
Lecture 11: Control III
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February 22, 2024

ECE484: Principles of Safe Autonomy



Administrivia 
• Team formation due this week (check campuswire)
• Upcoming due dates:

§ HW1 and MP1 due Friday 2/23
§ HW2 and MP2 due Friday 3/01
§ Project Pitches in class 3/05 and 3/07

• Exam has been moved to 4/18 at 7pm  in 1013 and 1015 ECEB



Project Expectations

• GEM Track or F1tenth Track
• Given RGB-D input, detect the track 

and follow the path
• Add at least one additional feature!

• GRAIC Track
• Given ground truth reference

waypoints and obstacle positions,
complete circuits around the tracks

• Add one additional cool feature!

• Now: Finalize Teams and Tracks
• Now: Start Safety Training for 

Hardware Teams
• 03/05: Project Pitch Presentation
• 03/29 or 04/05: Mid Check-in
• 04/23: Final Presentation
• 05/03: Video Due



Today’s Plan (Part 1)

• Take a look at PID controllers
• Build up waypoint following using the models discussed previously
• Introduce some advanced control techniques



PID Controllers
• Proportional 𝑢 = 𝑘!𝑒

• Integral 𝑢 = 𝑘"∫ 𝑒 𝜏 𝑑𝜏

• Derivative 𝑢 = 𝑘# 𝑒̇
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Linear Error Dynamics



Viewing as a Second Order System

• The second order system is: 𝑒̈ + 𝑐$𝑒̇ + 𝑐%𝑒 = 0
• In standard form, we write:

𝑒̈ 𝑡 + 2𝜉𝜔&𝑒̇ 𝑡 + 𝜔&%𝑒 𝑡 = 0
where 𝜉 is the damping ratio and 𝜔& is the natural frequency
• The eigenvalues are given as:

𝜆$,% = −𝜉𝜔& ±𝜔& 𝜉% − 1
• Note that the system is stable iff 𝜔& and 𝜉 are positive



Second Order Dynamics: Cases
• Overdamped: 𝜁 > 1
• Roots 𝑠$ and 𝑠% are distinct
• 𝑥 𝑡 = 𝑐$𝑒&!' + 𝑐%𝑒&"'
• Time constant is the less negative root

• Critically damped: 𝜁 = 1
• Roots 𝑠$ and 𝑠% are equal and real
• 𝑥 𝑡 = (𝑐$+𝑐%𝑡)𝑒()#'
• Time constant is given by 1/𝜔*

• Underdamped: 𝜁 < 1
• Roots are complex conjugates: 

𝑠$,% = −𝜁𝜔* ± 𝑗𝜔* 1 − 𝜁%

• 𝑥 𝑡 = (𝑐$cos𝜔,𝑡 + 𝑐% sin𝜔,𝑡)𝑒(-)#'

Recall:
𝜆$,& = −𝜉𝜔' ± 𝜔' 𝜉& − 1



On to PID for path following



Path following control
• The path followed by a robot can be represented by a trajectory or path 

parameterized by time
à from a higher-level planner, map, or perception system

• Defines the desired instantaneous pose 𝑝 𝑡

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]



Open-loop waypoint following
• We can write an open-loop controller for a robot that is naturally 

controlled via angular velocity, such as a differential-drive robot:

𝑢(,)* 𝑡 = 𝑣 𝑡
𝜔 𝑡 = 𝑥̇ 𝑡 % + 𝑦̇ 𝑡 %

𝜃̇ 𝑡

• We can write an open-loop controller for a robot with car-like steering:

𝑢+,)* 𝑡 = 𝑣 𝑡
𝜅 𝑡 =

𝑥̇ 𝑡 % + 𝑦̇ 𝑡 %

𝜃̇ 𝑡
𝑥̇ 𝑡 % + 𝑦̇ 𝑡 %



Path following control
• The path followed by a robot can be represented by a trajectory or path 

parameterized by time
à from a higher-level planner, map, or perception system

• Defines the desired instantaneous pose 𝑝 𝑡

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ] PlantSensor Controller

Input/waypoint

Control
𝑢(𝑡)

Output

Feedback

Noise Disturbance



Path following control

• Desired instantaneous pose 𝑝 𝑡
• How to define error between actual pose 𝑝, 𝑡 and desired pose 
𝑝 𝑡 in the form of 𝑦# 𝑡 − 𝑦(𝑡)?

