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Lecture 11: Control III

Professor Katie Driggs-Campbell
February 22, 2024

ECE484: Principles of Safe Autonomy
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Administrivia
Team formation due this week (check campuswire)

Upcoming due dates:
HW1 and MP1 due Friday 2/23
HW2 and MP2 due Friday 3/01
Project Pitches in class 3/05 and 3/07

Exam has been moved to 4/18 at 7pm in 1013 and 1015 ECEB



Project Expectations

e GEM Track or Fltenth Track

* Given RGB-D input, detect the track
and follow the path

 Add at least one additional feature!

e GRAIC Track

e Given ground truth reference
waypoints and obstacle positions,
complete circuits around the tracks

 Add one additional cool feature!
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* Now: Finalize Teams and Tracks

 Now: Start Safety Training for
Hardware Teams

* 03/05: Project Pitch Presentation
* 03/29 or 04/05: Mid Check-in

e 04/23: Final Presentation

* 05/03: Video Due
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Today’s Plan (Part 1)

Take a look at PID controllers
Build up waypoint following using the models discussed previously
Introduce some advanced control techniques



PID Controllers

Proportional u=kpe

E—> k, —>U
— —

Integral u=k;[e(®)dr

lﬁ 1
E— ki — U

Derivative u=kye

E—> kys =—>U
 ———




Linear Error Dynamics
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Viewing as a Second Order System

The second order system is: € + c;e + c,e = 0
In standard form, we write:
é(t) + 2éw,é(t) + w2e(t) =0
where ¢ is the damping ratio and w,, is the natural frequency
The eigenvalues are given as:

A2 = —Sw, £ wn\/fz -1
Note that the system is stable iff w,, and ¢ are positive




Second Order Dynamics: Cases

* Overdamped: ¢ > 1

Recall:

Az = —Swp T Wy §2—1

. . [m(s)] Im(s) Im(s)]
* Roots 51 and s, are distinct oL
e x(t) = ¢ e5tt + cyes2t N\
* Time constant is the less negative root Tt 1t |ReGs . Re(s (wn | Re(s
* Critically damped: ( =1

* Roots s; and s, are equal and real
e x(t) = (cy+cyt)e @nt ;

* Time constant is given by 1/wy, g

* Underdamped: ( <1

* Roots are complex conjugates:

S1,2 = —§wn X j
* x(t) = (c1c0s wgt + ¢, sinwgt)e $@nt

o

overdamped (( > 1)

overdamped

_ critically damped

underdamped

critically damped (( = 1) underdamped (( < 1)

mcreasing Im(s)
overshoot,
oscillation
Re(s)
s | Ci—
shorter unstable

settling time




On to PID for path following
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Path following control

The path followed by a robot can be represented by a trajectory or path
parameterized by time
from a higher-level planner, map, or perception system

Defines the desired instantaneous pose p(t)

_/—:—
-@
-

-
'

7

Y
% o) = [x(), y(£), 6()]
-



Open-loop waypoint following

We can write an open-loop controller for a robot that is naturally
controlled via angular velocity, such as a differential-drive robot:

v(t)] _ Ja‘c(t)2+y'(t)2]

ua),OL(t) — [(l)(t) —

6(t)
We can write an open-loop controller for a robot with car-like steering:
()2 + y(6)?
Uy oy (£) = [”(t) — a(t)
K,OL K(t)
V()2 + y()2.
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Path following control

The path followed by a robot can be represented by a trajectory or path
parameterized by time
from a higher-level planner, map, or perception system

Defines the desired instantaneous pose p(t)

Noise Input/waypoint

/_: -
_-@-
b d
7
7 Control

Feedback

2
’, p(t) = [X(t),y(t), Q(t)] Sensor Controller £0)
-

Output

Disturbance

Piant
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Path following control

Desired instantaneous pose p(t)

How to define error between actual pose pg(t) and desired pose
p(t) in the form of y,;(t) — y(t)?

