𝑢-!:-" = 𝑢-! , 𝑢-!/0, 𝑢-!/1, … , 𝑢-" sequence control inputs



State Evolution / Models

Evolution of the state and measurements are governed by probabilistic laws:
𝑝 𝑥- 𝑥2:-30, 𝑧0:-30, 𝑢0:- describes state evolution / motion model

If the state is complete, we can succinctly state:
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𝑝 𝑥- 𝑥2:-30, 𝑧0:-30, 𝑢0:- = 𝑝 𝑥- 𝑥-30, 𝑢-

Measurement process given by:
𝑝 𝑧- 𝑥2:- , 𝑧0:-30, 𝑢2:-30

Similarly, if measurement is complete:
𝑝 𝑧- 𝑥2:- , 𝑧0:-30, 𝑢0:- = 𝑝 𝑧- 𝑥-



Discrete Bayes Filter Algorithm: Setup

• Evolution of the state is governed by probabilistic state transition:
𝑝 𝑥- 𝑥-30, 𝑢-

• Measurement process given by:
𝑝 𝑧- 𝑥-



Robot’s Belief over States
Belief: Robot’s knowledge about the state 
of the environment
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Robotic system



Recursive Bayes Filter

Algorithm Bayes_Filter(𝑏𝑒𝑙 𝑥-30 , 𝑢- , 𝑧-)
for all 𝑥- do:

𝑏𝑒𝑙 𝑥- = ∫ 𝑝(𝑥-|𝑢-,𝑥-30)𝑏𝑒𝑙(𝑥-30)𝑑𝑥-30
𝑏𝑒𝑙 𝑥- = 𝜂 𝑝 𝑧- 𝑥- 𝑏𝑒𝑙(𝑥-)

end for
return 𝑏𝑒𝑙(𝑥-)
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Algorithm Bayes_Filter(𝑏𝑒𝑙 𝑥-30 , 𝑢- , 𝑧-)
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Bayes Filters (1)
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Bayes Filters (3)



Bayes Filters (4)



Bayes Filters (5)
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Bayes Filter Recap
𝑏𝑒𝑙 𝑥- = 𝜂𝑝 𝑧- 𝑥- ∫ 𝑝 𝑥-| 𝑢- , 𝑥-30 𝑏𝑒𝑙 𝑥-30 𝑑𝑥-30
• Prediction

𝑏𝑒𝑙 𝑥- = ∫ 𝑝 𝑥-| 𝑢- , 𝑥-30 𝑏𝑒𝑙 𝑥-30 𝑑𝑥-30
• Correction

𝑏𝑒𝑙 𝑥- = 𝜂𝑝 𝑧- 𝑥- 𝑏𝑒𝑙 𝑥-

What if we have a good model of our (continuous) system dynamics 
and we assume a Gaussian model for our uncertainty?
à Kalman Filters!



Summary
• Bayes filters are a probabilistic tool for estimating the state of dynamic 

systems
§ They are everywhere! Kalman filters, Particle filters, Hidden Markov models, Dynamic 

Bayesian networks, Partially Observable Markov Decision Processes (POMDPs), …
§ Bayes rule allows us to compute probabilities that are hard to assess otherwise

§ Recursive Bayesian updating can efficiently combine evidence over time

• Next time: Look at extensions of this basic filtering approach (Kalman filtering 
and particle filtering)



Extra Slides



Fun Fact: Who is Bayes?
Bayes was an English statistician, philosopher, and minister 
who lived from 1701 to 1761, and is known for two works:
1. Divine Benevolence, or an Attempt to Prove That the 

Principal End of the Divine Providence and Government 
is the Happiness of His Creatures (1731)

2. An Introduction to the Doctrine of Fluxions, and a 
Defence of the Mathematicians Against the Objections 
of the Author of The Analyst (1736), in which he 
defended the logical foundation of Isaac Newton's 
calculus ("fluxions") against the criticism of George 
Berkeley, author of The Analyst

Bayes never published his most famous accomplishment 
Bayes’ Theorem.  These notes were edited and published 
after his death by Richard Price.

From the HP Autonomy Lab

Probably not Bayes