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

𝑝( 𝑡 = [𝑥( 𝑡 , 𝑦( 𝑡 , 𝜃( 𝑡 ]



Path following control
The error vector measured vehicle coordinates 

e 𝑡 = [𝛿! 𝑡 , 𝛿" 𝑡 , 𝛿# 𝑡 , 𝛿$ 𝑡 ]

[𝛿!, 𝛿"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝( 𝑡 = [𝑥( 𝑡 , 𝑦( 𝑡 , 𝜃( 𝑡 , 𝑣((𝑡)]



Path following control
The error vector measured vehicle coordinates 

e 𝑡 = [𝛿! 𝑡 , 𝛿" 𝑡 , 𝛿# 𝑡 , 𝛿$ 𝑡 ]

[𝛿!, 𝛿"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 
𝛿! = cos 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑠𝑖𝑛 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion
𝛿" = −sin 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑐𝑜𝑠 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝( 𝑡 = [𝑥( 𝑡 , 𝑦( 𝑡 , 𝜃( 𝑡 , 𝑣((𝑡)]

𝛿)

𝛿'



Path following control
The error vector measured vehicle coordinates 

e 𝑡 = [𝛿! 𝑡 , 𝛿" 𝑡 , 𝛿# 𝑡 , 𝛿$ 𝑡 ]

[𝛿!, 𝛿"] define the coordinate errors in the vehicle’s reference frame: 
along track error and cross track error

• Along track error: distance ahead or behind the target in the 
instantaneous direction of motion. 
𝛿! = cos 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑠𝑖𝑛 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

• Cross track error: portion of the position error orthogonal to the 
intended direction of motion
𝛿" = −sin 𝜃% 𝑡 𝑥 𝑡 − 𝑥% 𝑡 + 𝑐𝑜𝑠 𝜃% 𝑡 𝑦 𝑡 − 𝑦% 𝑡

• Heading error: difference between desired and actual orientation and 
direction
𝛿# = 𝜃 𝑡 − 𝜃% 𝑡
𝛿$ = 𝑣 𝑡 − 𝑣%(𝑡)

à Each of these errors match the form 𝑦& 𝑡 − 𝑦(𝑡)

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 , 𝑣(𝑡)]

𝑝( 𝑡 = [𝑥( 𝑡 , 𝑦( 𝑡 , 𝜃( 𝑡 , 𝑣((𝑡)]

𝜃(

𝛿)

𝛿'
𝛿*



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Using proportional (P) controller:

𝑢 𝑡 = −𝐾E𝑒 𝑡 = −𝐾E(𝑦 𝑡 − 𝑦# 𝑡 )
𝑦̇ 𝑡 = −𝐾E𝑦 𝑡 + 𝐾E𝑦# 𝑡 + 𝑑 𝑡



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Using proportional (P) controller:

𝑢 𝑡 = −𝐾E𝑒 𝑡 = −𝐾E(𝑦 𝑡 − 𝑦# 𝑡 )
𝑦̇ 𝑡 = −𝐾E𝑦 𝑡 + 𝐾E𝑦# 𝑡 + 𝑑 𝑡

• Consider constant setpoint 𝑦F and disturbance 𝑑GG
𝑦̇ 𝑡 = −𝐾E𝑦 𝑡 + 𝐾E𝑦F + 𝑑GG

• What is the steady state output? 