p(©) = [x(©,y©,60)]

0/

pp(t) = [x5(t), yp(t), 05(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [65(¢), 8,(t), 6g(2), 6, (1)]

|65, 6,,] define the coordinate errors in the vehicle’s reference frame:
along track error and cross track error

4o

p(t) = [x(0),y(t),0(0), v(t)]

’

pp(t) = [xp(t), yp(t), O5(t), vp(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [65(¢), 8,(t), 6g(2), 6, (1)]

|65, 6,,] define the coordinate errors in the vehicle’s reference frame:
along track error and cross track error

distance ahead or behind the target in the
instantaneous direction of motion.

§s = cos(05(1)) (x(t) — x5(1)) + sin(05 (1)) (y(©) — y5(©))

portion of the position error orthogonal to the
intended direction of motion

8y = —sin(05 (1)) (x(£) — x5(8)) + cos(05(t)) (y(£) — yz(D))

4 o

p(t) = [x(0),y(t),0(0), v(t)]

’

pp(t) = [xp(t), yp(t), O5(t), vp(t)]



Path following control

The error vector measured vehicle coordinates

e(t) = [65(¢), 8,(t), 6g(2), 6, (1)]

|65, 6,,] define the coordinate errors in the vehicle’s reference frame:  p(t) = [x(¢t), y(t), 0(t), v(t)]
along track error and cross track error 4

’

distance ahead or behind the target in the """/5‘9
instantaneous direction of motion. | @/
5 = cos(HB(t)) (x(t) — XB(t)) + Sin(QB(t)) (}’(t) — }’B(t)) """ :

o
.

L n®
lllllll

portion of the position error orthogonal to the
intended direction of motion

8y = —sin(05 (1)) (x(£) — x5(8)) + cos(05(t)) (y(£) — yz(D))

Heading error: difference between desired and actual orientation and
direction PB (t) — [XB (t), YB (t)’ QB (t)’ Up (t)]

b = 0(t) — 05(t)
6y, = v(t) — vp(t)

Each of these errors match the form y;(t) — y(t)

4o
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A simple P-controller example

Given a simple system: y(t) = u(t) + d(t)
Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — ya(t))
y(t) = —Kpy(t) + Kpyq(t) + d(¢)

u(t)

d(t)

PPPPP

y(®) = h(x(t))
ya(t)

e(t) =y(t) —ya(t)
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A simple P-controller example

u(t)

Given a simple system: y(t) = u(t) + d(t)
Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — y4(¢))
y(t) = —=Kpy(t) + Kpy,(t) + d(t)
Consider constant setpoint y, and disturbance d

y(t) = —Kpy(t) + Kpyo + dgg
What is the steady state output?

d(t)

PPPPP

y(®) = h(x(t))
ya(t)

e(t) =y(t) —ya(t)
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A simple P-controller example

u(t)

Given a simple system: y(t) = u(t) + d(t)

Using proportional (P) controller:
u(t) = —Kpe(t) = —Kp(y(t) — ya(t))
y(t) = —Kpy(t) + Kpyq(t) + d(t)

Consider constant setpoint y, and disturbance d
y(t) = —Kpy(t) + Kpyo + dss

What is the steady state output?
Set: —pr(t) + pro + dSS =0

Solve for y..: y(t) = % + Vo
P

d(t)

PPPPP

y(®) = h(x(t))
ya(t)

e(t) =y(t) —ya(t)



d(t)

A simple P-controller example . l

u(t) (© = h(x()

ya(t)

Given a simple system: y(t) = u(t) + d(t) — e
Consider constant setpoint y, and disturbance d.

y(t) = —Kpy(t) + Kpyo + dss
Steady state output y,. = i—S: + Vo

4 o
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d(t)

A simple P-controller example . l

u(t) (© = h(x()

ya(t)
e(t) =y()—yq(t)

Given a simple system: y(t) = u(t) + d(t)