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Using proportional (P) controller:

𝑢 𝑡 = −𝐾E𝑒 𝑡 = −𝐾E(𝑦 𝑡 − 𝑦# 𝑡 )
𝑦̇ 𝑡 = −𝐾E𝑦 𝑡 + 𝐾E𝑦# 𝑡 + 𝑑 𝑡

• Consider constant setpoint 𝑦F and disturbance 𝑑GG
𝑦̇ 𝑡 = −𝐾E𝑦 𝑡 + 𝐾E𝑦F + 𝑑GG

• What is the steady state output? 
§ Set: −𝐾?𝑦 𝑡 + 𝐾?𝑦@ + 𝑑&& = 0
§ Solve for 𝑦&&: 𝑦 𝑡 = ,$$

A%
+ 𝑦@



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Consider constant setpoint 𝑦F and disturbance 𝑑GG

𝑦̇ 𝑡 = −𝐾E𝑦 𝑡 + 𝐾E𝑦F + 𝑑GG
• Steady state output 𝑦GG =

#!!
H"
+ 𝑦F



A simple P-controller example

• Given a simple system: 𝑦̇ 𝑡 = 𝑢 𝑡 + 𝑑 𝑡
• Consider constant setpoint 𝑦F and disturbance 𝑑GG

𝑦̇ 𝑡 = −𝐾E𝑦 𝑡 + 𝐾E𝑦F + 𝑑GG
• Steady state output 𝑦GG =

#!!
H"
+ 𝑦F

• Transient behavior:
𝑦 𝑡 = 𝑦F𝑒IJ/L + 𝑦GG 1 − 𝑒IJ/L , 𝑇 = 1/𝐾E

• To make steady state error small, we can increase 𝐾E at the expense 
of longer transients



Control Law

Control input is given by 𝑢 = 𝑎, 𝛿 M

where 𝑎 is the acceleration and 𝛿 is the steering angle

𝑢 = 𝐾

𝛿G
𝛿&
𝛿N
𝛿O

𝐾 = 𝐾G 0 0 𝐾O
0 𝐾& 𝐾N 0

PlantSensor Controller

𝑝 𝑡 = [𝑥 𝑡 , 𝑦 𝑡 , 𝜃 𝑡 ]

Control
𝑢 𝑡 = 𝑎

𝛿

Output

Feedback

Noise Disturbance



Control Law

𝐾 = 𝐾G 0 0 𝐾O
0 𝐾& 𝐾N 0

The pure-pursuit controller produced by this 
gain matrix performs a PD-control. It uses a 
PD-controller to correct along-track error. 
The control on curvature is also a PD-
controller for cross-track error because 𝛿N is 
related to the derivative of 𝛿&.



Midpoint Summary

• Reviewed linear systems and stability of differential equations
• Looked at PID controllers as a way to regulate systems using state 

feedback
• Derived a waypoint following error dynamics

àThis will be needed for MP2!



Advanced Control Topics





Today’s Plan

• Quick discussion of future topics in advanced control theory
• Introduction to optimal control

§ Linear Quadratic Regulation (LQR)
§ Model Predictive Control (MPC)

• End-to-end learning



Today’s Plan

• Quick discussion of future topics in advanced control theory
• Introduction to optimal control

§ Linear Quadratic Regulation (LQR)
§ Model Predictive Control (MPC)

• End-to-end learning



Extensions from Control Theory 

1. Hybrid Control
§ Given discrete modes of continuous behavior, can we guarantee stability? 

Hybrid system model

merge left
𝑑𝑥
𝑑𝑡 = 𝑓!"#$(𝑥, 𝑢)

cruise
𝑑𝑥
𝑑𝑡 = 𝑓%&'(𝑥, 𝑢)

merge right
𝑑𝑥
𝑑𝑡

= 𝑓!"#$%(𝑥, 𝑢)

speed up
𝑑𝑥
𝑑𝑡 = 𝑓()(𝑥, 𝑢)

slow down
𝑑𝑥
𝑑𝑡

= 𝑓&'()(𝑥, 𝑢)

Run

Walk



Extensions from Control Theory 

1. Hybrid Control
§ Given discrete modes of continuous behavior, can we guarantee stability? 

2. Lyapunov Stability
§ The system is said to be Lyapunov stable about an equilibrium if 

∀𝜀 > 0 ∃𝛿B > 0 such that 𝑥@ ≤ 𝛿B ⇒ ∀𝑡 ≥ 0, 𝜉 𝑥@, 𝑡 ≤ 𝜀

UIUC has one of the best 
control programs in the country!

Consider some grad courses in this area! 

𝑉 𝑥



Today’s Plan

• Quick discussion of future topics in advanced control theory
• Introduction to optimal control

§ Linear Quadratic Regulation (LQR)
§ Model Predictive Control (MPC)

• End-to-end learning



Convex Optimization



Linear Quadratic Regulation (LQR)



Is Optimal Enough?

Deploying a PID Controller

Video Credit: Jonathan Hui



Is Optimal Enough?

Deploying a PID Controller Model Predictive Control

Video Credit: Jonathan Hui



Model Predictive Control
Receding Horizon Approach:
minimize!,# 𝐽(𝑥, 𝑢)
subject to 𝑥$ = 𝑓 𝑥$%&, 𝑢$%&

𝑥' = 𝑥()($, 𝑥* = 𝑥+
5𝑢 ≤ 𝑢 ≤ 7𝑢
8𝑥 ≤ 𝑥 ≤ 𝑥̅

Optimize over time horizon T, execute 𝑢&, 
optimize again with updated information. 

Image Credit: F. Borrelli



Environment 
& Agent Models

Compute Platform

Low-level Control

Trajectory Planning

Decision-Making

Perception

Sensors

Simulation & Validation



Today’s Plan

• Quick discussion of future topics in advanced control theory
• Introduction to optimal control

§ Linear Quadratic Regulation (LQR)
§ Model Predictive Control (MPC)

• End-to-end learning



RL Approaches: Hand Specifying 
Rewards

Video Credit: A. Irpan and 
https://notanymike.github.io/Solving-CarRacing/

OpenAI Gym Racecar Environment



Experience vs. Demonstrations

Reinforcement Learning Demonstrations (sort of)

Image Credit: D. Klein, C. Amato, R. Platt



LfD: Framework and Design Choices
• Demonstration approach
• Choice of demonstrator (expert)
• Demonstration technique (offline, 

online, iterative)
• Problem space continuity
• Dataset gathering (and 

limitations)
• Correspondence (recording, 

embodiment)
• Demonstration (teleoperation, 

shadowing) 
• Policy derivation 

𝑑' = 𝑧'(, 𝑎'( ∈ 𝐷
𝑧'( ∈ 𝑍, 𝑎'( ∈ 𝐴
𝑖 = 0,… , 𝑘'

B. Argall, et al., “A survey of robot learning from demonstration,” Robotics and Autonomous Systems, 2009.

https://uofi.box.com/s/vhypmlj11xf0em8bl20vpam6z4ovk4ox


Behavior Cloning

𝑜+

𝑎+

Training 
Data

Supervised 
Learning 𝜋* 𝑎+|𝑜+



Behavior Cloning
ALVINN: Autonomous Land Vehicle In a 
Neural Network (1989)

Pomerleau, Dean A. "Alvinn: An autonomous land vehicle in a neural network." Advances in neural information processing systems. 1989.

https://uofi.box.com/s/brjeya3baphy7qhxgtl81fzkyn608dgr


Behavior Cloning
ALVINN: Autonomous Land Vehicle In a 
Neural Network (1989)

End-to-End Deep Learning for Self-
Driving Cars (2016)

Pomerleau, Dean A. "Alvinn: An autonomous land vehicle in a neural network." Advances in neural information processing systems. 1989.
M. Bojarski, et al. "End to end learning for self-driving cars." arXiv:1604.07316 (2016).

https://uofi.box.com/s/brjeya3baphy7qhxgtl81fzkyn608dgr
https://uofi.box.com/s/9bz420ymkvkw9a8fg475rjqd0x8n8d45