Consider constant setpoint y, and disturbance d.
y(t) = —Kpy(t) + Kpyo + ds;

Steady state output y,. = i—s: + Vo

Transient behavior:
Y(t) — YOe_t/T + y$5(1 — e_t/T); T =1/Kp

To make steady state error small, we can increase Kp at the expense
of longer transients
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Control Law

Control input is given by u = [a, §]"
where a is the acceleration and ¢ is the steering angle

_65_

577, Nose p(t) =
u=K 5,

'517 i Feedback
y_ [Ks 0 0 Kv]

0 K, Ky O

[x(2), y(8), 6(t)]
l Control
u(®) = [4]

Controller

Output

Disturbance

|
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Control Law

K:[KS 0 0 K,
0 K, Ky O

The pure-pursuit controller produced by this
gain matrix performs a PD-control. It uses a
PD-controller to correct along-track error.

The control on curvature is also a PD-
controller for cross-track error because dg is
related to the derivative of 4,,.
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Midpoint Summary

Reviewed linear systems and stability of differential equations

Looked at PID controllers as a way to regulate systems using state
feedback

Derived a waypoint following error dynamics
This will be needed for MP2!



Advanced Control Topics
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Today’s Plan

Quick discussion of future topics in advanced control theory

Introduction to optimal control
Linear Quadratic Regulation (LQR)
Model Predictive Control (MPC)

End-to-end learning



Today’s Plan

* Quick discussion of future topics in advanced control theory

* Introduction to optimal control

" Linear Quadratic Regulation (LQR)
* Model Predictive Control (MPC)

* End-to-end learning
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Extensions from Control Theory

Hybrid Control

Given discrete modes of continuous behavior, can we guarantee stability?

Hybrid system model

cruise slow down

dx
E = faown(x, )

X
qt = fers(o, )



UIUC has one of the best

control programs in the country!
Consider some grad courses in this area!

Extensions from Control Theory

1. Hybrid Control

* Given discrete modes of continuous behavior, can we guarantee stability?

2. Lyapunov Stability
" The system is said to be Lyapunov stable about an equilibrium if
Ve > 036, > 0suchthat |xg| <6, 2>Vt =0,|E(xy, t)| <€

A

v

.
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Today’s Plan

* Quick discussion of future topics in advanced control theory

* Introduction to optimal control

* Linear Quadratic Regulation (LQR)
* Model Predictive Control (MPC)

* End-to-end learning



Convex Optimization




Linear Quadratic Regulation (LQR)

4 o



[s Optimal Enough?

Deploying a PID Controller




[s Optimal Enough?

Deploying a PID Controller Model Predictive Control

'0”. Wt Adlgruirrert
T’"l '.a E

Video Credit: Jonathan Hui




Model Predictive Control

Receding Horizon Approach: — T __
minimize, ,, J(x,u) /—F_J_ﬁpd pr e
subjectto  x; = f(x;_1, Us_q1) —— == —I
Xo = Xinivy X1 = X@ - R e o
usus<su —]
X< x<X
Optimize over time horizon T, execute 1, - o R Ii >

optimize again with updated information.

, é . Image Credit: F. Borrelli
0]



Environment
& Agent Models




Today’s Plan

* Quick discussion of future topics in advanced control theory

* Introduction to optimal control

= Linear Quadratic Regulation (LQR)
= Model Predictive Control (MPC)

* End-to-end learning




RL Approaches: Hand Specifying
Rewards

Video Credit: A. Irpan and
é o https://notanymike.github.io/Solving-CarRacing/
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Experience vs. Demonstrations

Reinforcement Learning Demonstrations (sort of)




LfD: Framework and Design Choices

LfD Policy Derivation

Teacher D Policy
Demonstrations Derivation
Policy Execution
(single cycle) - 4
v
World
a’

W N

 Demonstration approach
e Choice of demonstrator (expert)

 Demonstration technique (offline,
online, iterative)

* Problem space continuity

* Dataset gathering (and
limitations)

e Correspondence (recording,
embodiment)

 Demonstration (teleoperation,
shadowing)

* Policy derivation

B. Argall, et al., “A survey of robot learning from demonstration,” Robotics and Autonomous Systems, 2009.



https://uofi.box.com/s/vhypmlj11xf0em8bl20vpam6z4ovk4ox
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Behavior Cloning

Training
Data

Supervised
Learning

g (a;|og)

i




Behavior Cloning

ALVINN: Autonomous Land Vehicle In a
Neural Network (1989)

t

’ 30x32 Video
9| Input Retina

Pomerleau, Dean A. "Alvinn: An autonomous land vehicle in a neural network." Advances in neural information processing systems. 1989.
((


https://uofi.box.com/s/brjeya3baphy7qhxgtl81fzkyn608dgr

Behavior Cloning

ALVINN: Autonomous Land Vehicle In a End-to-End Deep Learning for Self-
Neural Network (1989) Driving Cars (2016)

eerin

Adjust for shift Desired steering command
and rotation

t

E2) 30 Output
Units

- SN Random shift -
S llidden and rotation - Sl
Units
Right camera f
Back propagation
weight adjustment
IR wetd 11
y """.1 :.,'.\3
‘3

i 30x32 Video
‘4 put Retina



https://uofi.box.com/s/brjeya3baphy7qhxgtl81fzkyn608dgr
https://uofi.box.com/s/9bz420ymkvkw9a8fg475rjqd0x8n8d45

NN Policy Baseline

HG-DAgger:
Interactive Imitation Learning with Human Experts
M. Kelly, C. Sidrane, K. Driggs-Campbell, M. Kochenderfer
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(Deep) Imitation Learning

* Given sample trajectories from an expert, try to learn the
underlying policy




.

(Deep) Imitation Learning

* Given sample trajectories from an expert, try to learn the
underlying policy

* Tends to suffer from distribution shift, compounding
errors, model mismatch
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(Deep) Imitation Learning

* Given sample trajectories from an expert, try to learn the
underlying policy

* Tends to suffer from distribution shift, compounding
errors, model mismatch

* By improving how we collect the data, we can improve the
resulting policy!




Human-Gated Imitation Learning

( M. Kelly, C. Sidrane, K. Driggs-Campbell, and M.J. Kochenderfer. HG-DAgger: Interactive Imitation Learning with Human Experts, ICRA 2019.
(¢



HG-DAgger

HG-DAgger:
Interactive Imitation Learning with Human Experts
M. Kelly, C. Sidrane, K. Driggs-Campbell, M. Kochenderfer
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Summary

Introduced a few advanced topics on
Discussed learning and end-to-end ( ) approaches

Note that all of the methods discussed require some low-level
controller (i.e., PID) and some high-level input (i.e., decision-making)

Did not discuss the safety implications of different control methods!
What do you think are the hazards and advantages of different

approaches?
Next time: Filtering and localization!



Extra Slides




Inverse Reinforcement Learning

Given an optimal trajectory, we want to find the cost function:
ép » U:E - Ry s.t.U[Ep] < U[E], V¢

Rewrite as: U[&p] < mgin’U[E] - Suffers from trivial solutions!

Modify to find cost function that gives minimum cost by a margin:

Ulép] < mgin’U[E] —1(¢,¢p), where I(¢,¢p) = {0 iF = <p

1 otherwise
To make this hold true for the maximum margin:

max min U[¢] — 1(¢, ¢p) — ULSp]

min [’U[fp] - mgn[ﬂ[f] =15, $p)| + AR(U)]

To solve this problem, parameterize the function U = often a linear
combination of features