NN Policy Baseline



(Deep) Imitation Learning

• Given sample trajectories from an expert, try to learn the 
underlying policy 



(Deep) Imitation Learning

• Given sample trajectories from an expert, try to learn the 
underlying policy
• Tends to suffer from distribution shift, compounding 

errors, model mismatch 



(Deep) Imitation Learning

• Given sample trajectories from an expert, try to learn the 
underlying policy
• Tends to suffer from distribution shift, compounding 

errors, model mismatch 
• By improving how we collect the data, we can improve the 

resulting policy!



Human-Gated Imitation Learning

M. Kelly, C. Sidrane, K. Driggs-Campbell, and M.J. Kochenderfer. HG-DAgger: Interactive Imitation Learning with Human Experts, ICRA 2019.



HG-DAgger



Summary

• Introduced a few advanced topics on model-based control
• Discussed learning and end-to-end (model-free) approaches
• Note that all of the methods discussed require some low-level 

controller (i.e., PID) and some high-level input (i.e., decision-making)
• Did not discuss the safety implications of different control methods! 

What do you think are the hazards and advantages of different 
approaches?
• Next time: Filtering and localization!



Extra Slides



Inverse Reinforcement Learning
• Given an optimal trajectory, we want to find the cost function: 

𝜉, → 𝒰: Ξ → ℝ- 𝑠. 𝑡. 𝒰 𝜉, ≤ 𝒰 𝜉 , ∀𝜉
• Rewrite as: 𝒰 𝜉, ≤ min

.
𝒰 𝜉 à Suffers from trivial solutions!

• Modify to find cost function that gives minimum cost by a margin:

𝒰 𝜉, ≤ min
.
𝒰 𝜉 − 𝑙(𝜉, 𝜉,), where 𝑙 𝜉, 𝜉, = F0 if 𝜉 = 𝜉,

1 otherwise
• To make this hold true for the maximum margin:

max
𝒰

min
.
𝒰 𝜉 − 𝑙 𝜉, 𝜉, −𝒰 𝜉,

min
𝒰

𝒰 𝜉, −min
.

𝒰 𝜉 − 𝑙 𝜉, 𝜉, + 𝜆𝑅 𝒰

• To solve this problem, parameterize the function 𝒰à often a linear 
combination of features
P. Abbeel and A. Ng. "Apprenticeship learning via inverse reinforcement learning." International Conference on Machine learning. 2004.

https://uofi.box.com/s/16g1gggzgrmr0n7w2t5av7fafipany99


DAgger: 
Dataset Aggregation
1. Train 𝜋&ZO from human data 𝒟
2. Run 𝜋&ZO to get dataset 𝒟[#$%
3. Obtain corrected labels
4. Aggregate: 𝒟 ← 𝒟 ∪ 𝒟[#$%
5. Repeat!

S. Ross, G. Gordon, and A. Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." International Conference on Artificial 
Intelligence and Statistics. 2011.

https://uofi.box.com/s/0ip0g6mb73pbzrl88zmn1djr66hfpyib


“Safe” Imitation Learning

Expert

Naïve Novice Trained Novice

Online Training

Visualization Credit: K. Menda
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Online Training

Visualization Credit: K. Mendac
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“Safe” Imitation Learning

Expert

Naïve Novice Trained Novice

Online Training

Visualization Credit: K. Menda



Safe Imitation Learning

Visualization Credit: K. Menda



Methods for Determining the  Decision 
Rule?
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Similarity to Demonstration

J. Zhang, and K. Cho. "Query-efficient imitation learning for end-to-end autonomous driving." arXiv:1605.06450, 2016.
K. Menda, K. Driggs-Campbell, and M.J. Kochenderfer. EnsembleDAgger: A Bayesian Approach to Safe Imitation Learning, IROS 2018.



Self-Driving Demonstration

High Confidence in NN Policy Unseen scenario à Resume control
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DAgger