6 P. Abbeel and A. Ng. "Apprenticeship learning via inverse reinforcement learning." International Conference on Machine learning. 2004.
o



https://uofi.box.com/s/16g1gggzgrmr0n7w2t5av7fafipany99

aexp,t

DAgger:
Dataset Aggregation

7Texp Ot

4’[ 7Tn0v Ot

| S

|—>f o at
Decision Rule

!
J

anov,t

Train 1,,,, from human data D

{Environmen

Run 1,4, to get dataset D, o1

Obtain corrected labels

Algorithm 2 VANILLADAGGER Decision Rule

Aggregate: D — D U DTL’ 1: procedure DR(o¢, 7, 8o, \)
nov 2 Qpov,t < 7‘_nov(0t)

3: Qexp,t — Texp(Ot)
Repeat! & e Nfp

b3 z ~ Uniform(0, 1)

6: if 2 = 31

T return aexp,¢

8: else

9: return a,oy

RSN
(P e e



https://uofi.box.com/s/0ip0g6mb73pbzrl88zmn1djr66hfpyib

“Sate” Imitation Learning

:[Decision Rule

S

aexp,t

_)[ Thov (Ot)

e

J

anov,t

E

Oy L

-1 ]
Expert
-1.5 -1 =05 0 0.5 1 1.5

nvironment}

A
T~

Naive Novice

Online Training

Trained Novice




“Sate” Imitation Learning
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ﬂ_exp<0t) \]aexp,t
s

_)[ Thhov (Ot)

anov,t

e

Decision Rule

e

nvironmen

Oy L

]

t e
J

Naive Novice

-1.5 -1 -05 0 0.5

1

1.5

Trained Novice



“Sate” Imitation Learning
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ﬂexp(0t> \]aexp,t
s

_)[ Thhov (Ot)

anov,t

e

Decision Rule

O¢ L

(Environment}

Online Training

-1.5 -1 =05 0 0.5

1

L5

Naive Novice

-1.5 -1 -05 0 0.5 1

Trained Novice




“Sate” Imitation Learning

.

- b 1 aexp,t
gy

_)[ Thov (015)

anov,t

e

Decision Rule

O¢ L

(Environment}

Expert Online Training
—16. =1 =05 0 0 1 15 15 -1 -05 0 05 1 15
1 1
0 0
-1 -1
Naive Novice Trained Novice
-15 -1 -05 O 0.5 1 1.5 -1.5 -1 =05 0 0.5 1 1.5




Safe Imitation Learning

et 0

VATJdEE=1 I it dTaYa Wl B JaYa Ik X /4N \V/VaYaYa - TN

|
J

Decision Rule

\] aexp, t
)
nov g
(Environment}
Ot t

==
_)[ Thhov (Ot)

.2



Methods for Determining the Decision

Rule?

Algorithm 3 SAFEDAGGER* Decision Rule || Algorithm 4 EnsembleDA gger Decision Rule
Y
1: procedure DR (o, 7) 1: procedure DR(os, 7, x) ; iy
> Gating Function .
2: Qpov,t < Thov (Ot) 2: nov,t oz — 7Tnov(0t) v :
3. a.exp,t (_ Texp(ot) 3 aexp,t <_ Wexp(ot) o TrH g
4: if ||anov,t = aexp,t”2 s 4 = ”(;nov,t - (Lexp,t” ap v
: & > (1
3 return a,oy 3 X “ Tanov,e z ™ Environment]
6: else 6: if 7 <7and x <x —
= 'N
7 return ceyp ¢ 7 return danoy ¢ (W N) 5
8 else .
0: return dexp ¢
|

= Novice action samples = Novice action samples NN Ensemble
4 Mean novice action 4 Mean novice action '
+ Expert action +Expert action

) )l B *&
S S X 3 -
X, x x é

¥ ook )

X R

L fep 55

% oS R

X
X x
ay ay
(a) Well-represented state (b) Poorly-represented state

T
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Selt-Driving Demonstration

High Confidence in NN Policy Unseen scenario = Resume control

'«




DAgger

HG-DAgger:
Interactive Imitation Learning with Human Experts
M. Kelly, C. Sidrane, K. Driggs-Campbell, M. Kochenderfer



